1
|
Morlock S, Subramanian SK, Zouni A, Lisdat F. Closing the green gap of photosystem I with synthetic fluorophores for enhanced photocurrent generation in photobiocathodes. Chem Sci 2023; 14:1696-1708. [PMID: 36819875 PMCID: PMC9930989 DOI: 10.1039/d2sc05324a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
One restriction for biohybrid photovoltaics is the limited conversion of green light by most natural photoactive components. The present study aims to fill the green gap of photosystem I (PSI) with covalently linked fluorophores, ATTO 590 and ATTO 532. Photobiocathodes are prepared by combining a 20 μm thick 3D indium tin oxide (ITO) structure with these constructs to enhance the photocurrent density compared to setups based on native PSI. To this end, two electron transfer mechanisms, with and without a mediator, are studied to evaluate differences in the behavior of the constructs. Wavelength-dependent measurements confirm the influence of the additional fluorophores on the photocurrent. The performance is significantly increased for all modifications compared to native PSI when cytochrome c is present as a redox-mediator. The photocurrent almost doubles from -32.5 to up to -60.9 μA cm-2. For mediator-less photobiocathodes, interestingly, drastic differences appear between the constructs made with various dyes. While the turnover frequency (TOF) is doubled to 10 e-/PSI/s for PSI-ATTO590 on the 3D ITO compared to the reference specimen, the photocurrents are slightly smaller since the PSI-ATTO590 coverage is low. In contrast, the PSI-ATTO532 construct performs exceptionally well. The TOF increases to 31 e-/PSI/s, and a photocurrent of -47.0 μA cm-2 is obtained. This current is a factor of 6 better than the reference made with native PSI in direct electron transfer mode and sets a new record for mediator-free photobioelectrodes combining 3D electrode structures and light-converting biocomponents.
Collapse
Affiliation(s)
- Sascha Morlock
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany .,Biophysics of Photosynthesis, Humboldt University of Berlin Philippstraße 13 10099 Berlin Germany
| | - Senthil K. Subramanian
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Athina Zouni
- Biophysics of Photosynthesis, Humboldt University of BerlinPhilippstraße 1310099 BerlinGermany
| | - Fred Lisdat
- Biosystems Technology, Technical University of Applied Sciences Wildau Hochschulring 1 15745 Wildau Germany
| |
Collapse
|
2
|
Photoelectrochemical Water Oxidation by Cobalt Cytochrome C Integrated-ATO Photoanode. Catalysts 2021. [DOI: 10.3390/catal11050626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Here, we report the immobilization of Co-protoporphyrin IX (Co-PPIX) substituted cytochrome c (Co-cyt c) on Antimony-doped Tin Oxide (ATO) as a catalyst for photoelectrochemical oxidation of water. Under visible light irradiation (λ > 450 nm), the ATO-Co-cyt c photoanode displays ~6-fold enhancement in photocurrent density relative to ATO-Co-PPIX at 0.25 V vs. RHE at pH 5.0. The light-induced water oxidation activity of the system was demonstrated by detecting evolved stoichiometric oxygen by gas chromatography, and incident photon to current efficiency was measured as 4.1% at 450 nm. The faradaic efficiency for the generated oxygen was 97%, with a 671 turnover number (TON) for oxygen. The current density had a slow decay over the course of 6 h of constant irradiation and applied potential, which exhibits the robustness of catalyst-ATO interaction.
Collapse
|
3
|
Sun H, Deng K, Zhu Y, Liao M, Xiong J, Li Y, Li L. A Novel Conductive Mesoporous Layer with a Dynamic Two-Step Deposition Strategy Boosts Efficiency of Perovskite Solar Cells to 20. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801935. [PMID: 29786889 DOI: 10.1002/adma.201801935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Indexed: 05/27/2023]
Abstract
Lead halide perovskite solar cells (PSCs) with the high power conversion efficiency (PCE) typically use mesoporous metal oxide nanoparticles as the scaffold and electron-transport layers. However, the traditional mesoporous layer suffers from low electron conductivity and severe carrier recombination. Here, antimony-doped tin oxide nanorod arrays are proposed as novel transparent conductive mesoporous layers in PSCs. Such a mesoporous layer improves the electron transport as well as light utilization. To resolve the common problem of uneven growth of perovskite on rough surface, the dynamic two-step spin coating strategy is proposed to prepare highly smooth, dense, and crystallized perovskite films with micrometer-scale grains, largely reducing the carrier recombination ratio. The conductive mesoporous layer and high-quality perovskite film eventually render the PSC with a remarkable PCE of 20.1% with excellent reproducibility. These findings provide a new avenue to further design high-efficiency PSCs from the aspect of carrier transport and recombination.
Collapse
Affiliation(s)
- Haoxuan Sun
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Kaimo Deng
- College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Yayun Zhu
- College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| | - Min Liao
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, Hunan, P. R. China
| | - Jie Xiong
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Yanrong Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Liang Li
- College of Physics, Optoelectronics and Energy, Jiangsu Key Laboratory of Thin Films, Center for Energy Conversion Materials & Physics (CECMP), Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
4
|
Mierzwa M, Lamouroux E, Walcarius A, Etienne M. Porous and Transparent Metal-oxide Electrodes : Preparation Methods and Electroanalytical Application Prospects. ELECTROANAL 2018. [DOI: 10.1002/elan.201800020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Maciej Mierzwa
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR7564 CNRS -; Université de Lorraine; 405 rue de Vandoeuvre F-54600 Villers-lès-Nancy France
- Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), UMR7565 CNRS -; Université de Lorraine, BP 239; F-54506 Vandoeuvre-lès-Nancy cedex France
| | - Emmanuel Lamouroux
- Laboratoire Structure et Réactivité des Systèmes Moléculaires Complexes (SRSMC), UMR7565 CNRS -; Université de Lorraine, BP 239; F-54506 Vandoeuvre-lès-Nancy cedex France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR7564 CNRS -; Université de Lorraine; 405 rue de Vandoeuvre F-54600 Villers-lès-Nancy France
| | - Mathieu Etienne
- Laboratoire de Chimie Physique et Microbiologie pour l'Environnement (LCPME), UMR7564 CNRS -; Université de Lorraine; 405 rue de Vandoeuvre F-54600 Villers-lès-Nancy France
| |
Collapse
|
5
|
Noji T, Matsuo M, Takeda N, Sumino A, Kondo M, Nango M, Itoh S, Dewa T. Lipid-Controlled Stabilization of Charge-Separated States (P+QB–) and Photocurrent Generation Activity of a Light-Harvesting–Reaction Center Core Complex (LH1-RC) from Rhodopseudomonas palustris. J Phys Chem B 2018; 122:1066-1080. [DOI: 10.1021/acs.jpcb.7b09973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Tomoyasu Noji
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, Sugimoto-cho, Sumiyoshi-ku, Osaka 558−8585, Japan
| | - Mikano Matsuo
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Nobutaka Takeda
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Ayumi Sumino
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Masaharu Kondo
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| | - Mamoru Nango
- The OCU Advanced Research Institute for Natural Science & Technology (OCARINA), Osaka City University, Sugimoto-cho, Sumiyoshi-ku, Osaka 558−8585, Japan
| | - Shigeru Itoh
- Division
of Material Sciences (Physics), Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464−8602, Japan
| | - Takehisa Dewa
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
- Department
of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
| |
Collapse
|
6
|
Carey AM, Zhang H, Liu M, Sharaf D, Akram N, Yan H, Lin S, Woodbury NW, Seo DK. Enhancing Photocurrent Generation in Photosynthetic Reaction Center-Based Photoelectrochemical Cells with Biomimetic DNA Antenna. CHEMSUSCHEM 2017; 10:4457-4460. [PMID: 28929590 DOI: 10.1002/cssc.201701390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 09/18/2017] [Indexed: 06/07/2023]
Abstract
Three- to four-times higher performance of biohybrid photoelectrochemical cells with photosynthetic reaction centers (RC) has been achieved by using a DNA-based biomimetic antenna. Synthetic dyes Cy3 and Cy5 were chosen and strategically placed in the anntena in such a way that they can collect additional light energy in the visible region of the solar spectrum and transfer it to RC through Förster resonance energy transfer (FRET). The antenna, a DNA templated multiple dye system, is attached to each Rhodobacter sphaeroides RC near the primary donor, P, to facilitate the energy transfer process. Excitation with a broad light spectrum (approximating sunlight) triggers a cascade of excitation energy transfer from Cy3 to Cy5 to P, and also directly from Cy5 to P. This additional excitation energy increases the RC absorbance cross-section in the visible and thus the performance of the photoelectrochemical cells. DNA-based biomimetic antennas offer a tunable, modular light-harvesting system for enhancing RC solar coverage and performance for photoelectrochemical cells.
Collapse
Affiliation(s)
- Anne-Marie Carey
- Innovation in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - HaoJie Zhang
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Minghui Liu
- Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Daiana Sharaf
- Innovation in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Natalie Akram
- Innovation in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Hao Yan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Su Lin
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Innovation in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Neal W Woodbury
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Innovation in Medicine, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Dong-Kyun Seo
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
7
|
Mieritz D, Li X, Volosin A, Liu M, Yan H, Walter NG, Seo DK. Tracking Single DNA Nanodevices in Hierarchically Meso-Macroporous Antimony-Doped Tin Oxide Demonstrates Finite Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6410-6418. [PMID: 28574712 DOI: 10.1021/acs.langmuir.7b00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Housing bio-nano guest devices based on DNA nanostructures within porous, conducting, inorganic host materials promise valuable applications in solar energy conversion, chemical catalysis, and analyte sensing. Herein, we report a single-template synthetic development of hierarchically porous, transparent conductive metal oxide coatings whose pores are freely accessible by large biomacromolecules. Their hierarchal pore structure is bimodal with a larger number of closely packed open macropores (∼200 nm) at the higher rank and with the remaining space being filled with a gel network of antimony-doped tin oxide (ATO) nanoparticles that is highly porous with a broad size range of textual pores mainly from 20-100 nm at the lower rank. The employed carbon black template not only creates the large open macropores but also retains the highly structured gel network as holey pore walls. Single molecule fluorescence microscopic studies with fluorophore-labeled DNA nanotweezers reveal a detailed view of multimodal diffusion dynamics of the biomacromolecules inside the hierarchically porous structure. Two diffusion constants were parsed from trajectory analyses that were attributed to free diffusion (diffusion constant D = 2.2 μm2/s) and to diffusion within an average confinement length of 210 nm (D = 0.12 μm2/s), consistent with the average macropore size of the coating. Despite its holey nature, the ATO gel network acts as an efficient barrier to the diffusion of the DNA nanostructures, which is strongly indicative of physical interactions between the molecules and the pore nanostructure.
Collapse
Affiliation(s)
| | - Xiang Li
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | | | | | | - Nils G Walter
- Department of Chemistry, Single Molecule Analysis Group, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | | |
Collapse
|