1
|
Liu Y, Zhong W, Yang C, Liu X, Cheng Q, Tan T, Deng Q, Yang C. Defective state regulation of Ru-doped Nb 2O 5 boosts fast lithium storage. J Colloid Interface Sci 2024; 667:136-146. [PMID: 38636215 DOI: 10.1016/j.jcis.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/13/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
Breaking through the limitations of lithium-ion transmission is imperative for high-power rechargeable batteries. As a promising anode material for fast-charging lithium-ion batteries (LIBs), niobium pentoxide (Nb2O5) has garnered considerable research attention due to its exceptional rate performance, stable lithium storage performance and high safety attributes. Nevertheless, the limited intrinsic conductivity of Nb2O5, coupled with its structural degradation during the cycling process, imposes constraints on its viability as a commercially viable electrode material. Herein, a ruthenium (Ru) doping method is employed to regulate the oxygen defects and the interlayer spacing of the tetragonal Nb2O5 (M-Nb2O5), offering superior reaction kinetics, higher stability for lithium storage sites and more unobstructed lithium-ion transport channels. Ru-doped Nb2O5 (RNO) manifests excellent electrochemical properties, including remarkable rate capacity (166 mAh/g at 80C), reversible capacity (246.98 mAh/g at 0.5C), improved initial Coulombic efficiency (95.77 % compared to 81.44 % of the pure sample) and cycling stability (maintaining a capacity of 113.5 mAh/g at 10C for 2,000 cycles). The enhancement mechanism of Ru doping on the structural stability and ion transport kinetics in tetragonal Nb2O5 is comprehensively elucidated through diverse electrochemical analyses and in-situ techniques.
Collapse
Affiliation(s)
- Yuqiao Liu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wentao Zhong
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Cuiyun Yang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xiaozhao Liu
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qian Cheng
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ting Tan
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qiang Deng
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chenghao Yang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
Rahman T, Martin NP, Jenkins JK, Elzein R, Fast DB, Addou R, Herman GS, Nyman M. Nb 2O 5, LiNbO 3, and (Na, K)NbO 3 Thin Films from High-Concentration Aqueous Nb-Polyoxometalates. Inorg Chem 2022; 61:3586-3597. [PMID: 35148102 DOI: 10.1021/acs.inorgchem.1c03638] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthesizing functional materials from water contributes to a sustainable energy future. On the atomic level, water drives complex metal hydrolysis/condensation/speciation, acid-base, ion pairing, and solvation reactions that ultimately direct material assembly pathways. Here, we demonstrate the importance of Nb-polyoxometalate (Nb-POM) speciation in enabling deposition of Nb2O5, LiNbO3, and (Na, K)NbO3 (KNN) from high-concentration solutions, up to 2.5 M Nb for Nb2O5 and ∼1 M Nb for LiNbO3 and KNN. Deposition of KNN from 1 M Nb concentration represents a potentially important advancment in lead-free piezoelectrics, an application that requires thick films. Solution characterization via small-angle X-ray scattering and Raman spectroscopy described the speciation for all precursor solutions as the [HxNb24O72](x-24) POM, as did total pair distribution function analyses of X-ray scattering of amorphous gels prior to conversion to oxides. The tendency of the Nb24-POM to form extended networks without crystallization leads to conformal and well-adhered films. The films were characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, ellipsometry, and X-ray photoelectron spectroscopy. As a strategy to convert aqueous deposition solutions from {Nb10}-POMs to {Nb24}-POMs, we devised a general procedure to produce doped Nb2O5 thin films including Ca, Ag, and Cu doping.
Collapse
Affiliation(s)
- Tasnim Rahman
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Nicolas P Martin
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Jessica K Jenkins
- School of Chemical, Biological, and Environmental Engineering, 116 Johnson Hall, 105 SW 26th St. Corvallis, Oregon 97331, United States
| | - Radwan Elzein
- School of Chemical, Biological, and Environmental Engineering, 116 Johnson Hall, 105 SW 26th St. Corvallis, Oregon 97331, United States
| | - Dylan B Fast
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Rafik Addou
- School of Chemical, Biological, and Environmental Engineering, 116 Johnson Hall, 105 SW 26th St. Corvallis, Oregon 97331, United States
| | - Gregory S Herman
- School of Chemical, Biological, and Environmental Engineering, 116 Johnson Hall, 105 SW 26th St. Corvallis, Oregon 97331, United States
| | - May Nyman
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| |
Collapse
|
3
|
Pligovka A, Poznyak A, Norek M. Optical Properties of Porous Alumina Assisted Niobia Nanostructured Films-Designing 2-D Photonic Crystals Based on Hexagonally Arranged Nanocolumns. MICROMACHINES 2021; 12:589. [PMID: 34063841 PMCID: PMC8223973 DOI: 10.3390/mi12060589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 01/20/2023]
Abstract
Three types of niobia nanostructured films (so-called native, planarized, and column-like) were formed on glass substrates by porous alumina assisted anodizing in a 0.2 M aqueous solution of oxalic acid in a potentiostatic mode at a 53 V and then reanodizing in an electrolyte containing 0.5 M boric acid and 0.05 M sodium tetraborate in a potentiodynamic mode by raising the voltage to 230 V, and chemical post-processing. Anodic behaviors, morphology, and optical properties of the films have been investigated. The interference pattern of native film served as the basis for calculating the effective refractive index which varies within 1.75-1.54 in the wavelength range 190-1100 nm. Refractive index spectral characteristics made it possible to distinguish a number of absorbance bands of the native film. Based on the analysis of literature data, the identified oxide absorbance bands were assigned. The effective refractive index of native film was also calculated using the effective-medium models, and was in the range of 1.63-1.68. The reflectance spectra of all films show peaks in short- and long-wave regions. The presence of these peaks is due to the periodically varying refractive index in the layers of films in two dimensions. FDTD simulation was carried out and the morphology of a potential 2-D photonic crystal with 92% (wavelength 462 nm) reflectance, based on the third type of films, was proposed.
Collapse
Affiliation(s)
- Andrei Pligovka
- Research and Development Laboratory 4.10 “Nanotechnologies”, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus;
- Department of Micro- and Nanoelectronics, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus
| | - Alexander Poznyak
- Research and Development Laboratory 4.10 “Nanotechnologies”, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus;
- Department of Electronic Technology and Engineering, Belarusian State University of Informatics and Radioelectronics, 6 Brovki Str., 220013 Minsk, Belarus
| | - Małgorzata Norek
- Institute of Materials Science and Engineering, Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland;
| |
Collapse
|
4
|
Abstract
Niobium oxides (NbO, NbO2, Nb2O5), being a versatile material has achieved tremendous popularity to be used in a number of applications because of its outstanding electrical, mechanical, chemical, and magnetic properties. NbxOy films possess a direct band gap within the ranges of 3.2–4.0 eV, with these films having utility in different applications which include; optical systems, stainless steel, ceramics, solar cells, electrochromic devices, capacitor dielectrics, catalysts, sensors, and architectural requirements. With the purpose of fulfilling the requirements of a vast variety of the named applications, thin films having comprehensive properties span described by film composition, morphology, structural properties, and thickness are needed. The theory, alongside the research status of the different fabrication techniques of NbxOy thin films are reported in this work. The impact of fabrication procedures on the thin film characteristics which include; film thickness, surface quality, optical properties, interface properties, film growth, and crystal phase is explored with emphases on the distinct deposition process applied, are also described and discussed.
Collapse
|
5
|
Zhu S, Xu P, Liu J, Sun J. Atomic layer deposition and structure optimization of ultrathin Nb2O5 films on carbon nanotubes for high-rate and long-life lithium ion storage. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135268] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Bonomo M, Dini D, Decker F. Electrochemical and Photoelectrochemical Properties of Nickel Oxide (NiO) With Nanostructured Morphology for Photoconversion Applications. Front Chem 2019; 6:601. [PMID: 30619811 PMCID: PMC6299045 DOI: 10.3389/fchem.2018.00601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 11/20/2018] [Indexed: 11/13/2022] Open
Abstract
The cost-effective production of chemicals in electrolytic cells and the conversion of the radiation energy into electrical energy in photoelectrochemical cells (PECs) require the use of electrodes with large surface area, which possess either electrocatalytic or photoelectrocatalytic properties. In this context nanostructured semiconductors are electrodic materials of great relevance because of the possibility of varying their photoelectrocatalytic properties in a controlled fashion via doping, dye-sensitization or modification of the conditions of deposition. Among semiconductors for electrolysers and PECs the class of the transition metal oxides (TMOs) with a particular focus on NiO interests for the chemical-physical inertness in ambient conditions and the intrinsic electroactivity in the solid state. The latter aspect implies the existence of capacitive properties in TMO and NiO electrodes which thus act as charge storage systems. After a comparative analysis of the (photo)electrochemical properties of nanostructured TMO electrodes in the configuration of thin film the use of NiO and analogs for the specific applications of water photoelectrolysis and, secondly, photoelectrochemical conversion of carbon dioxide will be discussed.
Collapse
Affiliation(s)
- Matteo Bonomo
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Danilo Dini
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| | - Franco Decker
- Department of Chemistry, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
7
|
Heteroepitaxial Growth of T-Nb₂O₅ on SrTiO₃. NANOMATERIALS 2018; 8:nano8110895. [PMID: 30388830 PMCID: PMC6266925 DOI: 10.3390/nano8110895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/17/2022]
Abstract
There is a growing interest in exploiting the functional properties of niobium oxides in general and of the T-Nb₂O₅ polymorph in particular. Fundamental investigations of the properties of niobium oxides are, however, hindered by the availability of materials with sufficient structural perfection. It is expected that high-quality T-Nb₂O₅ can be made using heteroepitaxial growth. Here, we investigated the epitaxial growth of T-Nb₂O₅ on a prototype perovskite oxide, SrTiO₃. Even though there exists a reasonable lattice mismatch in one crystallographic direction, these materials have a significant difference in crystal structure: SrTiO₃ is cubic, whereas T-Nb₂O₅ is orthorhombic. It is found that this difference in symmetry results in the formation of domains that have the T-Nb₂O₅ c-axis aligned with the SrTiO₃ <001>s in-plane directions. Hence, the number of domain orientations is four and two for the growth on (100)s- and (110)s-oriented substrates, respectively. Interestingly, the out-of-plane growth direction remains the same for both substrate orientations, suggesting a weak interfacial coupling between the two materials. Despite challenges associated with the heteroepitaxial growth of T-Nb₂O₅, the T-Nb₂O₅ films presented in this paper are a significant improvement in terms of structural quality compared to their polycrystalline counterparts.
Collapse
|
8
|
Wang Y, Xiao X, Li Q, Pang H. Synthesis and Progress of New Oxygen-Vacant Electrode Materials for High-Energy Rechargeable Battery Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802193. [PMID: 30080317 DOI: 10.1002/smll.201802193] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/23/2018] [Indexed: 06/08/2023]
Abstract
During the last few years, a great amount of oxygen-vacant materials have been synthetized and applied as electrodes for electrochemical storage. The presence of oxygen vacancies leads to an increase in the conductivity and the diffusion coefficient; consequently, the controllable synthesis of oxygen vacancy plays an important role in improving the electrochemical performance, including achieving high specific capacitance, high power density, high energy density, and good cycling stability of the electrode materials for batteries. This review mainly focuses on research progress in the preparation of oxygen-vacant nanostructures and the application of materials with oxygen vacancies in various batteries (such as lithium-ion, lithium-oxygen, and sodium-ion batteries). Challenges related to and opportunities for oxygen-vacant materials are also provided.
Collapse
Affiliation(s)
- Yuyin Wang
- School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Xiao Xiao
- School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Qing Li
- School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Guangling College, Yangzhou University, Yangzhou, 225009, Jiangsu, P. R. China
| |
Collapse
|
9
|
Chan X, Pu T, Chen X, James A, Lee J, Parise JB, Kim DH, Kim T. Effect of niobium oxide phase on the furfuryl alcohol dehydration. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.04.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Kim K, Woo SG, Jo YN, Lee J, Kim JH. Niobium oxide nanoparticle core–amorphous carbon shell structure for fast reversible lithium storage. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.04.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Büyükyazi M, Fischer T, Yu P, Coll M, Mathur S. A cobalt(ii)heteroarylalkenolate precursor for homogeneous Co3O4 coatings by atomic layer deposition. Dalton Trans 2017; 46:12996-13001. [DOI: 10.1039/c7dt02757e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a robust approach to prepare conformal Co3O4 nanocoatings on high aspect ratio structures from a new cobalt metalorganic complex.
Collapse
Affiliation(s)
- Mehtap Büyükyazi
- Institute of Inorganic Chemistry
- University of Cologne
- Cologne 50939
- Germany
| | - Thomas Fischer
- Institute of Inorganic Chemistry
- University of Cologne
- Cologne 50939
- Germany
| | - Penmgei Yu
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- Barcelona
- Spain
| | - Mariona Coll
- Institut de Ciència de Materials de Barcelona
- ICMAB-CSIC
- Barcelona
- Spain
| | - Sanjay Mathur
- Institute of Inorganic Chemistry
- University of Cologne
- Cologne 50939
- Germany
| |
Collapse
|