1
|
Zhang C, Fan L, Kang Z, Sun D. Solution processing of crystalline porous material based membranes for CO 2 separation. Chem Commun (Camb) 2024. [PMID: 38273772 DOI: 10.1039/d3cc05545k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The carbon emission problem is a significant challenge in today's society, which has led to severe global climate issues. Membrane-based separation technology has gained considerable interest in CO2 separation due to its simplicity, environmental friendliness, and energy efficiency. Crystalline porous materials (CPMs), such as zeolites, metal-organic frameworks, covalent organic frameworks, hydrogen-bonded organic frameworks, and porous organic cages, hold great promise for advanced CO2 separation membranes because of their ordered and customizable pore structures. However, the preparation of defect-free and large-area crystalline porous material (CPM)-based membranes remains challenging, limiting their practical use in CO2 separation. To address this challenge, the solution-processing method, commonly employed in commercial polymer preparation, has been adapted for CPM membranes in recent years. Nanosheets, spheres, molecular cages, and even organic monomers, depending on the CPM type, are dissolved in suitable solvents and processed into continuous membranes for CO2 separation. This feature article provides an overview of the recent advancements in the solution processing of CPM membranes. It summarizes the differences among the solution-processing methods used for forming various CPM membranes, highlighting the key factors for achieving continuous membranes. The article also summarizes and discusses the CO2 separation performance of these membranes. Furthermore, it addresses the current issues and proposes future research directions in this field. Overall, this feature article aims to shed light on the development of solution-processing techniques for CPM membranes, facilitating their practical application in CO2 separation.
Collapse
Affiliation(s)
- Caiyan Zhang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Lili Fan
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Zixi Kang
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Daofeng Sun
- School of Materials Science and Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
2
|
Turgut F, Chong CY, Karaman M, Lau WJ, Gürsoy M, Ismail AF. Plasma surface modification of graphene oxide nanosheets for the synthesis of
GO
/
PES
nanocomposite ultrafiltration membrane for enhanced oily separation. J Appl Polym Sci 2022. [DOI: 10.1002/app.53410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Furkan Turgut
- Department of Chemical Engineering Konya Technical University Konya Turkey
| | - Chun Yew Chong
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Skudai Malaysia
| | - Mustafa Karaman
- Department of Chemical Engineering Konya Technical University Konya Turkey
| | - Woei Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Skudai Malaysia
| | - Mehmet Gürsoy
- Department of Chemical Engineering Konya Technical University Konya Turkey
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre (AMTEC) Universiti Teknologi Malaysia Skudai Malaysia
| |
Collapse
|
3
|
Jeong JH, Kang S, Kim N, Joshi RK, Lee GH. Recent trends in covalent functionalization of 2D materials. Phys Chem Chem Phys 2022; 24:10684-10711. [DOI: 10.1039/d1cp04831g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent functionalization of the surface is more crucial in 2D materials than in conventional bulk materials because of their atomic thinness, large surface-to-volume ratio, and uniform surface chemical potential. Because...
Collapse
|
4
|
Zhang J, Fu B, Song C, Shang W, Tao P, Deng T. Ethylene glycol nanofluids dispersed with monolayer graphene oxide nanosheet for high-performance subzero cold thermal energy storage. RSC Adv 2021; 11:30495-30502. [PMID: 35479859 PMCID: PMC9041135 DOI: 10.1039/d1ra04484b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/31/2021] [Indexed: 11/21/2022] Open
Abstract
Ethylene glycol (EG) nanofluids have been intensively explored as one of the most promising solid-liquid phase change materials for subzero cold thermal energy storage (CTES). However, the prepared nanofluids usually suffer from a large supercooling degree, a long freezing period, reduced storage capacity and poor dispersion stability. Herein, we overcome these issues by developing stable EG nanofluids that are uniformly dispersed with low concentrations of monolayer ethanol-wetted graphene oxide nanosheets. The homogeneously dispersed monolayer sheet not only improves the thermal conductivity of the nanofluids (12.1%) but also provides the heterogeneous nucleation sites to trigger the crystal formation, thereby shortening the freezing time and reducing the supercooling degree. Compared with the base fluid, the nanofluids have reduced the supercooling degree by 87.2%, shortened the freezing time by 78.2% and maintained 98.5% of the latent heat. Moreover, the EG nanofluids have retained their initial stable homogeneous dispersion after repeated freezing/melting for 50 cycles, which ensures consistent CTES behavior during long-period operations. The facile preparation process, low loading requirement and consistent superior thermophysical properties would make the EG nanofluids loaded with monolayer graphene oxide sheets promising coolants for high-performance phase change-based CTES.
Collapse
Affiliation(s)
- Jingyi Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Benwei Fu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
5
|
Park M, Lee J, Kim BS. Metal-free bifunctional graphene oxide-based carbocatalysts toward reforming biomass from glucose to 5-hydroxymethylfurfural. NANOSCALE 2021; 13:10143-10151. [PMID: 34076018 DOI: 10.1039/d1nr02025k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) and its derivatives are promising metal-free heterogeneous catalysts due to their high surface area and rich chemical properties. We developed a bifunctional boron-doped sulfonated graphene oxide (BS-GO) and demonstrated its excellent catalytic conversion of glucose to 5-hydroxymethylfurfural (HMF) in a one-pot reaction. BS-GO afforded a high HMF yield of 36.0% from glucose without the use of additives or strong acids. Furthermore, the origin of the catalytic active sites of BS-GO was investigated, unveiling the unique bifunctional catalytic mechanism; it was revealed that two disjunct moieties, boronic acid and phenylsulfonic acid, in a single nanosheet of BS-GO catalyst have a bifunctional effect resulting in excellent catalytic production of HMF. This study suggests the potential of BS-GO as a green and sustainable carbocatalyst for reforming biomass to produce value-added chemicals. We anticipate that the unique structural design presented in this study will provide a guide to afford viable carbocatalysts for diverse organic reactions.
Collapse
Affiliation(s)
- Minju Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea.
| | | | | |
Collapse
|
6
|
Gu M, Lee WR, Kim M, Kang J, Lee JS, Thompson LT, Kim BS. Structure-tunable supraparticle assemblies of hollow cupric oxide sheathed with nanographenes. NANOSCALE ADVANCES 2020; 2:1236-1244. [PMID: 36133034 PMCID: PMC9419484 DOI: 10.1039/d0na00031k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 06/14/2023]
Abstract
Self-assembled supraparticles (SPs), a secondary structure of clustered nanoparticles, have attracted considerable interest owing to their highly tunable structure, composition, and morphology from their primary nanoparticle constituents. In this study, hierarchically assembled hollow Cu2O SPs were prepared using a cationic polyelectrolyte poly(diallyl dimethylammonium chloride) (PDDA) during the formation of Cu2O nanoparticles. The concentration-dependent structural transformation of PDDA from linear chains to assembled droplets plays a crucial role in forming a hollow colloidal template, affording the self-assembly of Cu2O nanoparticles as a secondary surfactant. The use of the positively charged PDDA also affords negatively charged nanoscale graphene oxide (NGO), an electrical and mechanical supporter to uniformly coat the surface of the hollow Cu2O SPs. Subsequent thermal treatment to enhance the electrical conductivity of NGO within the NGO/Cu2O SPs allows for the concomitant phase transformation of Cu2O to CuO, affording reduced NGO/CuO (RNGO/CuO) SPs. The uniquely structured hollow RNGO/CuO SPs achieve improved electrochemical properties by providing enhanced electrical conductivity and electroactive surface area.
Collapse
Affiliation(s)
- Minsu Gu
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| | - Woo-Ram Lee
- Department of Chemical Engineering, University of Michigan Ann Arbor Michigan 48109 USA
| | - Minkyung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jiwoong Kang
- Department of Chemical Engineering, University of Michigan Ann Arbor Michigan 48109 USA
| | - Jae Sung Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Levi T Thompson
- College of Engineering, University of Delaware Newark Delaware 19716 USA
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University Seoul 03722 Korea
| |
Collapse
|
7
|
Huang L, Wang S, Zhang H, Li D, Zhang Y, Zhao L, Xin Q, Ye H, Li H. Enhanced hydrolysis of cellulose by catalytic polyethersulfone membranes with straight-through catalytic channels. BIORESOURCE TECHNOLOGY 2019; 294:122119. [PMID: 31520853 DOI: 10.1016/j.biortech.2019.122119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/31/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to prepare sulfonated graphene oxide/polyether sulfone (GO-SO3H/PES) mixed matrix membranes (GPMMMs) with high porosity and straight-through catalytic channels by segregation and used for dynamic and continuous hydrolysis of cellulose. The high porosity and segregation increased the exposure of catalysts synergistically and the formative GO-SO3H enriched, straight-through catalytic channels had higher catalytic performance, enhancing the diffusion of hydrolytic products. Dynamic hydrolysis of cellulose is more efficient than static hydrolysis due to the enhanced contact between cellulose and catalysts achieved by the extra driving forces, and the further degradation of produced saccharides was suppressed due to the high freedom of products. The TRS reached 98.18% after 1 h at 150 °C with a catalyst/cellulose mass ratio of 1:5. More importantly, the immobilization of GO-SO3H by PES improved its stability and reusability at high reaction temperature. This strategy provides guidance to the design of high-performance catalytic membranes.
Collapse
Affiliation(s)
- Lilan Huang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Shaofei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Han Zhang
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Deyuan Li
- School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Lizhi Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Qingping Xin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Hui Ye
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| | - Hong Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Tianjin Polytechnic University, Tianjin 300387, China; School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
| |
Collapse
|
8
|
Gu M, Choi J, Lee T, Park M, Shin IS, Hong J, Lee HW, Kim BS. Diffusion controlled multilayer electrocatalysts via graphene oxide nanosheets of varying sizes. NANOSCALE 2018; 10:16159-16168. [PMID: 30118131 DOI: 10.1039/c8nr02883d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Controlling the architecture of hybrid nanomaterial electrodes is critical for understanding their fundamental electrochemical mechanisms and applying these materials in future energy conversion and storage systems. Herein, we report highly tunable electrocatalytic multilayer electrodes, composed of palladium nanoparticles (Pd NPs) supported by graphene sheets of varying lateral sizes, employing a versatile layer-by-layer (LbL) assembly method. We demonstrate that the electrocatalytic activity is highly tunable through the control of the diffusion and electron pathways within the 3-dimensional multilayer electrodes. A larger-sized-graphene-supported electrode exhibited its maximum performance with a thinner film, due to facile charge transfer by the mass transfer limited in the early stage, while a smaller-sized-graphene-supported electrode exhibited its highest current density with higher mass loading in the thicker films by enabling facile mass transfer through increased diffusion pathways. These findings of the tortuous-path effect on the electrocatalytic electrode supported by varying sized graphene provide new insights and a novel design principle into electrode engineering that will be beneficial for the development of effective electrocatalysts.
Collapse
Affiliation(s)
- Minsu Gu
- Department of Energy Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nanofluid lubrication and high pressure Raman studies of oxygen functionalized graphene nanosheets. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2017.12.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Kim J, Kim SW, Yun H, Kim BJ. Impact of size control of graphene oxide nanosheets for enhancing electrical and mechanical properties of carbon nanotube–polymer composites. RSC Adv 2017. [DOI: 10.1039/c7ra04015f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The size effects of GOs on the dispersion behavior of multi-walled carbon nanotubes (MWCNTs) were evaluated, and the GOs were exploited to develop conducting film and polymer-CNT composites with excellent electrical and mechanical properties.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Sang Woo Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Hongseok Yun
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Bumjoon J. Kim
- Department of Chemical and Biomolecular Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| |
Collapse
|