1
|
Sun J, Zhang Z, Feng Z, Wang K, Shi Z, Zhang L. Surface Acoustic Waves-Enabled Shielding Fluid Layers Inhibit Bacterial Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26203-26211. [PMID: 39602384 DOI: 10.1021/acs.langmuir.4c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The generation of surface acoustic waves (SAW) through electrically driven piezoelectric devices has attracted considerable attention in both fundamental research and practical applications, particularly for suppressing bacterial adhesion on surfaces. However, the precise mechanism by which SAW prevents bacterial attachment remains incompletely understood. This study explores the impact of SAW-induced boundary-driven streaming on the surface adhesion of Escherichia coli and Staphylococcus aureus in a liquid environment, focusing on the prevention of bacterial adhesion through the formation of micrometer-scale shielding fluid layers. We primarily examine the distance and acoustic streaming effects that influence bacterial behavior in the flow field. Our in vitro experiments, supported by numerical simulations, demonstrate that the viscous boundary layer and vortices generated by SAW can inhibit bacterial colonization and biofilm formation when Stokes drag forces predominate. This work provides new insights into the inhibitory mechanism of SAW on bacterial adhesion, offering valuable guidance for the development of advanced antibacterial strategies.
Collapse
Affiliation(s)
- Jining Sun
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Feng
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Kunwen Wang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhenqiang Shi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of High-performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Li Z, Jin L, Yang X, Liu H, Qian S, Wang Z, Liu J, Wang J, Chen J, Su B, Peng C, Wang J, Shi Z. A multifunctional ionic liquid coating on 3D-Printed prostheses: Combating infection, promoting osseointegration. Mater Today Bio 2024; 26:101076. [PMID: 38711938 PMCID: PMC11070339 DOI: 10.1016/j.mtbio.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024] Open
Abstract
Periprosthetic infection and mechanical loosening are two leading causes of implant failure in orthopedic surgery that have devastating consequences for patients both physically and financially. Hence, advanced prostheses to simultaneously prevent periprosthetic infection and promote osseointegration are highly desired to achieve long-term success in orthopedics. In this study, we proposed a multifunctional three-dimensional printed porous titanium alloy prosthesis coated with imidazolium ionic liquid. The imidazolium ionic liquid coating exhibited excellent bacterial recruitment property and near-infrared (NIR) triggered photothermal bactericidal activity, enabling the prosthesis to effectively trap bacteria in its vicinity and kill them remotely via tissue-penetrating NIR irradiation. In vivo anti-infection and osseointegration investigations in infected animal models confirmed that our antibacterial prosthesis could provide long-term and sustainable prevention against periprosthetic infection, while promoting osseointegration simultaneously. It is expected to accelerate the development of next-generation prostheses and improve patient outcomes after prosthesis implantation.
Collapse
Affiliation(s)
- Zuhao Li
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Department of Orthopaedics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lunqiang Jin
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xijing Yang
- Animal Experiment Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Shengxu Qian
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhonghan Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jiaqi Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Jingxia Wang
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Junjun Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Baihai Su
- Department of Nephrology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Chaorong Peng
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Chengdu 610101, China
| | - Jincheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Zhenqiang Shi
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Song X, Man J, Qiu Y, Wang J, Liu J, Li R, Zhang Y, Li J, Li J, Chen Y. Design, preparation, and characterization of lubricating polymer brushes for biomedical applications. Acta Biomater 2024; 175:76-105. [PMID: 38128641 DOI: 10.1016/j.actbio.2023.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lubrication modification of biomedical devices significantly enhances the functionality of implanted interventional medical devices, thereby providing additional benefits for patients. Polymer brush coating provides a convenient and efficient method for surface modification while ensuring the preservation of the substrate's original properties. The current research has focused on a "trial and error" method to finding polymer brushes with superior lubricity qualities, which is time-consuming and expensive, as obtaining effective and long-lasting lubricity properties for polymer brushes is difficult. This review summarizes recent research advances in the biomedical field in the design, material selection, preparation, and characterization of lubricating and antifouling polymer brushes, which follow the polymer brush development process. This review begins by examining various approaches to polymer brush design, including molecular dynamics simulation and machine learning, from the fundamentals of polymer brush lubrication. Recent advancements in polymer brush design are then synthesized and potential avenues for future research are explored. Emphasis is placed on the burgeoning field of zwitterionic polymer brushes, and highlighting the broad prospects of supramolecular polymer brushes based on host-guest interactions in the field of self-repairing polymer brush applications. The review culminates by providing a summary of methodologies for characterizing the structural and functional attributes of polymer brushes. It is believed that a development approach for polymer brushes based on "design-material selection-preparation-characterization" can be created, easing the challenge of creating polymer brushes with high-performance lubricating qualities and enabling the on-demand creation of coatings. STATEMENT OF SIGNIFICANCE: Biomedical devices have severe lubrication modification needs, and surface lubrication modification by polymer brush coating is currently the most promising means. However, the design and preparation of polymer brushes often involves "iterative testing" to find polymer brushes with excellent lubrication properties, which is both time-consuming and expensive. This review proposes a polymer brush development process based on the "design-material selection-preparation-characterization" strategy and summarizes recent research advances and trends in the design, material selection, preparation, and characterization of polymer brushes. This review will help polymer brush researchers by alleviating the challenges of creating polymer brushes with high-performance lubricity and promises to enable the on-demand construction of polymer brush lubrication coatings.
Collapse
Affiliation(s)
- Xinzhong Song
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China.
| | - Yinghua Qiu
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jiali Wang
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Jianing Liu
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Ruijian Li
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| | - Yongqi Zhang
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanicalanufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, PR China; Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, PR China
| | - Yuguo Chen
- Qilu Hospital of Shandong University, Jinan 250012, PR China
| |
Collapse
|
4
|
Gao Q, Chen Z, Yang X. A Temperature and pH Dual-Sensitive Multifunctional Polyurethane with Bacteria-Triggered Antibacterial Activity. Macromol Rapid Commun 2023; 44:e2300453. [PMID: 37800610 DOI: 10.1002/marc.202300453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Indexed: 10/07/2023]
Abstract
An effective and practical antibacterial strategy is to design multifunctional and stimuli-responsive materials that exhibit antibacterial activity in response to bacterial triggers. In this study, because the metabolism of Staphylococcus aureus (S. aureus) can acidify the surrounding environment and pH level can affect the lower critical solution temperature of temperature/pH dual-sensitive polymers, a monomer containing a temperature-sensitive N-isopropyl amide derivative and pH-sensitive tertiary amine groups is first synthesized. Then, the monomer is copolymerized with a polyurethane chain, and partial tertiary amine groups are quaternized to obtain bactericidal activity. The modified polyurethane exhibits temperature/pH sensitivity, antibacterial adhesion activity, bactericidal activity, and good cytocompatibility. An in situ investigation of bacterial behavior and pH changes in the bacterial suspension during the process confirms that the temperature/pH dual-sensitive polyurethane successfully achieves antibacterial activity though the metabolic activity of S. aureus without external intervention. This design concept provides a new perspective for antibacterial material design.
Collapse
Affiliation(s)
- Qinwei Gao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| | - Zhaobin Chen
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P.R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P.R. China
| |
Collapse
|
5
|
Jin M, He B, Cai X, Lei Z, Sun T. Research progress of nanoparticle targeting delivery systems in bacterial infections. Colloids Surf B Biointerfaces 2023; 229:113444. [PMID: 37453264 DOI: 10.1016/j.colsurfb.2023.113444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Bacterial infection is a huge threat to the health of human beings and animals. The abuse of antibiotics have led to the occurrence of bacterial multidrug resistance, which have become a difficult problem in the treatment of clinical infections. Given the outstanding advantages of nanodrug delivery systems in cancer treatment, many scholars have begun to pay attention to their application in bacterial infections. However, due to the similarity of the microenvironment between bacterial infection lesions and cancer sites, the targeting and accuracy of traditional microenvironment-responsive nanocarriers are questionable. Therefore, finding new specific targets has become a new development direction of nanocarriers in bacterial prevention and treatment. This article reviews the infectious microenvironment induced by bacteria and a series of virulence factors of common pathogenic bacteria and their physiological functions, which may be used as potential targets to improve the targeting accuracy of nanocarriers in lesions.
Collapse
Affiliation(s)
- Ming Jin
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Bin He
- Institute of Animal Husbandry and Veterinary, Wuhan Academy of Agricultural Sciences, China
| | - Xiaoli Cai
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China
| | - Zhixin Lei
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| | - Taolei Sun
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China; Hubei Key Laboratory of Nanomedicine for Neurodegenerative Diseases, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
6
|
Degirmenci A, Sanyal R, Sanyal A. Plug-and-Play Biointerfaces: Harnessing Host-Guest Interactions for Fabrication of Functional Polymeric Coatings. Biomacromolecules 2023; 24:3568-3579. [PMID: 37406159 PMCID: PMC10428160 DOI: 10.1021/acs.biomac.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Polymeric surface coatings capable of effectively integrating desired functional molecules and ligands are attractive for fabricating bio-interfaces necessary for various applications. Herein, we report the design of a polymeric platform amenable to such modifications in a modular fashion through host-guest chemistry. Copolymers containing adamantane (Ada) moieties, diethylene glycol (DEG) units, and silyloxy groups to provide functionalization handles, anti-biofouling character, and surface attachment, respectively, were synthesized. These copolymers were employed to modify silicon/glass surfaces to enable their functionalization using beta-cyclodextrin (βCD) containing functional molecules and bioactive ligands. Moreover, surface functionalization could be spatially controlled using a well-established technique like microcontact printing. Efficient and robust functionalization of polymer-coated surfaces was demonstrated by immobilizing a βCD-conjugated fluorescent rhodamine dye through the specific noncovalent binding between Ada and βCD units. Furthermore, biotin, mannose, and cell adhesive peptide-modified βCD were immobilized onto the Ada-containing polymer-coated surfaces to direct noncovalent conjugation of streptavidin, concanavalin A (ConA), and fibroblast cells, respectively. It was demonstrated that the mannose-functionalized coating could selectively bind to the target lectin ConA, and the interface could be regenerated and reused several times. Moreover, the polymeric coating was adaptable for cell attachment and proliferation upon noncovalent modification with cell-adhesive peptides. One can envision that the facile synthesis of the Ada-based copolymers, mild conditions for coating surfaces, and their effective transformation to various functional interfaces in a modular fashion offers an attractive approach to engineering functional interfaces for several biomedical applications.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| |
Collapse
|
7
|
Chen T, Situ C, Huang H, Liang K, Zhao L, Wang Z, Zhao J, Li Y, Duan C, Sun H. Smart Copolymer Surface Derived from Geminized Cationic Amphiphilic Polymers for Reversibly Switchable Bactericidal and Self-Cleaning Abilities. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10521-10529. [PMID: 37459162 DOI: 10.1021/acs.langmuir.3c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Bacterial adhesion and colonization on material surfaces pose a serious problem for healthcare-associated devices. Cationic amphiphilic polymer brushes are usually used as surface coatings in antibacterial materials to endow an interface with excellent bactericidal efficiency, but they are easily contaminated, which puts a great limitation on their application. Herein, novel antibacterial copolymer brush surfaces containing geminized cationic amphiphilic polymers (pAGC8) and thermoresponsive poly(N-isopropylacrylamide) polymers (pNIPAm) have been synthesized. Surface functionalization of polymer brushes was investigated by X-ray photoelectron spectroscopy, spectroscopic ellipsometry, atomic force microscopy, and water contact angle measurements. A proportion of AGC8 and NIPAm units in copolymer brushes has been adjusted to obtain a high-efficiency bactericidal surface with minimal interference to its self-cleaning property. The killing and releasing efficiency of the optimized surface simultaneously reached up to above 80% for both Staphylococcus aureus and Escherichia coli bacteria, and the bactericidal and self-cleaning abilities are still excellent even after three kill-release cycles. Such a novel copolymer brush system provides innovative guidance for the development of high-efficiency antibacterial materials in biomedical application.
Collapse
Affiliation(s)
- Ting Chen
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
- Guangdong Key Laboratory for Hydrogen Energy Technologies, Foshan 528000, China
| | - Chaoyi Situ
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
| | - Haohui Huang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
| | - Kuan Liang
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
| | - Lianyu Zhao
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
- R&D Center of Hydrogen Energy Standardization, Yunfu, Guangdong 527300, China
| | - Ziyuan Wang
- Foshan Institute of Environmental and Energy Technology, Foshan, Guangdong 528000, China
- R&D Center of Hydrogen Energy Standardization, Yunfu, Guangdong 527300, China
| | - Jishi Zhao
- Foshan Institute of Environmental and Energy Technology, Foshan, Guangdong 528000, China
- R&D Center of Hydrogen Energy Standardization, Yunfu, Guangdong 527300, China
| | - Yan Li
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
- Foshan Institute of Environmental and Energy Technology, Foshan, Guangdong 528000, China
| | - Chongxiong Duan
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
| | - Haibo Sun
- School of Materials Science and Hydrogen Energy, Foshan University, Foshan, Guangdong 528000, China
| |
Collapse
|
8
|
Metze FK, Klok HA. Supramolecular Polymer Brushes. ACS POLYMERS AU 2023. [DOI: 10.1021/acspolymersau.2c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Friederike K. Metze
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Temperature-Responsive Polymer Brush Coatings for Advanced Biomedical Applications. Polymers (Basel) 2022; 14:polym14194245. [PMID: 36236192 PMCID: PMC9571834 DOI: 10.3390/polym14194245] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/15/2023] Open
Abstract
Modern biomedical technologies predict the application of materials and devices that not only can comply effectively with specific requirements, but also enable remote control of their functions. One of the most prospective materials for these advanced biomedical applications are materials based on temperature-responsive polymer brush coatings (TRPBCs). In this review, methods for the fabrication and characterization of TRPBCs are summarized, and possibilities for their application, as well as the advantages and disadvantages of the TRPBCs, are presented in detail. Special attention is paid to the mechanisms of thermo-responsibility of the TRPBCs. Applications of TRPBCs for temperature-switchable bacteria killing, temperature-controlled protein adsorption, cell culture, and temperature-controlled adhesion/detachment of cells and tissues are considered. The specific criteria required for the desired biomedical applications of TRPBCs are presented and discussed.
Collapse
|
10
|
Wang X, Shan M, Zhang S, Chen X, Liu W, Chen J, Liu X. Stimuli-Responsive Antibacterial Materials: Molecular Structures, Design Principles, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104843. [PMID: 35224893 PMCID: PMC9069201 DOI: 10.1002/advs.202104843] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/30/2022] [Indexed: 05/03/2023]
Abstract
Infections are regarded as the most severe complication associated with human health, which are urgent to be solved. Stimuli-responsive materials are appealing therapeutic platforms for antibacterial treatments, which provide great potential for accurate theranostics. In this review, the advantages, the response mechanisms, and the key design principles of stimuli-responsive antibacterial materials are highlighted. The biomedical applications, the current challenges, and future directions of stimuli-responsive antibacterial materials are also discussed. First, the categories of stimuli-responsive antibacterial materials are comprehensively itemized based on different sources of stimuli, including external physical environmental stimuli (e.g., temperature, light, electricity, salt, etc.) and bacterial metabolites stimuli (e.g., acid, enzyme, redox, etc.). Second, structural characteristics, design principles, and biomedical applications of the responsive materials are discussed, and the underlying interrelationships are revealed. The molecular structures and design principles are closely related to the sources of stimuli. Finally, the challenging issues of stimuli-responsive materials are proposed. This review will provide scientific guidance to promote the clinical applications of stimuli-responsive antibacterial materials.
Collapse
Affiliation(s)
- Xianghong Wang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Mengyao Shan
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Shike Zhang
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xin Chen
- College of Food Science and EngineeringNational Engineering Research Center for Wheat & Corn Further ProcessingHenan University of TechnologyZhengzhou450001China
| | - Wentao Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Jinzhou Chen
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| | - Xuying Liu
- School of Materials Science and EngineeringThe Key Laboratory of Material Processing and Mold of Ministry of EducationHenan Key Laboratory of Advanced Nylon Materials and ApplicationZhengzhou UniversityZhengzhou450001China
| |
Collapse
|
11
|
Wang Z, Hou Z, Wang P, Chen F, Luo X. CuS-PNIPAm Nanoparticles with the Ability to Initiatively Capture Bacteria for Photothermal Treatment of Infected Skin. Regen Biomater 2022; 9:rbac026. [PMID: 35620190 PMCID: PMC9128540 DOI: 10.1093/rb/rbac026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Copper sulfide nanoparticles (CuS NPs) have shown great potential in various application fields, especially in biomedical engineering fields. CuS NPs, with the ability to actively capture and kill bacteria and without the worry of biocompatibility, will greatly expand their applications. Herein, a four-arm star thermo-sensitive polyisopropylacrylamide (4sPNIPAm) was used to modify CuS NPs (CuS-PNIPAm NPs). The obtained nanoparticles displayed the controlled release of copper ions and higher photothermal conversion ability in comparison with contrast materials CuS-PEG NPs and CuS NPs. Aggregation of CuS-PNIPAm NPs at above 34 °C resulted in capturing bacteria by forming the aggregates of nanoparticles-bacteria. Both S. aureus and E. coli co-cultured with CuS-PNIPAm NPs were completely killed upon NIR irradiation in minutes. Furthermore, CuS-PNIPAm NPs were verified to be a photothermal agent without toxic effect. In in vivo experiment, the nanoparticles effectively killed the bacteria in the wound and accelerated the process of wound repairment. Overall, photothermal treatment by CuS-PNIPAm NPs demonstrates the ability to actively capture and kill bacteria, and has a potential in the treatment of infected skin and the regeneration of skin tissues. The therapy will exert a far-reaching impact on the regeneration of stubborn chronic wounds.
Collapse
Affiliation(s)
- Zizhen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Zishuo Hou
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Peiwen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Fan Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
12
|
Zheng SY, Ni Y, Zhou J, Gu Y, Wang Y, Yuan J, Wang X, Zhang D, Liu S, Yang J. Photo-switchable supramolecular comb-like polymer brush based on host-guest recognition for use as antimicrobial smart surface. J Mater Chem B 2022; 10:3039-3047. [PMID: 35355043 DOI: 10.1039/d2tb00206j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial infections from biomedical devices pose a great threat to the health of humans and thus place a heavy burden on society. Therefore, developing efficient antibacterial surfaces has attracted much attention. However, it is a challenge to identify or develop a combination that efficiently integrates multiple functions via topological tailoring and on-demand function-switch via non-contact and noninvasive stimuli. To resolve this issue, a highly hydrophilic comb polymer brush was constructed here based on supramolecular host-guest recognition. Azobenzene (azo)-modified antifouling and antibacterial polymers were incorporated into cyclodextrin (CD)-modified antifouling polymer brushes grafted on the surface. The surface thus obtained possessed excellent antifouling performance with a low bacterial density of ∼6.25 × 105 cells per cm2 after 48 h and exhibited a high efficiency of ∼88.2% for killing bacteria. Besides, irradiation with UV light resulted in the desorption of the azo-polymers and a release of ∼85.1% attached bacteria. Irradiating visible light led to the re-adsorption of azo-polymers, which regenerated the fresh surface; the process could be repeated for at least three cycles, and the surface still maintained low bacterial attachments with a cell density of ∼7.10 × 105 cells per cm2, high sterilization efficiency of ∼93.8%, and a bacteria release rate of ∼83.1% in the 3rd cycle. The photo-switchable antibacterial surface presented in this research will provide new insights into the development of smart biomedical surfaces.
Collapse
Affiliation(s)
- Si Yu Zheng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yifeng Ni
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jiahui Zhou
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yucong Gu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yiting Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jingfeng Yuan
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Xiaoyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, College of Engineering and Polymer Science, The University of Akron, Ohio 44325, USA.
| | - Shanqiu Liu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
13
|
Lei Y, Chen S, Zeng X, Meng Y, Chang C, Zheng G. Angiopep‐2 and cyclic RGD
dual‐targeting
ligand modified micelles across the
blood–brain
barrier for improved
anti‐tumor
activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.52358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yujie Lei
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Shihong Chen
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan China
| | - Yan Meng
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Cong Chang
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| | - Guohua Zheng
- College of Pharmacy Hubei University of Chinese Medicine Wuhan China
| |
Collapse
|
14
|
Biocompatible mechano-bactericidal nanopatterned surfaces with salt-responsive bacterial release. Acta Biomater 2022; 141:198-208. [PMID: 35066170 DOI: 10.1016/j.actbio.2022.01.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Abstract
Bio-inspired nanostructures have demonstrated highly efficient mechano-bactericidal performances with no risk of bacterial resistance; however, they are prone to become contaminated with the killed bacterial debris. Herein, a biocompatible mechano-bactericidal nanopatterned surface with salt-responsive bacterial releasing behavior is developed by grafting salt-responsive polyzwitterionic (polyDVBAPS) brushes on a bio-inspired nanopattern surface. Benefiting from the salt-triggered configuration change of the grafted polymer brushes, this dual-functional surface shows high mechano-bactericidal efficiency in water (low ionic strength condition), while the dead bacterial residuals can be easily lifted by the extended polymer chains and removed from the surface in 1 M NaCl solution (high ionic strength conditions). Notably, this functionalized nanopatterned surface shows selective biocidal activity between bacterial cells sand eukaryotic cells. The biocompatibility with red blood cells (RBCs) and mammalian cells was tested in vitro. The histocompatibility and prevention of perioperative contamination activity were verified by in vivo evaluation in a rat subcutaneous implant model. This nanopatterned surface with bacterial killing and releasing activities may open new avenues for designing bio-inspired mechano-bactericidal platforms with long-term efficacy, thus presenting a facile alternative in combating perioperative-related bacterial infection. STATEMENT OF SIGNIFICANCE: Bioinspired nanostructured surfaces with noticeable mechano-bactericidal activity showed great potential in moderating drug-resistance. However, the nanopatterned surfaces are prone to be contaminated by the killed bacterial debris and compromised the bactericidal performance. In this study, we provide a dual-functional antibacterial conception with both mechano-bactericidal and bacterial releasing performances not requiring external chemical bactericidal agents. Additionally, this functionalized antibacterial surface also shows selective biocidal activity between bacteria and eukaryotic cells, and the excellent biocompatibility was tested in vitro and in vivo. The new concept for the functionalized mechano-bactericidal surface here illustrated presents a facile antibiotic-free alternative in combating perioperative related bacterial infection in practical application.
Collapse
|
15
|
Yuan Y, Nie T, Fang Y, You X, Huang H, Wu J. Stimuli-responsive cyclodextrin-based supramolecular assemblies as drug carriers. J Mater Chem B 2022; 10:2077-2096. [PMID: 35233592 DOI: 10.1039/d1tb02683f] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclodextrins (CDs) are widely employed in biomedical applications because of their unique structures. Various biomedical applications can be achieved in a spatiotemporally controlled manner by integrating the host-guest chemistry of CDs with stimuli-responsive functions. In this review, we summarize the recent advances in stimuli-responsive supramolecular assemblies based on the host-guest chemistry of CDs. The stimuli considered in this review include endogenous (pH, redox, and enzymes) and exogenous stimuli (light, temperature, and magnetic field). We mainly discuss the mechanisms of the stimuli-responsive ability and present typical designs of the corresponding supramolecular assemblies for drug delivery and other potential biomedical applications. The limitations and perspectives of CD-based stimuli-responsive supramolecular assemblies are discussed to further promote the translation of laboratory products into clinical applications.
Collapse
Affiliation(s)
- Ying Yuan
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| | - Tianqi Nie
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yifen Fang
- Guangzhou University of Chinese Medicine, Second Clinical School of Medicine, Guangzhou, 511436, P. R. China
| | - Xinru You
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China.
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, P. R. China.
| |
Collapse
|
16
|
Guo D, Sun Y, Hu Z, Liu S, Yu Q, Li Z. Formation of boronate-based macroporous copolymer via emulsion-assisted interface self-assembly method for specific enrichment of Naringin. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
Wang Z, Liu X, Duan Y, Huang Y. Infection microenvironment-related antibacterial nanotherapeutic strategies. Biomaterials 2021; 280:121249. [PMID: 34801252 DOI: 10.1016/j.biomaterials.2021.121249] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/14/2022]
Abstract
The emergence and spread of antibiotic resistance is one of the biggest challenges in public health. There is an urgent need to discover novel agents against the occurrence of multidrug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci. The drug-resistant pathogens are able to grow and persist in infected sites, including biofilms, phagosomes, or phagolysosomes, which are more difficult to eradicate than planktonic ones and also foster the development of drug resistance. For years, various nano-antibacterial agents have been developed in the forms of antibiotic nanocarriers. Inorganic nanoparticles with intrinsic antibacterial activity and inert nanoparticles assisted by external stimuli, including heat, photon, magnetism, or sound, have also been discovered. Many of these strategies are designed to target the unique microenvironment of bacterial infections, which have shown potent antibacterial effects in vitro and in vivo. This review summarizes ongoing efforts on antibacterial nanotherapeutic strategies related to bacterial infection microenvironments, including targeted antibacterial therapy and responsive antibiotic delivery systems. Several grand challenges and future directions for the development and translation of effective nano-antibacterial agents are also discussed. The development of innovative nano-antibacterial agents could provide powerful weapons against drug-resistant bacteria in systemic or local bacterial infections in the foreseeable future.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Xingyun Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan, 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan, 410013, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410011, China.
| |
Collapse
|
18
|
Gautam B, Ali SA, Chen JT, Yu HH. Hybrid "Kill and Release" Antibacterial Cellulose Papers Obtained via Surface-Initiated Atom Transfer Radical Polymerization. ACS APPLIED BIO MATERIALS 2021; 4:7893-7902. [PMID: 35006770 DOI: 10.1021/acsabm.1c00817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infectious diseases triggered by bacteria cause a severe risk to human health. To counter this issue, surfaces coated with antibacterial materials have been widely used in daily life to kill these bacteria. The substrates enabled with a hybrid kill and release strategy can be employed not only to kill the bacteria but also to wash them using external stimuli (temperature, pH, etc.). Utilizing this concept, we develop thermoresponsive antibacterial-cellulose papers to exhibit hybrid kill and release properties. Thermoresponsive copolymers [p(NIPAAm-co-AEMA)] are grafted on cellulose papers using a surface-initiated atom transfer radical polymerization approach for bacterial debris release. Later for antibacterial properties, silver nanoparticles (AgNPs) are immobilized on thermoresponsive copolymer-grafted cellulose papers using electrostatic interactions. We confirm the thermoresponsive copolymer grafting and AgNP coating by attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy. Thermoresponsiveness and reusability of the modified cellulose papers are confirmed through water contact angle measurements. The interaction potency between AgNPs and modified cellulose is validated by inductively coupled plasma atomic emission spectroscopy analysis. Gram-negative bacteria Escherichia coli (E. coli DH5-α) is used to demonstrate antibacterial hybrid kill and release performance. Agar-diffusion testing demonstrates the antibacterial nature of the modified cellulose papers. The fluorescence micrograph reveals that modified cellulose papers can effectively release almost all the dead bacterial debris from their surfaces after thermal stimulus wash. The modified cellulose paper surfaces are expected to have wide applications in the field of exploring more antibacterial and smart surfaces.
Collapse
Affiliation(s)
- Bhaskarchand Gautam
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | - Syed Atif Ali
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 300
| | | |
Collapse
|
19
|
Manouras T, Koufakis E, Vasilaki E, Peraki I, Vamvakaki M. Antimicrobial Hybrid Coatings Combining Enhanced Biocidal Activity under Visible-Light Irradiation with Stimuli-Renewable Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17183-17195. [PMID: 33734694 DOI: 10.1021/acsami.0c21230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid, organic-inorganic, biocidal films exhibiting polishing properties were developed as effective long-lasting antimicrobial surface coatings. The films were prepared using cationically modified chitosan, synthesized by the reaction with 3-bromo-N,N,N-trimethylpropan-1-aminium bromide, to introduce permanent biocidal quaternary ammonium salt (QAS) groups along the polymer backbone and were cross-linked by a novel, pH-cleavable acetal cross-linker, which allowed polishing the hybrid coatings with the solution pH. TiO2 nanoparticles, modified with reduced graphene oxide (rGO) sheets, to narrow their band gap energy value and shift their photocatalytic activity in the visible light regime, were introduced within the polymer film to enhance its antibacterial activity. The hybrid coatings exhibited an effective biocidal activity in the dark (∼2 Log and ∼3 Log reduction for Gram-negative and Gram-positive bacteria, respectively), when only the QAS sites interacted with the bacteria membrane, and an excellent biocidal action upon visible-light irradiation (∼5 Log and ∼6 Log reduction for Gram-negative and Gram-positive bacteria, respectively) due to the synergistic antimicrobial effect of the QAS moieties and the rGO-modified TiO2 nanoparticles. The gradual decrease in the film thickness, upon immersion of the coatings in mildly basic (pH 8), neutral (pH 7), and acidic (pH 6) media, reaching 10, 20, and 70% reduction, respectively, after 60 days of immersion time, confirmed the polishing behavior of the films, whereas their effective antimicrobial action was retained. The biocompatibility of the hybrid films was verified in human cell culture studies. The proposed approach enables the facile development of highly functional coatings, combining biocompatibility and bactericidal action with a "kill and self-clean" mechanism that allows the regeneration of the outer surface of the coating leading to a strong and prolonged antimicrobial action.
Collapse
Affiliation(s)
- Theodore Manouras
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Eleftherios Koufakis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Evangelia Vasilaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| | - Ioanna Peraki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 700 13 Heraklion, Crete, Greece
| | - Maria Vamvakaki
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Heraklion 700 13, Crete, Greece
- Department of Materials Science and Technology, University of Crete, Heraklion 700 13, Crete, Greece
| |
Collapse
|
20
|
Zhou Y, Yang R, Fan X, Sun M, He X. Self‐assembly of telechelic polymers bearing adamantane groups via host‐guest inclusion complexes with cyclodextrin polymer. J Appl Polym Sci 2021. [DOI: 10.1002/app.49520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yingxue Zhou
- Department of Polymeric Materials and Engineering, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Rongrong Yang
- Department of Polymeric Materials and Engineering, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Xiaodong Fan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Science Northwestern Polytechnical University Xi'an China
| | - Mengmeng Sun
- Department of Polymeric Materials and Engineering, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| | - Xinhai He
- Department of Polymeric Materials and Engineering, School of Materials Science and Engineering Xi'an Polytechnic University Xi'an China
| |
Collapse
|
21
|
Wang Q, Feng Y, He M, Zhao W, Qiu L, Zhao C. A Hierarchical Janus Nanofibrous Membrane Combining Direct Osteogenesis and Osteoimmunomodulatory Functions for Advanced Bone Regeneration. ADVANCED FUNCTIONAL MATERIALS 2020. [DOI: 10.1002/adfm.202008906] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Qian Wang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Yunbo Feng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Min He
- State Key Laboratory of Oral Disease West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| | - Li Qiu
- Department of Ultrasound West China School of Medicine/West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 P. R. China
| |
Collapse
|
22
|
Wang Y, Wei T, Qu Y, Zhou Y, Zheng Y, Huang C, Zhang Y, Yu Q, Chen H. Smart, Photothermally Activated, Antibacterial Surfaces with Thermally Triggered Bacteria-Releasing Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21283-21291. [PMID: 31709795 DOI: 10.1021/acsami.9b17581] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The development of effective antibacterial surfaces to prevent the attachment of pathogenic bacteria and subsequent bacterial colonization and biofilm formation is critically important for medical devices and public hygiene products. In the work reported herein, a smart antibacterial hybrid film based on tannic acid/Fe3+ ion (TA/Fe) complex and poly(N-isopropylacrylamide) (PNIPAAm) is deposited on diverse substrates. This surface is shown to have bacteria-killing and bacteria-releasing properties based on, respectively, near-infrared photothermal activation and subsequent cooling. The TA/Fe complex has three roles in this system: (i) as a universal adhesive "anchor" for surface modification, (ii) as a high-efficiency photothermal agent for ablation of attached bacteria (including multidrug resistant bacteria), and (iii) as a robust linker for immobilization of NH2-terminated PNIPAAm via either Michael addition or Schiff base formation. Moreover, because of the thermoresponsive properties of the immobilized PNIPAAm, almost all of the killed bacteria and other debris can be removed from the surface simply by lowering the temperature. It is shown that this hybrid film can maintain good antibacterial performance after being used for multiple "kill-and-release" cycles and can be applied to various substrates regardless of surface chemistry or topography, thus providing a broadly applicable, simple, and reliable solution to the problems associated with surface-attached bacteria in various healthcare applications.
Collapse
Affiliation(s)
- Yaran Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215007, P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
23
|
Shi Y, Liu K, Zhang Z, Tao X, Chen HY, Kingshott P, Wang PY. Decoration of Material Surfaces with Complex Physicochemical Signals for Biointerface Applications. ACS Biomater Sci Eng 2020; 6:1836-1851. [DOI: 10.1021/acsbiomaterials.9b01806] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yue Shi
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Kun Liu
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Zhen Zhang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Xuelian Tao
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Engineering, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peng-Yuan Wang
- Centre for Human Tissue & Organ Degeneration, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangzhou 518055, China
- Department of Chemistry and Biotechnology, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
24
|
Zhang XY, Zhao YQ, Zhang Y, Wang A, Ding X, Li Y, Duan S, Ding X, Xu FJ. Antimicrobial Peptide-Conjugated Hierarchical Antifouling Polymer Brushes for Functionalized Catheter Surfaces. Biomacromolecules 2019; 20:4171-4179. [DOI: 10.1021/acs.biomac.9b01060] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xin-Yang Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yidan Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Jin L, Shi Z, Zhang X, Liu X, Li H, Wang J, Liang F, Zhao W, Zhao C. Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release. J Mater Chem B 2019; 7:5520-5527. [PMID: 31432876 DOI: 10.1039/c9tb01199d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The prevention of bacteria-induced infections has been increasing in importance in both clinical surgery and biomedical engineering. Although great attention has been paid to designing intelligent antibacterial surfaces, the fabrication processes are still not facile and universal enough, and the antibacterial efficiencies of these surfaces are also not ideal. Herein, ionic liquid (IL) molecules of 3-(12-mercaptododecyl)-1-methyl-1H-imidazol-3-ium bromide (IL(Br)) were synthesized with the minimum inhibitory concentrations as low as 4 and 8 μg mL-1 against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), respectively. By simply immersing a polymeric substrate into the IL(Br) solution, an antibacterial surface with high killing efficiency of 99% against S. aureus (94% against E. coli) was achieved via a mussel-inspired approach. Subsequently, 97% S. aureus and 95% E. coli on the substrate could be released by simple ion-exchange of Br- with (CF3SO2)2N- due to the ion sensitivity of the IL molecular brushes. Thus, the proposed facile strategy towards a superior efficiency surface could be potentially used in intelligent antibacterial fields.
Collapse
Affiliation(s)
- Lunqiang Jin
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang Y, Wu J, Zhang D, Chen F, Fan P, Zhong M, Xiao S, Chang Y, Gong X, Yang J, Zheng J. Design of salt-responsive and regenerative antibacterial polymer brushes with integrated bacterial resistance, killing, and release properties. J Mater Chem B 2019; 7:5762-5774. [PMID: 31465075 DOI: 10.1039/c9tb01313j] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of smart materials and surfaces with multiple antibacterial actions is of great importance for both fundamental research and practical applications, but this has proved to be extremely challenging. In this work, we proposed to integrate salt-responsive polyDVBAPS (poly(3-(dimethyl(4-vinylbenzyl) ammonio)propyl sulfonate)), antifouling polyHEAA (poly(N-hydroxyethyl acrylamide)), and bactericidal TCS (triclosan) into single surfaces by polymerizing and grafting polyDVBAPS and polyHEAA onto the substrate in a different way to form two types of polyDVBAPS/poly(HEAA-g-TCS) and poly(DVBAPS-b-HEAA-g-TCS) brushes with different hierarchical structures, as confirmed by X-ray photoelectron spectroscopy (XPS), atom force microscopy (AFM), and ellipsometry. Both types of polymer brushes demonstrated their tri-functional antibacterial activity to resist bacterial attachment by polyHEAA, to release ∼90% of dead bacteria from the surface by polyDVBAPS, and to kill ∼90% of bacteria on the surface by TCS. Comparative studies also showed that removal of any component from polyDVBAPS/poly(HEAA-g-TCS) and poly(DVBAPS-b-HEAA-g-TCS) compromised the overall antibacterial performance, further supporting a synergistic effect of the three compatible components. More importantly, the presence of salt-responsive polyDVBAPS allowed both brushes to regenerate with almost unaffected antibacterial capacity for reuse in multiple kill-and-release cycles. The tri-functional antibacterial surfaces present a promising design strategy for further developing next-generation antibacterial materials and coatings for antibacterial applications.
Collapse
Affiliation(s)
- Yang Wang
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Jiahui Wu
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Dong Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | - Feng Chen
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Ping Fan
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Mingqiang Zhong
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Shengwei Xiao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China
| | - Yung Chang
- Department of Chemical Engineering R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, USA
| | - Jintao Yang
- College of Materials Science & Engineering Zhejiang, University of Technology, Hangzhou 310014, China.
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| |
Collapse
|
27
|
Yaghoubi Z, Parsa JB. Preparation of thermo-responsive PNIPAAm-MWCNT membranes and evaluation of its antifouling properties in dairy wastewater. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109779. [PMID: 31349494 DOI: 10.1016/j.msec.2019.109779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 01/08/2023]
Abstract
A novel MWCNT-PNIPAAm nanocomposite membrane was developed with an excellent cleaning efficiency of thermo-responsive surface. The thermo-responsive N-isopropyle acryleamide (NIPAAm) monomer was polymerized on the surface of MWCNT via free radical polymerization. The prepared MWCNT-PNIPAAm nanocomposite was characterized by FTIR, SEM and TGA analyses. Various amounts of the prepared nanocomposite were incorporated into the membrane matrix by the physical blending method. The resultant membranes showed better surface wettability and pure water flux compared to pristine Polyethersulfone (PES) membrane. Furthermore, after filtration, the COD value of dairy wastewater was reduced to around 90% for all membranes. The thermo-responsive cleaning method was employed to investigate the cleaning efficiency of MWCNT-PNIPAAm membrane for dairy wastewater. The 99.9% flux recovery ratio was obtained for MWCNT-PNIPAAm-0.05% membranes. All these results confirmed that the presence of MWCNT-PNIPAAm nanocomposite in the membrane matrix improves the membrane hydrophilicity and antifouling properties.
Collapse
Affiliation(s)
- Zeynab Yaghoubi
- Department of Applied Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174-38683, Iran
| | - Jalal Basiri Parsa
- Department of Applied Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65174-38683, Iran.
| |
Collapse
|
28
|
Ghasemlou M, Daver F, Ivanova EP, Rhim JW, Adhikari B. Switchable Dual-Function and Bioresponsive Materials to Control Bacterial Infections. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22897-22914. [PMID: 31180196 DOI: 10.1021/acsami.9b05901] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The colonization of undesired bacteria on the surface of devices used in biomedical and clinical applications has become a persistent problem. Different types of single-function (cell resistance or bactericidal) bioresponsive materials have been developed to cope with this problem. Even though these materials meet the basic requirements of many biomedical and clinical applications, dual-function (cell resistance and biocidal) bioresponsive materials with superior design and function could be better suited for these applications. The past few years have witnessed the emergence of a new class of dual-function materials that can reversibly switch between cell-resistance and biocidal functions in response to external stimuli. These materials are finding increased applications in biomedical devices, tissue engineering, and drug-delivery systems. This review highlights the recent advances in design, structure, and fabrication of dual-function bioresponsive materials and discusses translational challenges and future prospects for research involving these materials.
Collapse
Affiliation(s)
| | | | - Elena P Ivanova
- School of Science , RMIT University , Melbourne VIC 3000 , Australia
| | - Jong-Whan Rhim
- Center for Humanities and Sciences, Department of Food and Nutrition, Bionanocomposite Research Center , Kyung Hee University , 26 Kyungheedae-ro, Dongdaemun-gu , Seoul 02447 , Republic of Korea
| | | |
Collapse
|
29
|
Diget JS, Städe LW, Nielsen TT. Direct synthesis of well-defined zwitterionic cyclodextrin polymers via atom transfer radical polymerization. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Wei T, Yu Q, Chen H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv Healthc Mater 2019; 8:e1801381. [PMID: 30609261 DOI: 10.1002/adhm.201801381] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Antibacterial coatings that eliminate initial bacterial attachment and prevent subsequent biofilm formation are essential in a number of applications, especially implanted medical devices. Although various approaches, including bacteria-repelling and bacteria-killing mechanisms, have been developed, none of them have been entirely successful due to their inherent drawbacks. In recent years, antibacterial coatings that are responsive to the bacterial microenvironment, that possess two or more killing mechanisms, or that have triggered-cleaning capability have emerged as promising solutions for bacterial infection and contamination problems. This review focuses on recent progress on three types of such responsive and synergistic antibacterial coatings, including i) self-defensive antibacterial coatings, which can "turn on" biocidal activity in response to a bacteria-containing microenvironment; ii) synergistic antibacterial coatings, which possess two or more killing mechanisms that interact synergistically to reinforce each other; and iii) smart "kill-and-release" antibacterial coatings, which can switch functionality between bacteria killing and bacteria releasing under a proper stimulus. The design principles and potential applications of these coatings are discussed and a brief perspective on remaining challenges and future research directions is presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| |
Collapse
|
31
|
Zeng L, Wu Y, Xu JF, Wang S, Zhang X. Supramolecular Switching Surface for Antifouling and Bactericidal Activities. ACS APPLIED BIO MATERIALS 2019; 2:638-643. [DOI: 10.1021/acsabm.8b00831] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lingda Zeng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Yukun Wu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
32
|
Zhan W, Wei T, Yu Q, Chen H. Fabrication of Supramolecular Bioactive Surfaces via β-Cyclodextrin-Based Host-Guest Interactions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36585-36601. [PMID: 30285413 DOI: 10.1021/acsami.8b12130] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Supramolecular host-guest interactions provide a facile and versatile basis for the construction of sophisticated structures and functional assemblies through specific molecular recognition of host and guest molecules to form inclusion complexes. In recent years, these interactions have been exploited as a means of attaching bioactive molecules and polymers to solid substrates for the fabrication of bioactive surfaces. Using a common host molecule, β-cyclodextrin (β-CD), and various guest molecules as molecular building blocks, we fabricated several types of bioactive surfaces with multifunctionality and/or function switchability via host-guest interactions. Other groups have also taken this approach, and several intelligent designs have been developed. The results of these investigations indicate that, compared to the more common covalent bonding-based methods for attachment of bioactive ligands, host-guest based methods are simple, more broadly ("universally") applicable, and allow convenient renewal of bioactivity. In this Spotlight on Applications, we review and summarize recent developments in the fabrication of supramolecular bioactive surfaces via β-CD-based host-guest interactions. The main focus is on the work from our laboratory, but highlights on work from other groups are included. Applications of the materials are also emphasized. These surfaces can be categorized into three types based on: (i) self-assembled monolayers, (ii) polymer brushes, and (iii) multilayered films. The host-guest strategy can be extended from material surfaces to living cell surfaces, and work along these lines is also reviewed. Finally, a brief perspective on the developments of supramolecular bioactive surfaces in the future is presented.
Collapse
Affiliation(s)
- Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Ren'ai Road , Suzhou 215123 , P. R. China
| |
Collapse
|
33
|
Wang L, Zhao Q, Zhang Z, Lu Z, Zhao Y, Tang Y. Fluorescent Conjugated Polymer/Quarternary Ammonium Salt Co-assembly Nanoparticles: Applications in Highly Effective Antibacteria and Bioimaging. ACS APPLIED BIO MATERIALS 2018; 1:1478-1486. [DOI: 10.1021/acsabm.8b00422] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lianqi Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Qi Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Ziqi Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Zhuanning Lu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Yantao Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| | - Yanli Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’ an 710062, P. R. China
| |
Collapse
|
34
|
Host-guest self-assembly toward reversible visible-light-responsive switching for bacterial adhesion. Acta Biomater 2018; 76:39-45. [PMID: 30078424 DOI: 10.1016/j.actbio.2018.06.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/11/2018] [Accepted: 06/30/2018] [Indexed: 12/22/2022]
Abstract
Here we report a facile method to construct reversible visible-light-responsive switching from antibacterial to bioadhesion by host-guest self-assembly of β-cyclodextrin (β-CD) and azobenzene functionalized polycation/polyanion. The visible-light-responsible azobenzene functionalized polycation, poly{6-[(2,6-dimethoxyphenyl)azo-4-(2',6'-dimethoxy)phenoxy]propyl dimethylaminoethyl methacrylate-random-poly(2-(N,N-dimethylaminoethyl) methacrylate) (Azo-PDMAEMA), was synthesized via quaternization reaction between 2,6,2',6'-tetramethoxy-4-(3-bromopropoxy)azobenzene (AzoOMeBr) and poly(2-(N,N-dimethylaminoethyl) methacrylate) (PDMAEMA), and the polyanion, poly{6-[(2,6-dimethoxyphenyl)azo-4-(2',6'-dimethoxy) phenoxy]hexyl acrylate-random-acrylic acid} (Azo-PAA), was synthesized via esterification reaction between 2,6,2',6'-tetramethoxy-4-(6-hydroxyhexyloxy) azobenzene (AzoOMeOH) and poly(acryloyl chloride) (PAC) and subsequent hydrolysis reactions. The switch surface could be achieved via the alternate host-guest assembly of Azo-PDMAEMA and Azo-PAA onto a β-CD-terminated substratum (Sub-CD) through visible light irradiation. The positively charged Azo-PDMAEMA with quaternary ammonium groups exhibited antimicrobial properties and few bacteria were adhered on the surface, while the negatively charged Azo-PAA with carboxyl acid groups exhibited excellent bioadhesive properties and a large number of bacteria were adhered. Interestingly, the switch between antibacterial and bioadhesive could be realized upon visible light irradiation via alternate assembly of Azo-PDMAEMA and Azo-PAA. The proposed approach to manufacturing visible-light-responsive surface with reversible and alterable biofunctionality switching between antibacterial and bioadhesive is simple and efficient, which is promising for preparation of multifunctional polymeric surfaces to encounter multifarious demands for the biomedical and biotechnological applications. STATEMENT OF SIGNIFICANCE Light has attracted great attention in building biointerfaces for its precise spatiotemporal control and convenient operation. However, UV light may damage to biological samples and living tissues, which will limit its applications. This study demonstrates a novel visible-light-responsive surface fabricated through reversible assembly of azobenzene functionalized polycations/polyanions on cyclodextrin (CD)-terminated substrate by host-guest interactions between the visible-light-responsive azobenzene mAzo and CD, which has not been examined previously. It is noted that the azobenzene functionalized polycations show strong antibacterial activities, while the polyanions show excellent bioadhesive properties, as can be switched through the alternate assembly upon visible-light irradiation. This facile and versatile approach to visible-light-responsive surfaces holds great potential for switching of bioadhesion.
Collapse
|
35
|
Fu Y, Wang Y, Huang L, Xiao S, Chen F, Fan P, Zhong M, Tan J, Yang J. Salt-Responsive “Killing and Release” Antibacterial Surfaces of Mixed Polymer Brushes. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01730] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanhong Fu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yang Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Lei Huang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shengwei Xiao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Feng Chen
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ping Fan
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
36
|
Bi J, Song K, Wu S, Zhang Y, Wang Y, Liu T. Effect of thermal-responsive surfaces based on PNIPAAm on cell adsorption/desorption. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2016.1252359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Jiajie Bi
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yu Zhang
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yiwei Wang
- Burns Research Group, ANZAC Research Institute, University of Sydney, Concord, New South Wales, Australia
| | - Tianqing Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
37
|
Zeng Q, Zhu Y, Yu B, Sun Y, Ding X, Xu C, Wu YW, Tang Z, Xu FJ. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants. Biomacromolecules 2018; 19:2805-2811. [DOI: 10.1021/acs.biomac.8b00399] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiang Zeng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Yiwen Zhu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bingran Yu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujie Sun
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Xiaokang Ding
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu-Wei Wu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Zhihui Tang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, School and Hospital of Stomatology, Peking University, Beijing 100081, China
| | - Fu-Jian Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Yang Y, Ma L, Cheng C, Deng Y, Huang J, Fan X, Nie C, Zhao W, Zhao C. Nonchemotherapic and Robust Dual-Responsive Nanoagents with On-Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection. ADVANCED FUNCTIONAL MATERIALS 2018. [DOI: 10.1002/adfm.201705708] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ye Yang
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Lang Ma
- Laboratory of Ultrasound Imaging Drug; Department of Ultrasound; West China School of Medicine/West China Hospital; Sichuan University; Chengdu 610041 China
| | - Chong Cheng
- Department of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Yiyi Deng
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Jianbo Huang
- Laboratory of Ultrasound Imaging Drug; Department of Ultrasound; West China School of Medicine/West China Hospital; Sichuan University; Chengdu 610041 China
| | - Xin Fan
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry; Freie Universität Berlin; Takustrasse 3 14195 Berlin Germany
| | - Weifeng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| | - Changsheng Zhao
- College of Polymer Science and Engineering; State Key Laboratory of Polymer Materials Engineering; Sichuan University; Chengdu 610065 China
| |
Collapse
|
39
|
Xie Y, Chen S, Qian Y, Zhao W, Zhao C. Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018. [DOI: 10.1016/j.msec.2017.11.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B 2018; 6:4274-4292. [PMID: 32254504 DOI: 10.1039/c8tb01245h] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their development over 70 years, antibiotics are still the most effective strategy to treat bacterial biofilms and infections.
Collapse
Affiliation(s)
- Xi Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Biao Wu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Lin Sun
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| |
Collapse
|
41
|
Ippel BD, Dankers PYW. Introduction of Nature's Complexity in Engineered Blood-compatible Biomaterials. Adv Healthc Mater 2018; 7. [PMID: 28841771 DOI: 10.1002/adhm.201700505] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/04/2017] [Indexed: 01/07/2023]
Abstract
Biomaterials with excellent blood-compatibility are needed for applications in vascular replacement therapies, such as vascular grafts, heart valves and stents, and in extracorporeal devices such as hemodialysis machines and blood-storage bags. The modification of materials that are being used for blood-contacting devices has advanced from passive surface modifications to the design of more complex, smart biomaterials that respond to relevant stimuli from blood to counteract coagulation. Logically, the main source of inspiration for the design of new biomaterials has been the endogenous endothelium. Endothelial regulation of hemostasis is complex and involves a delicate interplay of structural components and feedback mechanisms. Thus, challenges to develop new strategies for blood-compatible biomaterials now lie in incorporating true feedback controlled mechanisms that can regulate blood compatibility in a dynamic way. Here, supramolecular material systems are highlighted as they provide a promising platform to introduce dynamic reciprocity, due to their inherent dynamic nature.
Collapse
Affiliation(s)
- Bastiaan D. Ippel
- Institute for Complex Molecular Systems; Laboratory for Chemical Biology; and Laboratory for Cell and Tissue Engineering; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Patricia Y. W. Dankers
- Institute for Complex Molecular Systems; Laboratory for Chemical Biology; and Laboratory for Cell and Tissue Engineering; Eindhoven University of Technology; P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
42
|
Khan M, Wu Z, Mao S, Shah SNA, Lin JM. Controlled grafted poly(quaternized-4-vinylpyridine-co-acrylic acid) brushes attract bacteria for effective antimicrobial surfaces. J Mater Chem B 2018; 6:3782-3791. [DOI: 10.1039/c8tb00702k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The substrates were coated with P(Q4VP-co-AA) brushes and adsorbed GA to attract, kill and release microbes.
Collapse
Affiliation(s)
- Mashooq Khan
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| | - Zengnan Wu
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| | - Sifeng Mao
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| | - Syed Niaz Ali Shah
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| | - Jin-Ming Lin
- Department of Chemistry
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Tsinghua University
- Beijing
| |
Collapse
|
43
|
Qu Y, Wei T, Zhao J, Jiang S, Yang P, Yu Q, Chen H. Regenerable smart antibacterial surfaces: full removal of killed bacteria via a sequential degradable layer. J Mater Chem B 2018; 6:3946-3955. [DOI: 10.1039/c8tb01122b] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An antibiotic-free and regenerable antibacterial hybrid film with both photothermal bactericidal activity and bacteria-releasing properties is fabricated on diverse substrates.
Collapse
Affiliation(s)
- Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Jian Zhao
- Key Laboratory of Applied Surface and Colloids Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an
| | - Shuaibing Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloids Chemistry
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Shaanxi Normal University
- Xi’an
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|
44
|
He M, Wang Q, Zhang J, Zhao W, Zhao C. Substrate-Independent Ag-Nanoparticle-Loaded Hydrogel Coating with Regenerable Bactericidal and Thermoresponsive Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44782-44791. [PMID: 29035025 DOI: 10.1021/acsami.7b13238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a Ag-nanoparticle (AgNP)-based substrate-independent bactericidal hydrogel coating with thermoresponsive antibacterial property. To attach the hydrogel coating onto model substrate, we first coated ene-functionalized dopamine on the substrate, and then the hydrogel thin layer was formed on the surface via the UV light initiated surface cross-linking copolymerization of N-isopropylacrylamide (NIPAAm) and sodium acrylate (AANa). Then, Ag ions were adsorbed into the hydrogel layers and reduced to AgNPs by sodium borohydride. The coating showed robust bactericidal ability against Escherichia coli and Staphylococcus aureus toward both contacted bacteria and the bacteria in the surrounding. Upon a reduction of the temperature below the LCST of PNIPAAm, the improved surface hydrophilicity and swollen PNIPAAm could detach the attached dead bacteria. Meanwhile, the long-lasting and regenerable antibacterial properties could be achieved by repeatedly loading AgNPs. By precisely controlling the AgNP loading amounts, the coating showed excellent hemocompatibility and no cytotoxity. Additionally, the coating could be applied to modify cell culture plate, since it could support cell adhesion and proliferation at 37 °C, while detach the cell by changing the temperature below lower critical solution temperature without the treatment of proteases. The study thus presents a promising way to fabricate thermoresponsive and regenerable antibacterial surfaces on diverse materials and devices for biomedical applications.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Qian Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| |
Collapse
|
45
|
Wang X, Yan S, Song L, Shi H, Yang H, Luan S, Huang Y, Yin J, Khan AF, Zhao J. Temperature-Responsive Hierarchical Polymer Brushes Switching from Bactericidal to Cell Repellency. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40930-40939. [PMID: 29111641 DOI: 10.1021/acsami.7b09968] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unlike conventional poly(N-isopropylacrylamide) (PNIPAM)-based surfaces switching from bactericidal activity to bacterial repellency upon decreasing temperature, we developed a hierarchical polymer architecture, which could maintain bactericidal activities at room temperature while presenting bacterial repellency at physiological temperature. In this architecture, a thermoresponsive bactericidal upper layer consisting of PNIPAM-based copolymer and vancomycin (Van) moieties was built on an antifouling poly(sulfobetaine methacrylate) (PSBMA) bottom layer via sequential surface-initiated photoiniferter-mediated polymerization. At room temperature below the lower critical solution temperature (LCST), the PNIPAM-based upper layer was stretchable, facilitating contact killing of bacteria by Van. At physiological temperature (above the LCST), the PNIPAM-based layer collapsed, thus leading to the burial of Van and exposure of bottom PSBMA brushes, finally displaying notable performances in bacterial inhibition, dead bacteria detachment, and biocompatibility, simultaneously. Our strategy provides a novel pathway in the rational design of temperature-sensitive switchable surfaces, which shows great advantages in the real-world infection-resistant applications.
Collapse
Affiliation(s)
- Xianghong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Shunjie Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Lingjie Song
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Huawei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Jinghua Yin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology , Defence Road, Off. Raiwind Road, Lahore 54000, Pakistan
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University , Changchun 130022, People's Republic of China
| |
Collapse
|
46
|
Wei T, Tang Z, Yu Q, Chen H. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37511-37523. [PMID: 28992417 DOI: 10.1021/acsami.7b13565] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The attachment and subsequent colonization of bacteria on the surfaces of synthetic materials and devices lead to serious problems in both human healthcare and industrial applications. Therefore, antibacterial surfaces that can prevent bacterial attachment and biofilm formation have been a long-standing focus of considerable interest and research efforts. Recently, a promising "kill-release" strategy has been proposed and applied to construct so-called smart antibacterial surfaces, which can kill bacteria attached to their surface and then undergo on-demand release of the dead bacteria and other debris to reveal a clean surface under an appropriate stimulus, thereby maintaining effective long-term antibacterial activity. This Review focuses on the recent progress (particularly over the past 5 years) on such smart antibacterial surfaces. According to the different design strategies, these surfaces can be divided into three categories: (i) "K + R"-type surfaces, which have both a killing unit and a releasing unit; (ii) "K → R"-type surfaces, which have a surface-immobilized killing unit that can be switched to perform a releasing function; and (iii) "K + (R)"-type surfaces, which have only a killing unit but can release dead bacteria upon the addition of a release solution. In the end, a brief perspective on future research directions and the major challenges in this promising field is also presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Zengchao Tang
- Jiangsu Biosurf Biotech Company Ltd. , 218 Xinghu Street, Suzhou, 215123, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| |
Collapse
|
47
|
Saha S, Roy A, Roy MN. Mechanistic Investigation of Inclusion Complexes of a Sulfa Drug with α- and β-Cyclodextrins. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Subhadeep Saha
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India
| | - Aditi Roy
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling-734013, India
| |
Collapse
|
48
|
Riga EK, Vöhringer M, Widyaya VT, Lienkamp K. Polymer-Based Surfaces Designed to Reduce Biofilm Formation: From Antimicrobial Polymers to Strategies for Long-Term Applications. Macromol Rapid Commun 2017; 38:10.1002/marc.201700216. [PMID: 28846821 PMCID: PMC7611510 DOI: 10.1002/marc.201700216] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/28/2017] [Indexed: 12/22/2022]
Abstract
Contact-active antimicrobial polymer surfaces bear cationic charges and kill or deactivate bacteria by interaction with the negatively charged parts of their cell envelope (lipopolysaccharides, peptidoglycan, and membrane lipids). The exact mechanism of this interaction is still under debate. While cationic antimicrobial polymer surfaces can be very useful for short-term applications, they lose their activity once they are contaminated by a sufficiently thick layer of adhering biomolecules or bacterial cell debris. This layer shields incoming bacteria from the antimicrobially active cationic surface moieties. Besides discussing antimicrobial surfaces, this feature article focuses on recent strategies that were developed to overcome the contamination problem. This includes bifunctional materials with simultaneously presented antimicrobial and protein-repellent moieties; polymer surfaces that can be switched from an antimicrobial, cell-attractive to a cell-repellent state; polymer surfaces that can be regenerated by enzyme action; degradable antimicrobial polymers; and antimicrobial polymer surfaces with removable top layers.
Collapse
Affiliation(s)
- E. K. Riga
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - M. Vöhringer
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - V. T. Widyaya
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - K. Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
49
|
Wu B, Zhang L, Huang L, Xiao S, Yang Y, Zhong M, Yang J. Salt-Induced Regenerative Surface for Bacteria Killing and Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7160-7168. [PMID: 28658955 DOI: 10.1021/acs.langmuir.7b01333] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibacterial surfaces with both bacteria killing and release functions show great promise in biological and biomedical applications, in particular for reusable medical devices. However, these surfaces either require a sophisticated technique to create delicate structures or need rigorous stimuli to trigger the functions, greatly limiting their practical application. In this study, we made a step forward by developing a simple system based on a salt-responsive polyzwitterionic brush. Specifically, the salt-responsive brush of poly(3-(dimethyl (4-vinylbenzyl) ammonium) propyl sulfonate) (polyDVBAPS) was endowed with bactericidal function by grafting an effective bactericide, i.e., triclosan (TCS). This simple functionalization successfully integrated the bacteria attach/release function of polyDVBAPS and bactericidal function of TCS. As a result, the surface could kill more than 95% attached bacteria and, subsequently, could rapidly detach ∼97% bacteria after gently shaking in 1.0 M NaCl for 10 min. More importantly, such high killing efficiency and release rate could be well retained (unchanged effectiveness of both killing and release after four severe killing/release cycles), indicating the highly efficient regeneration and long-term reusability of this system. This study not only contributes zwitterionic polymers by conferring new functions but also provides a new, highly efficient and reliable surface for "killing-release" antibacterial strategy.
Collapse
Affiliation(s)
- Bozhen Wu
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Lixun Zhang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Lei Huang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Shengwei Xiao
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Yin Yang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Mingqiang Zhong
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| |
Collapse
|
50
|
Hao J, Gao Y, Li Y, Yan Q, Hu J, Ju Y. Thermosensitive Triterpenoid-Appended Polymers with Broad Temperature Tunability Regulated by Host-Guest Chemistry. Chem Asian J 2017; 12:2231-2236. [DOI: 10.1002/asia.201700581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/01/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jie Hao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Yuxia Gao
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 China
| | - Ying Li
- State Key Lab of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
- College of Chemistry and Material Science; Shandong Agricultural University; Tai'an 271018 China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers; Department of Macromolecular Science; Fudan University; Shanghai 200433 China
| | - Jun Hu
- State Key Lab of Polymer Physics and Chemistry; Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun 130022 China
| | - Yong Ju
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology; Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 China
| |
Collapse
|