1
|
da Silva AF, Moreira AF, Miguel SP, Coutinho P. Recent advances in microalgae encapsulation techniques for biomedical applications. Adv Colloid Interface Sci 2024; 333:103297. [PMID: 39226799 DOI: 10.1016/j.cis.2024.103297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Microalgae are microorganisms that are rich in bioactive compounds, including pigments, proteins, lipids, and polysaccharides. These compounds can be utilized for a number of biomedical purposes, including drug delivery, wound healing, and tissue engineering. Nevertheless, encapsulating microalgae cells and microalgae bioactive metabolites is vital to protect them and prevent premature degradation. This also enables the development of intelligent controlled release strategies for the bioactive compounds. This review outlines the most employed encapsulation techniques for microalgae, with a particular focus on their biomedical applications. These include ionic gelation, oil-in-water emulsions, and spray drying. Such techniques have been widely explored, due to their ability to protect sensitive compounds from degradation, enhance their stability, extend their shelf life, mask undesirable tastes or odours, control the release of bioactive compounds, and enable targeted delivery to specific sites within the body or environment. Moreover, a patent landscape analysis is also provided, allowing an overview of the microalgae encapsulation technology development applied to a variety of fields, including pharmaceuticals, cosmetics, food, and agriculture.
Collapse
Affiliation(s)
- Ana Freire da Silva
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - André F Moreira
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - Sónia P Miguel
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal
| | - Paula Coutinho
- BRIDGES - Biotechnology Research, Innovation, and Design of Health Products, Polytechnic of Guarda, Av. Dr. Francisco Sá Carneiro, 50, 6300-559 Guarda, Portugal.
| |
Collapse
|
2
|
Torres MJ, Bellido-Pedraza CM, Llamas A. Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction. Life (Basel) 2024; 14:940. [PMID: 39202682 PMCID: PMC11355400 DOI: 10.3390/life14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The wide metabolic diversity of microalgae, their fast growth rates, and low-cost production make these organisms highly promising resources for a variety of biotechnological applications, addressing critical needs in industry, agriculture, and medicine. The use of microalgae in consortia with bacteria is proving valuable in several areas of biotechnology, including the treatment of various types of wastewater, the production of biofertilizers, and the extraction of various products from their biomass. The monoculture of the microalga Chlamydomonas has been a prominent research model for many years and has been extensively used in the study of photosynthesis, sulphur and phosphorus metabolism, nitrogen metabolism, respiration, and flagellar synthesis, among others. Recent research has increasingly recognised the potential of Chlamydomonas-bacteria consortia as a biotechnological tool for various applications. The detoxification of wastewater using Chlamydomonas and its bacterial consortia offers significant potential for sustainable reduction of contaminants, while facilitating resource recovery and the valorisation of microalgal biomass. The use of Chlamydomonas and its bacterial consortia as biofertilizers can offer several benefits, such as increasing crop yields, protecting crops, maintaining soil fertility and stability, contributing to CO2 mitigation, and contributing to sustainable agricultural practises. Chlamydomonas-bacterial consortia play an important role in the production of high-value products, particularly in the production of biofuels and the enhancement of H2 production. This review aims to provide a comprehensive understanding of the potential of Chlamydomonas monoculture and its bacterial consortia to identify current applications and to propose new research and development directions to maximise their potential.
Collapse
Affiliation(s)
- María J. Torres
- Correspondence: (M.J.T.); (A.L.); Tel.: +34-957-218352 (M.J.T. & A.L.)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain;
| |
Collapse
|
3
|
Che H, Wang Z, Li Y, Nie Y, Tian X. A Stable and Sensitive Engineering Bacterial Sensor via Physical Biocontainment and Two-Stage Signal Amplification. Anal Chem 2024; 96:8807-8813. [PMID: 38714342 DOI: 10.1021/acs.analchem.4c01341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Although engineering bacterial sensors have outstanding advantages in reflecting the actual bioavailability and continuous monitoring of pollutants, the potential escape risk of engineering microorganisms and lower detection sensitivity have always been one of the biggest challenges limiting their wider application. In this study, a core-shell hydrogel bead with functionalized silica as the core and alginate-polyacrylamide as the shell have been developed not only to realize zero escape of engineered bacteria but also to maintain cell activity in harsh environments, such as extremely acidic/alkaline pH, high salt concentration, and strong pressure. Particularly, after combining the selective preconcentration toward pollutants by functionalized core and the positive feedback signal amplification of engineering bacteria, biosensors have realized two-stage signal amplification, significantly improving the detection sensitivity and reducing the detection limit. In addition, this strategy was actually applied to the detection of As(III) and As(V) coexisting in environmental samples, and the detection sensitivity was increased by 3.23 and 4.39 times compared to sensors without signal amplification strategy, respectively, and the detection limits were as low as 0.39 and 0.86 ppb, respectively.
Collapse
Affiliation(s)
- Huachao Che
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhiyue Wang
- Civil and Environmental Engineering, University of Hawai'i, Honolulu Hawai'i 96822, United States
- Water Resources Research Center, University of Hawai'i, Honolulu, Hawai'i 96822, United States
| | - Yong Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Yulun Nie
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xike Tian
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
4
|
Polanía AM, Ramírez C, Londoño L, Bolívar G, Aguilar CN. Encapsulation of Pineapple Peel Extracts by Ionotropic Gelation Using Corn Starch, Weissella confusa Exopolysaccharide, and Sodium Alginate as Wall Materials. Foods 2023; 12:2943. [PMID: 37569212 PMCID: PMC10418400 DOI: 10.3390/foods12152943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Phenolic compounds that are present in pineapple by-products offer many health benefits to the consumer; however, they are unstable to many environmental factors. For this reason, encapsulation is ideal for preserving their beneficial effects. In this work, extracts were obtained by the combined method of solid-state fermentation with Rhizopus oryzae and ultrasound. After this process, the encapsulation process was performed by ionotropic gelation using corn starch, sodium alginate, and Weissella confusa exopolysaccharide as wall material. The encapsulates produced presented a moisture content between 7.10 and 10.45% (w.b), a solubility of 53.06 ± 0.54%, and a wettability of 31.46 ± 2.02 s. The total phenolic content (TPC), antioxidant capacity of DPPH, and ABTS of the encapsulates were also determined, finding 232.55 ± 2.07 mg GAE/g d.m for TPC, 45.64 ± 0.9 µm Trolox/mg GAE for DPPH, and 51.69 ± 1.08 µm Trolox/mg GAE for ABTS. Additionally, ultrahigh performance liquid chromatography (UHPLC) analysis allowed us to identify and quantify six bioactive compounds: rosmarinic acid, caffeic acid, p-coumaric acid, ferulic acid, gallic acid, and quercetin. According to the above, using ionotropic gelation, it was possible to obtain microencapsulates containing bioactive compounds from pineapple peel extracts, which may have applications in the development of functional foods.
Collapse
Affiliation(s)
- Anna María Polanía
- MIBIA Group, Biology Department, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760031, Colombia; (A.M.P.); (C.R.); (G.B.)
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| | - Cristina Ramírez
- MIBIA Group, Biology Department, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760031, Colombia; (A.M.P.); (C.R.); (G.B.)
| | - Liliana Londoño
- BIOTICS Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia—UNAD, Palmira 763531, Colombia;
| | - German Bolívar
- MIBIA Group, Biology Department, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760031, Colombia; (A.M.P.); (C.R.); (G.B.)
| | - Cristobal Noe Aguilar
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, Mexico
| |
Collapse
|
5
|
Choudhary P, Kraatz HB, Lévesque CM, Gong SG. Microencapsulation of Probiotic Streptococcus salivarius LAB813. ACS OMEGA 2023; 8:12011-12018. [PMID: 37033842 PMCID: PMC10077535 DOI: 10.1021/acsomega.2c07721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Probiotics are living microorganisms that confer a health benefit on the host when administered in adequate amounts. Streptococcus salivarius, a commensal bacterium found in the oral cavity, has been shown to secrete antimicrobial peptides and can be used as probiotics. This study aimed to develop a delivery system for the probiotic LAB813, a novel S. salivarius strain first identified in the laboratory. Probiotics can be delivered and protected through the encapsulation of biomaterials such as polysaccharides. Their biocompatibility, biodegradability, user-friendliness, and ease of access make polysaccharides useful for encapsulating probiotics. Alginate (Alg) and chitosan (Ch) are naturally obtained polysaccharides and, hence, tested for LAB813 encapsulation. An extrusion method of encapsulation was performed to form Alg microcapsules (Alg-LAB813), some of which were coated with Ch (Alg-LAB813-Ch) to provide dual-layered protection. Inhibitory assays of the Alg-LAB813 and Alg-LAB813-Ch microcapsules were assayed against an indicator strain. Alg-LAB813-Ch microcapsules showed superior antibacterial properties compared to Alg-LAB813 microcapsules over 24 h and when subject to temperatures ranging from 4 to 68 °C. In addition, Alg-LAB813-Ch microcapsules retained antibacterial activity for up to 28 days of storage at 4 °C. The strong and sustained inhibitory activities of Ch-coated Alg encapsulated LAB813 signify the potential for their use to improve oral health.
Collapse
Affiliation(s)
| | - Heinz-Bernhard Kraatz
- Department
of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Céline M. Lévesque
- Faculty
of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Siew-Ging Gong
- Faculty
of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| |
Collapse
|
6
|
Jeong Y, Kong W, Lu T, Irudayaraj J. Soft hydrogel-shell confinement systems as bacteria-based bioactuators and biosensors. Biosens Bioelectron 2023; 219:114809. [PMID: 36274428 DOI: 10.1016/j.bios.2022.114809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/25/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Genetically engineered (GE) bacteria were utilized for developing functional systems upon confinement within a restricted space. Use of natural soft hydrogel such as alginate, gelatin, and agarose, have been investigated as promising approaches to design functional architectures. Nevertheless, a challenge is to develop functional microenvironments that support biofilm-like confinement in a relevant three-dimensional (3D) format for long-term studies. We demonstrate a natural soft hydrogel bioactuator based on alginate core-shell structures (0.25-2 mm core and 50-300 μm shell thickness) that enables 3D microbial colonization upon confinement with high cell density. Specially, our study evaluates the efficiency of bacteria-functional system by recapitulating various GE bacteria which can produce common reporter proteins, to demonstrate their actuator functions as well as dynamic pair-wise interactions. The structural design of the hydrogel can endure continued growth of various bacteria colonies within the confined space for over 10 days. The total amount of cellular biomass upon hydrogel-shell confinement was increased 5-fold compared to conventional techniques without hydrogel-shell. Furthermore, the enzymatic activity increased 3.8-fold and bioluminescence signal by 8-fold compared to the responses from conventional hydrogel systems. The conceptualized platform and our workflow represent a reliable strategy with core-shell structures to develop artificial hydrogel habitats as bacteria-based functional systems for bioactuation.
Collapse
Affiliation(s)
- Yoon Jeong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wentao Kong
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Joseph Irudayaraj
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
7
|
Sodium alginate-based wall materials microencapsulated Lactobacillus plantarum CICC 20022: characteristics and survivability study. Food Sci Biotechnol 2022; 31:1463-1472. [DOI: 10.1007/s10068-022-01134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
|
8
|
Wang L, Zhang BB, Yang XY, Su BL. Alginate@polydopamine@SiO 2 microcapsules with controlled porosity for whole-cell based enantioselective biosynthesis of (S)-1-phenylethanol. Colloids Surf B Biointerfaces 2022; 214:112454. [PMID: 35290821 DOI: 10.1016/j.colsurfb.2022.112454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
Whole-cell biocatalysis, owing to its high enantioselectivity, environment friendly and mild reaction condition, show a great prospect in chemical, pharmaceutical and fuel industry. However, several problems still limit its wide applications, mainly concerning the low productivity and poor stability. Although the biocatalyst encapsulated in the most-commonly-used alginate hydrogels demonstrate enhanced stability, it still suffers from low biocatalytic productivity, long-term reusability and poor mass diffusion control. In this work, hybrid alginate@polydopamine@SiO2 microcapsules with controlled porosity are designed to encapsulate yeast cells for the asymmetric biosynthesis of (S)- 1-phenylethonal from acetophenone. The hybrid microcapsules are formed by the ionic cross-linking of alginate, the polymerization of dopamine monomers and the protamine-assisted colloidal packing of uniform-sized silica nanoparticles. Alginate provides the encapsulated cells with highly biocompatible environment. Polydopamine enables to stimulate the biocatalytic productivity of the encapsulated yeast cells. Silica shells can not only regulate the mass diffusion in biocatalysis but also enhance the long-term mechanical and chemical stability of the microcapsules. The morphology, structure, chemical composition, stability and molecular accessibility of the hybrid microcapsules are investigated in detail. The viability and asymmetric bioreduction performance of the cells encapsulated in microcapsules are evaluated. The 24 h product yield of the cells encapsulated in the hybrid microcapsules shows 1.75 times higher than that of the cells encapsulated in pure alginate microcapsules. After 6 batches, the 24 h product yield of the cells encapsulated in the hybrid microcapsules is well maintained and 2 times higher than that of the cells encapsulated in pure alginate microcapsules. Therefore, the hybrid microcapsules designed in this study enable to enhance the asymmetric biocatalytic activity, stability and reusability of the encapsulated cells, thus contributing to a significant progress in cell-encapsulating materials to be applied in biocatalytic asymmetric synthesis industry.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium
| | - Bo-Bo Zhang
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium; Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, Namur 5000, Belgium.
| |
Collapse
|
9
|
Homburg SV, Patel AV. Silica Hydrogels as Entrapment Material for Microalgae. Polymers (Basel) 2022; 14:polym14071391. [PMID: 35406264 PMCID: PMC9002651 DOI: 10.3390/polym14071391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/30/2022] Open
Abstract
Despite being a promising feedstock for food, feed, chemicals, and biofuels, microalgal production processes are still uneconomical due to slow growth rates, costly media, problematic downstreaming processes, and rather low cell densities. Immobilization via entrapment constitutes a promising tool to overcome these drawbacks of microalgal production and enables continuous processes with protection against shear forces and contaminations. In contrast to biopolymer gels, inorganic silica hydrogels are highly transparent and chemically, mechanically, thermally, and biologically stable. Since the first report on entrapment of living cells in silica hydrogels in 1989, efforts were made to increase the biocompatibility by omitting organic solvents during hydrolysis, removing toxic by-products, and replacing detrimental mineral acids or bases for pH adjustment. Furthermore, methods were developed to decrease the stiffness in order to enable proliferation of entrapped cells. This review aims to provide an overview of studied entrapment methods in silica hydrogels, specifically for rather sensitive microalgae.
Collapse
Affiliation(s)
- Sarah Vanessa Homburg
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| | - Anant V Patel
- WG Fermentation and Formulation of Biologicals and Chemicals, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Interaktion 1, 33619 Bielefeld, Germany
| |
Collapse
|
10
|
Leroux G, Neumann M, Meunier CF, Voisin V, Habsch I, Caron N, Michiels C, Wang L, Su BL. Alginate@TiO 2 hybrid microcapsules with high in vivo biocompatibility and stability for cell therapy. Colloids Surf B Biointerfaces 2021; 203:111770. [PMID: 33894650 DOI: 10.1016/j.colsurfb.2021.111770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022]
Abstract
Designing new materials to encapsulate living therapeutic cells for the treatment of the diseases caused by protein or hormone deficiencies is a great challenge. The desired materials need to be biocompatible towards both entrapped cells and host organisms, have long-term in vivo stability after implantation, allow the diffusion of nutrients and metabolites, and ensure perfect immune-isolation. The current work investigates the in vivo biocompatibility and stability of alginate@TiO2 hybrid microcapsules and the immune-isolation of entrapped HepG2 cells, to assess their potential for cell therapy. A comparison was made with alginate-silica hybrid microcapsules (ASA). These two hybrid microcapsules are implanted subcutaneously in female Wistar rats. The inflammatory responses of the rats are monitored by the histological examination of the implants and the surrounding tissues, to indicate their in vivo biocompatibility towards the hosts. The in vivo stability of the microcapsules is evaluated by the recovery rate of the intact microcapsules after implantation. The immune-isolation of the entrapped cells is assessed by their morphology, membrane integrity and intracellular enzymatic activity. The results show high viability of the entrapped cells and insignificant inflammation of the hosts, suggesting the excellent biocompatibility of alginate@TiO2 and ASA microcapsules towards both host organisms and entrapped cells. Compared to the ASA microcapsules, more intact alginate@TiO2 hybrid microcapsules are recovered 2-day and 2-month post-implantation and more cells remain alive, proving their better in vivo biocompability, stability, and immune-isolation. The present study demonstrates that the alginate@TiO2 hybrid microcapsule is a highly promising implantation material for cell therapy.
Collapse
Affiliation(s)
- Grégory Leroux
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Myriam Neumann
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Christophe F Meunier
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Virginie Voisin
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Isabelle Habsch
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Nathalie Caron
- Molecular Physiology Research Unit (URPhyM), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Li Wang
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, B-5000, Namur, Belgium; State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070, China.
| |
Collapse
|
11
|
Tang TC, Tham E, Liu X, Yehl K, Rovner AJ, Yuk H, de la Fuente-Nunez C, Isaacs FJ, Zhao X, Lu TK. Hydrogel-based biocontainment of bacteria for continuous sensing and computation. Nat Chem Biol 2021; 17:724-731. [PMID: 33820990 DOI: 10.1038/s41589-021-00779-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Genetically modified microorganisms (GMMs) can enable a wide range of important applications including environmental sensing and responsive engineered living materials. However, containment of GMMs to prevent environmental escape and satisfy regulatory requirements is a bottleneck for real-world use. While current biochemical strategies restrict unwanted growth of GMMs in the environment, there is a need for deployable physical containment technologies to achieve redundant, multi-layered and robust containment. We developed a hydrogel-based encapsulation system that incorporates a biocompatible multilayer tough shell and an alginate-based core. This deployable physical containment strategy (DEPCOS) allows no detectable GMM escape, bacteria to be protected against environmental insults including antibiotics and low pH, controllable lifespan and easy retrieval of genomically recoded bacteria. To highlight the versatility of DEPCOS, we demonstrated that robustly encapsulated cells can execute useful functions, including performing cell-cell communication with other encapsulated bacteria and sensing heavy metals in water samples from the Charles River.
Collapse
Affiliation(s)
- Tzu-Chieh Tang
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,The Mediated Matter Group, Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Eléonore Tham
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kevin Yehl
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Alexis J Rovner
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA.,Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.,Systems Biology Institute, Yale University, West Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Timothy K Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
12
|
Emami Moghaddam SA, Harun R, Mokhtar MN, Zakaria R. Stability improvement of algal-alginate beads by zeolite molecular sieves 13X. Int J Biol Macromol 2019; 132:592-599. [PMID: 30922914 DOI: 10.1016/j.ijbiomac.2019.03.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 11/25/2022]
Abstract
This research aimed to improve the stability of Chlorella-Alginate Beads (CABs) by zeolite molecular sieves 13X. Dissolution time of synthesized Zeolite-Algal-Alginate Beads (ZABs) in a chelating agent revealed a significant improvement on the beads stability (78.5 ± 0.5 min) compared to the control beads (51.5 ± 0.5 min) under the optimum conditions of zeolite/alginate (1.5:1), pH 5 and 2% of beads. Monitoring cell growth during 5 days of incubation showed good biocompatibility of zeolite 13X. Scanning electron microscopy (SEM) indicated rough surface and spherical shapes of ZABs. Energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR) of ZABs confirmed the presence of zeolite 13X within the matrix. The zeta potential value of ZABs indicated that the beads were relatively stable. The findings of this research showed that zeolite molecular sieves 13X have the potential to improve the stability of algal-alginate beads compared to common beads.
Collapse
Affiliation(s)
- Seyed Amirebrahim Emami Moghaddam
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Razif Harun
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia.
| | - Mohd Noriznan Mokhtar
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - Rabitah Zakaria
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
13
|
Condi Mainardi J, Rezwan K, Maas M. Embedding live bacteria in porous hydrogel/ceramic nanocomposites for bioprocessing applications. Bioprocess Biosyst Eng 2019; 42:1215-1224. [PMID: 30953175 DOI: 10.1007/s00449-019-02119-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/29/2019] [Indexed: 11/24/2022]
Abstract
In this work, we present a biocompatible one-pot processing route for ceramic/hydrogel nanocomposites in which we embed live bacteria. In our approach, we fabricate a highly stable alginate hydrogel with minimal shrinkage, highly increased structural and mechanical stability, as well as excellent biocompatibility. The hydrogel was produced by ionotropic gelation and reinforced with alumina nanoparticles to form a porous 3D network. In these composite gels, the bacteria Escherichia coli and Bacillus subtilis were embedded. The immobilized bacteria showed high viability and similar metabolic activity as non-embedded cells. Even after repeated glucose consumption cycles, the material maintained high structural stability with stable metabolic activity of the immobilized bacteria. Storing the bionanocomposite for up to 60 days resulted in only minor loss of activity. Accordingly, this approach shows great potential for producing macroscopic bioactive materials for biotechnological processes.
Collapse
Affiliation(s)
- Jessica Condi Mainardi
- Keramische Werkstoffe und Bauteile, Advanced Ceramics, Universität Bremen, Am Biologischen Garten 2-IW 3, Raum 2140, 28359, Bremen, Germany
| | - Kurosch Rezwan
- Keramische Werkstoffe und Bauteile, Advanced Ceramics, Universität Bremen, Am Biologischen Garten 2-IW 3, Raum 2140, 28359, Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, Am Fallturm 1, 28359, Bremen, Germany
| | - Michael Maas
- Keramische Werkstoffe und Bauteile, Advanced Ceramics, Universität Bremen, Am Biologischen Garten 2-IW 3, Raum 2140, 28359, Bremen, Germany. .,MAPEX Center for Materials and Processes, University of Bremen, Am Fallturm 1, 28359, Bremen, Germany.
| |
Collapse
|
14
|
Leroux G, Neumann M, Meunier CF, Fattaccioli A, Michiels C, Arnould T, Wang L, Su BL. Hybrid Alginate@TiO 2 Porous Microcapsules as a Reservoir of Animal Cells for Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37865-37877. [PMID: 30360050 DOI: 10.1021/acsami.8b15483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The number of patients suffering from diseases linked with hormone deficiency (e.g., type 1 diabetes mellitus) has significantly increased in recent years. As organ transplantation presents its limits, the design of novel robust devices for cell encapsulation is of great interest. The current study reports the design of a novel hybrid alginate microcapsule reinforced by titania via a biocompatible synthesis from an aqueous stable titania precursor (TiBALDH) and a cationic polyamine (PDDAC) under mild conditions. The biocompatibility of this one-pot synthesis was confirmed by evaluation of the cytotoxicity of the precursor, additive, product, and by-product. The morphology, structure, and properties of the obtained hybrid microcapsule were characterized in detail. The microcapsule displayed mesoporous, which was a key parameter to allow the diffusion of nutrients and metabolites and to avoid the entry of immune defenders. The hybrid microcapsule also showed enhanced mechanical stability compared to the pure alginate microcapsule, making it an ideal candidate as a cell reservoir. HepG2 model cells encapsulated in the hybrid microcapsules remained intact for 43 days as highlighted by fluorescent viability probes, their oxygen consumption, and their albumin secretion. The study provides a significant progress in the conception of the robust and biocompatible reservoirs of animal cells for cell therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bao-Lian Su
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing , Wuhan University of Technology , Luoshi Road 122 , Wuhan 430070 , China
| |
Collapse
|
15
|
Holzmeister I, Schamel M, Groll J, Gbureck U, Vorndran E. Artificial inorganic biohybrids: The functional combination of microorganisms and cells with inorganic materials. Acta Biomater 2018; 74:17-35. [PMID: 29698705 DOI: 10.1016/j.actbio.2018.04.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/12/2018] [Accepted: 04/22/2018] [Indexed: 02/07/2023]
Abstract
Biohybrids can be defined as the functional combination of proteins, viable cells or microorganisms with non-biological materials. This article reviews recent findings on the encapsulation of microorganisms and eukaryotic cells in inorganic matrices such as silica gels or cements. The entrapment of biological entities into a support material is of great benefit for processing since the encapsulation matrix protects sensitive cells from shear forces, unfavourable pH changes, or cytotoxic solvents, avoids culture-washout, and simplifies the separation of formed products. After reflecting general aspects of such an immobilization as well as the chemistry of the inorganic matrices, we focused on manufacturing aspects and the application of such biohybrids in biotechnology, medicine as well as in environmental science and for civil engineering purpose. STATEMENT OF SIGNIFICANCE The encapsulation of living cells and microorganisms became an intensively studied and rapidly expanding research field with manifold applications in medicine, bio- and environmental technology, or civil engineering. Here, the use of silica or cements as encapsulation matrices have the advantage of a higher chemical and mechanical resistance towards harsh environmental conditions during processing compared to their polymeric counterparts. In this perspective, the article gives an overview about the inorganic material systems used for cell encapsulation, followed by reviewing the most important applications. The future may lay in a combination of the currently achieved biohybrid systems with additive manufacturing techniques. In a longer perspective, this would enable the direct printing of cell loaded bioreactor components.
Collapse
|
16
|
Traffano-Schiffo MV, Castro-Giraldez M, Fito PJ, Perullini M, Santagapita PR. Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS. Carbohydr Polym 2018; 179:402-407. [DOI: 10.1016/j.carbpol.2017.09.096] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 11/30/2022]
|
17
|
Huq T, Fraschini C, Khan A, Riedl B, Bouchard J, Lacroix M. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin. Carbohydr Polym 2017; 168:61-69. [DOI: 10.1016/j.carbpol.2017.03.032] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
|
18
|
|
19
|
Liu SH, Liu M, Xu ZL, Wei YM, Guo X. A novel PES-TiO2 hollow fiber hybrid membrane prepared via sol-gel process assisted reverse thermally induced phase separation (RTIPS) method. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Fabrication of Magnetically Modified Chlorella pyrenoidosa Microalgae Using Poly(diallyldimethyl ammonium)-stabilised Magnetic Nanoparticles. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0263-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|