1
|
Guo Y, Li Z, Sha M, Deng P, Lin X, Li J, Zhang L, Yin H, Zhan H. Synthesis of a Low-Cost Thiophene-Indoloquinoxaline Polymer Donor and Its Application to Polymer Solar Cells. Polymers (Basel) 2022; 14:polym14081554. [PMID: 35458305 PMCID: PMC9030569 DOI: 10.3390/polym14081554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
A simple wide-bandgap conjugated polymer based on indoloquinoxaline unit (PIQ) has been newly designed and synthesized via cheap and commercially available starting materials. The basic physicochemical properties of the PIQ have been investigated. PIQ possesses a broad and strong absorption band in the wavelength range of 400~660 nm with a bandgap of 1.80 eV and lower-lying highest occupied molecular orbital energy level of −5.58 eV. Polymer solar cells based on PIQ and popular acceptor Y6 blend display a preliminarily optimized power conversion efficiency of 6.4%. The results demonstrate indoloquinoxaline is a promising building unit for designing polymer donor materials for polymer solar cells.
Collapse
Affiliation(s)
- Yiping Guo
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Zeyang Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Mengzhen Sha
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China;
| | - Ping Deng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
- Key Laboratory of Eco-materials Advanced Technology Fuzhou University, Fuzhou 350108, China
- Correspondence: (P.D.); (H.Y.)
| | - Xinyu Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Jun Li
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Liang Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| | - Hang Yin
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, China;
- Correspondence: (P.D.); (H.Y.)
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China; (Y.G.); (Z.L.); (X.L.); (J.L.); (L.Z.); (H.Z.)
| |
Collapse
|
2
|
Cho I, Mozer AJ. Effect of Molecular Structure on Interfacial Electron Transfer Kinetics in the Framework of Classical Marcus Theory. Isr J Chem 2021. [DOI: 10.1002/ijch.202100084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Inseong Cho
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute Innovation Campus Squires Way North Wollongong NSW 2500
| | - Attila J. Mozer
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute Innovation Campus Squires Way North Wollongong NSW 2500
| |
Collapse
|
3
|
Al-Azzawi AG, Aziz SB, Iraqi A, Murad AR, Abdulwahid RT, Alshehri SM, Ahamad T. Impact of ethynylene linkers on the optical and electrochemical properties of benzothiadiazole based alternate conjugated polymers. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Socol M, Preda N. Hybrid Nanocomposite Thin Films for Photovoltaic Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1117. [PMID: 33925952 PMCID: PMC8145415 DOI: 10.3390/nano11051117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Continuing growth in global energy consumption and the growing concerns regarding climate change and environmental pollution are the strongest drivers of renewable energy deployment. Solar energy is the most abundant and cleanest renewable energy source available. Nowadays, photovoltaic technologies can be regarded as viable pathways to provide sustainable energy generation, the achievement attained in designing nanomaterials with tunable properties and the progress made in the production processes having a major impact in their development. Solar cells involving hybrid nanocomposite layers have, lately, received extensive research attention due to the possibility to combine the advantages derived from the properties of both components: flexibility and processability from the organic part and stability and optoelectronics features from the inorganic part. Thus, this review provides a synopsis on hybrid solar cells developed in the last decade which involve composite layers deposited by spin-coating, the most used deposition method, and matrix-assisted pulsed laser evaporation, a relatively new deposition technique. The overview is focused on the hybrid nanocomposite films that can use conducting polymers and metal phthalocyanines as p-type materials, fullerene derivatives and non-fullerene compounds as n-type materials, and semiconductor nanostructures based on metal oxide, chalcogenides, and silicon. A survey regarding the influence of various factors on the hybrid solar cell efficiency is given in order to identify new strategies for enhancing the device performance in the upcoming years.
Collapse
|
5
|
Harvey PD, Sharma GD, Witulski B. Indolo- and Diindolocarbazoles in Organic Photovoltaic Cells. CHEM LETT 2021. [DOI: 10.1246/cl.210050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pierre D. Harvey
- Departement de chimie, Universite de Sherbrooke, Sherbrooke, PQ, Canada J1K 2R1
| | - Ganesh D. Sharma
- Department of Physics, LNM Institute of Information Technology, Jamdoli 302017 Jaipur, India
| | - Bernhard Witulski
- Laboratoire de Chimie Moleculaire et Thio-organique, CNRS UMR 6507, ENSICAEN & UNICaen, Universite de Normandie, 6 Bvd Marechal Juin, 14050 Caen, France
| |
Collapse
|
6
|
Hendrich CM, Bongartz LM, Hoffmann MT, Zschieschang U, Borchert JW, Sauter D, Krämer P, Rominger F, Mulks FF, Rudolph M, Dreuw A, Klauk H, Hashmi ASK. Gold Catalysis Meets Materials Science – A New Approach to π‐Extended Indolocarbazoles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Christoph M. Hendrich
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Lukas M. Bongartz
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Marvin T. Hoffmann
- Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Im Neuenheimer Feld 205 A 69120 Heidelberg Germany
| | - Ute Zschieschang
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - James W. Borchert
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - Désirée Sauter
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Department for Cellular Biophysics Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
- Institute for Physical Chemistry Department for Biophysical Chemistry University of Heidelberg Im Neuenheimer Feld 253 69120 Heidelberg Germany
| | - Petra Krämer
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Florian F. Mulks
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141, Republic of Korea
| | - Matthias Rudolph
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing (IWR) Heidelberg University Im Neuenheimer Feld 205 A 69120 Heidelberg Germany
| | - Hagen Klauk
- Max Planck Institute for Solid State Research Heisenbergstr. 1 70569 Stuttgart Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut Heidelberg University Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
7
|
Abuelwafa A, Dongol M, El-Nahass M, Soga T. Role of Platinum Octaethylporphyrin(PtOEP) in PCPDTBT: PCBM solar cell performance. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Ran Q, Zhong T, Li F, Yu Z, Hou Y, Qian L, Huang J, Jiang R, Zhang H, Sun Q. CdS nanoparticles grown in situ on oxygen deficiency-rich WO3−x nanosheets: direct Z-scheme heterojunction towards enhancing visible light-driven hydrogen evolution. CrystEngComm 2020. [DOI: 10.1039/d0ce00966k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This work introduces the synthesis of direct Z-scheme CdS/WO3−x heterojunction photocatalysts and the application of photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Qi Ran
- School of Resources, Environment and Materials
- Guangxi University
- Nanning 530004
- PR China
| | - Tao Zhong
- School of Resources, Environment and Materials
- Guangxi University
- Nanning 530004
- PR China
| | - Fengyuan Li
- School of Resources, Environment and Materials
- Guangxi University
- Nanning 530004
- PR China
| | - Zebin Yu
- School of Resources, Environment and Materials
- Guangxi University
- Nanning 530004
- PR China
| | - Yanping Hou
- School of Resources, Environment and Materials
- Guangxi University
- Nanning 530004
- PR China
| | - Lun Qian
- School of Resources, Environment and Materials
- Guangxi University
- Nanning 530004
- PR China
| | - Jun Huang
- College of Civil Engineering
- Guangxi University
- Nanning 530004
- P. R. China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering
- Shaoguan University
- Shaoguan 512005
- P.R. China
| | - Heqing Zhang
- School of Resources, Environment and Materials
- Guangxi University
- Nanning 530004
- PR China
| | - Qianqian Sun
- School of Resources, Environment and Materials
- Guangxi University
- Nanning 530004
- PR China
| |
Collapse
|
9
|
Janosik T, Rannug A, Rannug U, Wahlström N, Slätt J, Bergman J. Chemistry and Properties of Indolocarbazoles. Chem Rev 2018; 118:9058-9128. [PMID: 30191712 DOI: 10.1021/acs.chemrev.8b00186] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The indolocarbazoles are an important class of nitrogen heterocycles which has evolved significantly in recent years, with numerous studies focusing on their diverse biological effects, or targeting new materials with potential applications in organic electronics. This review aims at providing a broad survey of the chemistry and properties of indolocarbazoles from an interdisciplinary point of view, with particular emphasis on practical synthetic aspects, as well as certain topics which have not been previously accounted for in detail, such as the occurrence, formation, biological activities, and metabolism of indolo[3,2- b]carbazoles. The literature of the past decade forms the basis of the text, which is further supplemented with older key references.
Collapse
Affiliation(s)
- Tomasz Janosik
- Research Institutes of Sweden , Bioscience and Materials, RISE Surface, Process and Formulation , SE-151 36 Södertälje , Sweden
| | - Agneta Rannug
- Institute of Environmental Medicine , Karolinska Institutet , SE-171 77 Stockholm , Sweden
| | - Ulf Rannug
- Department of Molecular Biosciences, The Wenner-Gren Institute , Stockholm University , SE-106 91 Stockholm , Sweden
| | | | - Johnny Slätt
- Department of Chemistry, Applied Physical Chemistry , KTH Royal Institute of Technology , SE-100 44 Stockholm , Sweden
| | - Jan Bergman
- Karolinska Institutet , Department of Biosciences and Nutrition , SE-141 83 Huddinge , Sweden
| |
Collapse
|
10
|
An enhanced electrochemical energy conversion behavior of thermally treated thin film of 1-dimensional CoTe synthesized from aqueous solution at room temperature. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Liu X, Kong F, Jin S, Chen W, Yu T, Hayat T, Alsaedi A, Wang H, Tan Z, Chen J, Dai S. Molecular Engineering of Simple Benzene-Arylamine Hole-Transporting Materials for Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:27657-27663. [PMID: 28770605 DOI: 10.1021/acsami.7b06193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Three benzene-arylamine hole-transporting materials (HTMs) with different numbers of terminal groups were prepared. It is noted that the molecule with three arms (H-Tri) shows a lower highest occupied molecular orbital level and a better film morphology on perovskite layer than the molecules with two or four arms (H-Di, H-Tetra). When these molecules were applied to the perovskite solar cells, the H-Tri-based one showed better performance compared with the H-Di- or H-Tetra-based ones. Photoluminescence and impedance spectroscopy demonstrate that H-Tri can improve the hole-electron separation efficiency and decrease the charge recombination, thus leading to a better performance. Moreover, the H-Tri-based device shows a comparable performance and a much less materials cost than the conventional spiro-OMeTAD. Therefore, we have presented a new low-cost and high-performance HTM through simple molecular engineering.
Collapse
Affiliation(s)
- Xuepeng Liu
- Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei, Anhui 230088, P. R. China
- University of Science and Technology of China , Hefei 230026, P. R. China
| | - Fantai Kong
- Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei, Anhui 230088, P. R. China
| | - Shengli Jin
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University , Beijing 102206, P. R. China
| | - Wangchao Chen
- Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei, Anhui 230088, P. R. China
- University of Science and Technology of China , Hefei 230026, P. R. China
| | - Ting Yu
- Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei, Anhui 230088, P. R. China
- University of Science and Technology of China , Hefei 230026, P. R. China
| | - Tasawar Hayat
- NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Ahmed Alsaedi
- NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Hongxia Wang
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology , Brisbane, QLD 4001, Australia
| | - Zhan'ao Tan
- NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
| | - Jian Chen
- Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei, Anhui 230088, P. R. China
| | - Songyuan Dai
- Key Laboratory of Photovolatic and Energy Conservation Materials, Institute of Applied Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences , Hefei, Anhui 230088, P. R. China
- NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University , Jeddah 21589, Saudi Arabia
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University , Beijing 102206, P. R. China
| |
Collapse
|
12
|
Cho B, Kim H, Yang D, Shrestha NK, Sung MM. Highly conductive air-stable ZnO thin film formation under in situ UV illumination for an indium-free transparent electrode. RSC Adv 2016. [DOI: 10.1039/c6ra13430k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In situ UV irradiation during ALD cycles generates oxygen-vacancies, partially removes O–H bonds, and thereby produces a highly transparent and highly conductive air-stable ZnO film.
Collapse
Affiliation(s)
- Boram Cho
- Department of Chemistry
- Hanyang University
- Seongdong-gu
- Republic of Korea
| | - Hongbum Kim
- Department of Chemistry
- Hanyang University
- Seongdong-gu
- Republic of Korea
| | - Dasom Yang
- Department of Chemistry
- Hanyang University
- Seongdong-gu
- Republic of Korea
| | | | - Myung Mo Sung
- Department of Chemistry
- Hanyang University
- Seongdong-gu
- Republic of Korea
| |
Collapse
|