1
|
Kundale SS, Kamble GU, Patil PP, Patil SL, Rokade KA, Khot AC, Nirmal KA, Kamat RK, Kim KH, An HM, Dongale TD, Kim TG. Review of Electrochemically Synthesized Resistive Switching Devices: Memory Storage, Neuromorphic Computing, and Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1879. [PMID: 37368309 DOI: 10.3390/nano13121879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
Resistive-switching-based memory devices meet most of the requirements for use in next-generation information and communication technology applications, including standalone memory devices, neuromorphic hardware, and embedded sensing devices with on-chip storage, due to their low cost, excellent memory retention, compatibility with 3D integration, in-memory computing capabilities, and ease of fabrication. Electrochemical synthesis is the most widespread technique for the fabrication of state-of-the-art memory devices. The present review article summarizes the electrochemical approaches that have been proposed for the fabrication of switching, memristor, and memristive devices for memory storage, neuromorphic computing, and sensing applications, highlighting their various advantages and performance metrics. We also present the challenges and future research directions for this field in the concluding section.
Collapse
Affiliation(s)
- Somnath S Kundale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Girish U Kamble
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Pradnya P Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Snehal L Patil
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Kasturi A Rokade
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India
| | - Atul C Khot
- School of Electrical Engineering, Korea University, Anam-dong, Seoul 02841, Republic of Korea
| | - Kiran A Nirmal
- School of Electrical Engineering, Korea University, Anam-dong, Seoul 02841, Republic of Korea
| | - Rajanish K Kamat
- Department of Electronics, Shivaji University, Kolhapur 416004, India
- Department of Physics, Dr. Homi Bhabha State University, 15, Madam Cama Road, Mumbai 400032, India
| | - Kyeong Heon Kim
- Department of Convergence Electronic Engineering, Gyeongsang National University, Jinjudae-ro 501, Jinju 52828, Republic of Korea
| | - Ho-Myoung An
- Department of Electronics, Osan University, 45, Cheonghak-ro, Osan-si 18119, Republic of Korea
| | - Tukaram D Dongale
- Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology, Shivaji University, Kolhapur 416004, India
- School of Electrical Engineering, Korea University, Anam-dong, Seoul 02841, Republic of Korea
| | - Tae Geun Kim
- School of Electrical Engineering, Korea University, Anam-dong, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Sun B, Guo T, Zhou G, Ranjan S, Hou W, Hou Y, Zhao Y. Tunneling of photon-generated carrier in the interface barrier induced resistive switching memory behaviour. J Colloid Interface Sci 2019; 553:682-687. [DOI: 10.1016/j.jcis.2019.06.076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 06/05/2019] [Accepted: 06/23/2019] [Indexed: 12/18/2022]
|
3
|
Cao X, Meng C, Li J, Wang J, Yuan Y, Su J, Liu C, Zhang X, Zhang H, Wang J. Characterization of interfacial barrier charging as a resistive switching mechanism in Ag/Sb 2Te 3/Ag heterojunctions. Phys Chem Chem Phys 2018; 20:18200-18206. [PMID: 29796567 DOI: 10.1039/c8cp00901e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, bipolar memristive behaviors were systematically characterized in Ag/Sb2Te3/Ag hetero-junctions. By using in situ Raman and photoluminescence spectroscopy, a direct observation of the bonding environment and band structure confirmed that resistive switches are strongly related to the electronic valence changes in Sb2Te3 and the formation of Schottky barriers at Ag/Sb2Te3 interfaces. Band movement of Sb2Te3 acquired by first-principles calculations also supports the electrostatic barrier charging as a memristive mechanism of Ag/Sb2Te3/Ag heterocells. Independent resistance-switching behaviors that can be utilized in both amorphous and crystalline Sb2Te3 lead to multiple resistance values with a large memory window (104-105) and low read voltage (∼0.2 V), giving rise to a unique multi-level memory concept. This study based on Ag/Sb2Te3/Ag hetero-junctions offers a significant understanding to promote the use of Sb2Te3 and other chalcogenide memristors as promising candidates for compatible high-density memory applications.
Collapse
Affiliation(s)
- Xinran Cao
- Shanghai Ultra-Precision Optical Manufacturing Engineering Center, Department of Optical Science and Engineering, Fudan University, Shanghai, 200433, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|