1
|
Alizadeh N, Yoosefian J. Chemical reduction as a facile colorimetric approach for selective TNT detection by spectrophotometry and photothermal lens spectroscopy. Talanta 2023; 257:124334. [PMID: 36773511 DOI: 10.1016/j.talanta.2023.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023]
Abstract
In this study, the simple determination of TNT is achieved through the vivid stable red color products generated after chemically reduction by NaBH4 as a common and accessible reducing/colorimetric reagent. Some other nitroaromatics were impressed under reduction reaction and led to the colorful products. The color of these reduced nitroaromatics were unstable and approximately vanished after some few minutes which ameliorated the selectivity in TNT determination. Utilizing the time-dependent selectivity, the method was applied specifically for discriminating of TNT from other nitroaromatic compounds (NACs). UV-vis spectrophotometry and photothermal lens spectrometry were employed as detection techniques. The former was simpler and more available in various laboratories while the latter provides higher sensitivity. It was revealed that the photothermal lens responses were linear from 2.0 to 55.0 nM with a limit of detection (LOD) of about 0.8 nM. The LOD of the photothermal lens measurement were found to be 241 times lower than that of the UV-vis spectrophotometry in TNT quantification. The evolved method was successfully carried out for TNT vapor determination after trapping into the colorimetric reagent. The recoveries and relative standard deviations (RSD, n = 3) calculated for 3 gas samples were ≥91% and ≤7%, respectively.
Collapse
Affiliation(s)
- Naader Alizadeh
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| | - Javad Yoosefian
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| |
Collapse
|
2
|
Molecularly imprinted colloidal array for the high-throughput screening of explosives. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Kamalabadi M, Ghoorchian A, Derakhshandeh K, Gholyaf M, Ravan M. Design and Fabrication of a Gas Sensor Based on a Polypyrrole/Silver Nanoparticle Film for the Detection of Ammonia in Exhaled Breath of COVID-19 Patients Suffering from Acute Kidney Injury. Anal Chem 2022; 94:16290-16298. [DOI: 10.1021/acs.analchem.2c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Mahdie Kamalabadi
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Arash Ghoorchian
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Katayoun Derakhshandeh
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
- Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Mahmoud Gholyaf
- Urology & Nephrology Research Center, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| | - Maryam Ravan
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan 6517838736, Iran
| |
Collapse
|
4
|
Mansha M, Akram Khan S, Aziz MA, Zeeshan Khan A, Ali S, Khan M. Optical Chemical Sensing of Iodide Ions: A Comprehensive Review for the Synthetic Strategies of Iodide Sensing Probes, Challenges, and Future Aspects. CHEM REC 2022; 22:e202200059. [PMID: 35581148 DOI: 10.1002/tcr.202200059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Indexed: 12/11/2022]
Abstract
Among several anions, iodide (I- ) ions play a crucial role in human biological activities. In it's molecular form (I2 ), iodine is utilized for several industrial applications such as syntheses of medicines, fabric dyes, food additives, solar cell electrolytes, catalysts, and agrochemicals. The excess or deficiency of I- ions in the human body and environmental samples have certain consequences. Therefore, the selective and sensitive detection of I- ions in the human body and environment is vital for monitoring their overall profile. Amongst various analytical techniques for the estimation of I- ions, optical-chemical sensing possesses the merits of high sensitivity, selectivity, and utilizing the least amount of sensing materials. The distinctive aims of this manuscript are (i) To comprehensively review the development of optical chemical sensors (fluorescent & colorimetric) reported between 2001-2021 using organic fluorescent molecules, supramolecular materials, conjugated polymers, and metal-organic frameworks (MOFs). (ii) To illustrate the design and synthetic strategies to create specific binding and high affinity of I- ions which could help minimize negative consequences associated with its large size and high polarizability. (iii) The challenges associated with sensitivity and selectivity of I- ions in aqueous and real samples. The probable future aspects concerning the optical chemical detection of I- ions have also been discussed in detail.
Collapse
Affiliation(s)
- Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Abdul Zeeshan Khan
- Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| | - Majad Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia.,Department of Chemistry, King Fahd University of Petroleum and Minerals, 31261, Dhahran, Saudi Arabia
| |
Collapse
|
5
|
Tanwar A, Parui R, Garai R, Chanu MA, Iyer PK. Dual "Static and Dynamic" Fluorescence Quenching Mechanisms Based Detection of TNT via a Cationic Conjugated Polymer. ACS MEASUREMENT SCIENCE AU 2022; 2:23-30. [PMID: 36785591 PMCID: PMC9838727 DOI: 10.1021/acsmeasuresciau.1c00023] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A rare combination of dual static and dynamic fluorescence quenching mechanisms is reported, while sensing the nitroexplosive trinitrotoluene (TNT) in water by a cationic conjugated copolymer PFPy. Since the fluorophore PFPy interacts with TNT in both ground state as well as the excited states, a greater extent of interaction is facilitated between PFPy and the TNT, as a result of which the magnitude of the signal is amplified remarkably. The existence of these collective sensing mechanisms provides additional advantages to the sensing process and enhances the sensing parameters, such as LoD and highly competitive sensing processes in natural water bodies irrespective of the pH and at ambient conditions. These outcomes involving dual sensing mechanistic pathways expand the scope of developing efficient sensing probes for toxic chemical analyte and biomarker detection, preventing environmental pollution and strengthening security at sensitive locations while assisting in early diagnosis of disease biomarkers.
Collapse
Affiliation(s)
- Arvin
Sain Tanwar
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati-781039, Assam, India
| | - Retwik Parui
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati-781039, Assam, India
| | - Rabindranath Garai
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati-781039, Assam, India
| | - Moirangthem Anita Chanu
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati-781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department
of Chemistry, Indian Institute of Technology
Guwahati, Guwahati-781039, Assam, India
- Centre
for Nanotechnology, Indian Institute of
Technology Guwahati, Guwahati-781039, Assam, India
| |
Collapse
|
6
|
Harathi J, Thenmozhi K. Water-soluble ionic liquid as a fluorescent probe towards distinct binding and detection of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol in aqueous medium. CHEMOSPHERE 2022; 286:131825. [PMID: 34375830 DOI: 10.1016/j.chemosphere.2021.131825] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Owing to the escalating threat of criminal activities and pollution aroused by 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP), development of a proficient sensor for the detection of these explosives is highly demanded. Herein, a water-soluble ionic liquid-tagged fluorescent probe, 1-ethyl-3-(3-formyl-4-hydroxybenzyl)-1H-benzimidazol-3-ium chloride (EB-IL) has been designed and synthesized for the detection of TNT and TNP in 100% aqueous medium. The EB-IL fluorescent probe displayed strong cyan-blue fluorescence at 500 nm which gets quenched upon the addition of TNT/TNP over other concomitant nitro-compounds. The distinct binding response of EB-IL towards TNT could be due to the formation of hydrogen bonding between the acidic proton of benzimidazolium (C2-H) and nitro group of TNT. Meanwhile, the selective binding of TNP with EB-IL could be due to the exchange of counter Cl- anion of EB-IL with picrate anion. The fluorescence quenching of EB-IL by TNT could be attributed to the resonance energy transfer (RET) and that of TNP is ascribed to the anion-exchange process. The developed sensor is extremely selective and sensitive towards TNT and TNP with high quenching constants of 1.94 × 105 M-1 and 2.32 × 106 M-1 and shows a lower detection limit of 159 nM and 282 nM, respectively.
Collapse
Affiliation(s)
- Jonnagaddala Harathi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Kathavarayan Thenmozhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore, 632014, India.
| |
Collapse
|
7
|
Tari K, Khamoushian S, Madrakian T, Afkhami A, Łos MJ, Ghoorchian A, Samarghandi MR, Ghavami S. Controlled Transdermal Iontophoresis of Insulin from Water-Soluble Polypyrrole Nanoparticles: An In Vitro Study. Int J Mol Sci 2021; 22:ijms222212479. [PMID: 34830361 PMCID: PMC8621898 DOI: 10.3390/ijms222212479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
The iontophoresis delivery of insulin (INS) remains a serious challenge due to the low permeability of the drug through the skin. This work aims to investigate the potential of water-soluble polypyrrole nanoparticles (WS-PPyNPs) as a drug donor matrix for controlled transdermal iontophoresis of INS. WS-PPyNPs have been prepared via a simple chemical polymerization in the presence of sodium dodecyl sulfate (SDS) as both dopant and the stabilizing agent. The synthesis of the soluble polymer was characterized using field emission scanning electron microscopy (FESEM), dynamic light scattering (DLS), fluorescence spectroscopy, and Fourier transform infrared (FT–IR) spectroscopy. The loading mechanism of INS onto the WS-PPyNPs is based on the fact that the drug molecules can be replaced with doped dodecyl sulfate. A two-compartment Franz-type diffusion cell was employed to study the effect of current density, formulation pH, INS concentration, and sodium chloride concentration on anodal iontophoresis (AIP) and cathodal iontophoresis (CIP) of INS across the rat skin. Both AIP and CIP delivery of INS using WS-PPyNPs were significantly increased compared to passive delivery. Furthermore, while the AIP experiment (60 min at 0.13 mA cm–2) show low cumulative drug permeation for INS (about 20.48 µg cm−2); the CIP stimulation exhibited a cumulative drug permeation of 68.29 µg cm−2. This improvement is due to the separation of positively charged WS-PPyNPs and negatively charged INS that has occurred in the presence of cathodal stimulation. The obtained results confirm the potential applicability of WS-PPyNPs as an effective approach in the development of controlled transdermal iontophoresis of INS.
Collapse
Affiliation(s)
- Kamran Tari
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
| | - Soroush Khamoushian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran; (S.K.); (A.A.); (A.G.)
| | - Tayyebeh Madrakian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran; (S.K.); (A.A.); (A.G.)
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7135646141, Iran
- Correspondence: (T.M.); (M.J.Ł.); (M.R.S.)
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran; (S.K.); (A.A.); (A.G.)
- D-8 International University, Hamedan 65178-38695, Iran
| | - Marek Jan Łos
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7135646141, Iran
- Biotechnology Center, Silesian University of Technology, 8 Krzywousty St., 44-100 Gliwice, Poland
- Correspondence: (T.M.); (M.J.Ł.); (M.R.S.)
| | - Arash Ghoorchian
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan 6516738695, Iran; (S.K.); (A.A.); (A.G.)
| | - Mohammad Reza Samarghandi
- Department of Environmental Health Engineering, Faculty of Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan 6517838636, Iran;
- Correspondence: (T.M.); (M.J.Ł.); (M.R.S.)
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada;
| |
Collapse
|
8
|
Liu Y, Zhou Q, Wu Y, Li S, Sun Y, Sheng X, Zhan Y, Zhao J, Guo J, Zhou B. Sensitive detection of 2,4,6-trinitrotoluene utilizing fluorescent sensor from carbon dots and reusable magnetic core-shell nanomaterial. Talanta 2021; 233:122498. [PMID: 34215116 DOI: 10.1016/j.talanta.2021.122498] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 01/23/2023]
Abstract
Carbon dots have been a promising nano-carbon material with many advantages, and attracted many more attentions. This study designed a new chemosensor integrating the strong fluorescent property of carbon dots and the magnetism of amino-functionalized magnetic core-shell nanomaterial, Fe@SiO2-NH2 for determination of 2,4,6-trinitrotoluene (TNT). In this system, fluorescent carbon dots interacted with amino groups on the surface of amino-functionalized magnetic core-shell nanomaterial leading to fluorescence quenching of carbon dots, appearance of TNT competitively replaced of carbon dots on the surface of the magnetic material through forming a Meisenheimer complex. This sensor exhibits excellent selectivity and sensitivity for TNT, and which provided a good dynamic linear range for TNT from 10 to 2000 ng mL-1. The experiments demonstrate a low detection limit of 2.15 ng mL-1. The intra-day precisions for 25, 100 and 500 ng mL-1 were 4.6, 2.3 and 0.5% (RSD, n = 6), inter-day precisions for 25, 100 and 500 ng mL-1 were 4.2, 2.5 and 0.9% (RSD, n = 6), respectively. The developed sensor was validated with river water, dust, and soil samples, and the achieved spiked recoveries were immensely satisfied from 98.1% to 102.0%. The Fe@SiO2-NH2 possessed excellent reusability. This sensor exhibits that it is simple, sensitive and selective, and will be a vital analytical tool for TNT in many fields.
Collapse
Affiliation(s)
- Yongli Liu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China; Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Shuangying Li
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yi Sun
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| | - Xueying Sheng
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yali Zhan
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Jingyi Zhao
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| | - Jinghan Guo
- Key Laboratory for Yellow River and Huai River Water Environmental and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Boyao Zhou
- State Key Laboratory of Heavy Oil Processing China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
9
|
Wei C, Wu J, Feng X, Yang Z, Zhang J, Ji H. A spirobifluorene-based water-soluble imidazolium polymer for luminescence sensing. NEW J CHEM 2021. [DOI: 10.1039/d1nj02358f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A water-soluble luminescent sensor based on a spirobifluorene-based imidazolium polymer is developed for the selective sensing of Fe3+ and Cr2O72−.
Collapse
Affiliation(s)
- Caifeng Wei
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Jinyi Wu
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Xiying Feng
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Zujin Yang
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Jianyong Zhang
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| | - Hongbing Ji
- Sun Yat-Sen University
- School of Chemical Engineering and Technology
- MOE Laboratory of Polymeric Composite and Functional Materials
- School of Materials Science and Engineering
- Guangzhou 510275
| |
Collapse
|
10
|
Abbasi F, Alizadeh N. Highly selective detection of methanol in aqueous and ethanol medium based on hybrid ZnS:Mn2+quantum dots/N-methylpolypyrrole as a fluorescence switchable sensor. Food Chem 2020; 328:127091. [DOI: 10.1016/j.foodchem.2020.127091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/11/2020] [Accepted: 05/16/2020] [Indexed: 02/08/2023]
|
11
|
Synthesis of highly fluorescent water-soluble polypyrrole for cell imaging and iodide ion sensing. Anal Chim Acta 2019; 1084:99-105. [DOI: 10.1016/j.aca.2019.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/11/2022]
|
12
|
Abbasi F, Akbarinejad A, Alizadeh N. CdS QDs/N-methylpolypyrrole hybrids as fluorescent probe for ultrasensitive and selective detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:230-235. [PMID: 30903871 DOI: 10.1016/j.saa.2019.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Inorganic-organic hybrids are an advanced class of luminescent materials showing great promise for fabrication of highly sensitive and selective optical sensors. In the present study, a novel CdS quantum dots/N-methylpolypyrrole (CdS QDs/NMPPY) hybrid was synthesized via the direct polymerization of NMPPY on L-cysteine capped CdS QD aggregates. A number of characterization techniques including FTIR, DLS, FESEM, UV-vis, and fluorescence spectroscopies were used to study the chemical composition, morphology and optical properties of the resultant QDs/polymer hybrid. The as-synthesized CdS QDs/NMPPY hybrid shows a bright emission at 459 nm under excitation at 367 nm in water. Also the results show the role of sodium dodecyl benzenesulfonate (SDBS) to control the mechanism of synthesis and spectroscopic of the prepared CdS/NMPPY hybrid. Moreover, in this work was reported the direct hybridization procedure without other modification such as ligand exchange and coating. We demonstrated that the hybridization of CdS QDs with NMPPY polymer leads to a significant change in fluorescence sensing properties toward nitroaromatic compounds. Further studies unveiled that the emission of CdS QDs/NMPPY hybrid is strongly and selectively quenched by picric acid molecule with a large Stern-Volmer constant of 843,900 M-1 and an excellent detection limit of 4.6 × 10-7 M. The changes in the UV-vis spectra of picric acid solutions in the presence and absence of CdS QDs/NMPPY hybrid displayed that the fluorescence quenching occurs through a static quenching mechanism. Finally, the proposed CdS QDs/NMPPY sensor was successfully utilized to determine the amount of picric acid in real water samples.
Collapse
Affiliation(s)
- Fatemeh Abbasi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Alireza Akbarinejad
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Naader Alizadeh
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
13
|
Synthesis of water-soluble conjugated polymer, poly(N-3-sulfopropylaniline) and the study of its glucose sensing property. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-018-1691-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Fan J, Ding L, Fang Y. Surfactant Aggregates Encapsulating and Modulating: An Effective Way to Generate Selective and Discriminative Fluorescent Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:326-341. [PMID: 30063363 DOI: 10.1021/acs.langmuir.8b02111] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The heterogeneous structure and dynamic balancing nature of surfactant aggregates make them attractive in developing fluorescent sensors. They can provide a number of advantages, e.g., enhanced fluorescence stability and quantum yield, detection capability in aqueous solutions, and easy operation. Thus, various strategies have been used to construct surfactant aggregate-based fluorescent sensors. Surfactant aggregates play various roles in different strategies and realize multiple sensing behaviors. Many new functions have been discovered for surfactant aggregates in constructing fluorescent sensors. In this feature article, we briefly summarize the development of surfactant aggregate-based fluorescent sensors and their applications in three different types of sensing: selective sensing, multiple analyte sensing, and cross-reactive sensing. For each type of sensing, the design strategies and the roles of surfactant aggregates are particularly introduced. An understanding of these aspects will help to expand the applications of surfactant assemblies in the sensing field.
Collapse
Affiliation(s)
- Junmei Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Liping Ding
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , P. R. China
| |
Collapse
|
15
|
Tavakkoli N, Soltani N, Mohammadi F. A nanoporous gold-based electrochemical aptasensor for sensitive detection of cocaine. RSC Adv 2019; 9:14296-14301. [PMID: 35519350 PMCID: PMC9066177 DOI: 10.1039/c9ra01292c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
The increasing application of aptamers in bioassays has triggered a lot of research interest for development of highly sensitive and selective sensing platforms. Herein, we report on the design of a sensitive cocaine biosensor by immobilizing the 5′-disulfide-functionalized end of an aptamer sequence on a nanoporous gold (NPG) electrode followed by the conjugation of its 3′-amino-functionalized end to 2,5-dihydroxybenzoic acid (DHBA) as the redox probe. In the presence of cocaine, the aptamer undergoes a conformational change from an open unfolded state to a closed conformation, which reduces the distance between DHBA and the electrode surface, resulting in the enhanced electron-transfer efficiency. Using square wave voltammetric method and under the optimal conditions, the cocaine aptasensor presented two linear responses in the concentration ranges between 0.05–1 and 1–35 μM, with an excellent detection limit of 21 nM. The proposed aptasensor provides a simple and low-cost method for cocaine detection with good reproducibility and accuracy. Furthermore, it could be regarded as a general model to investigate the unique function of aptamer-functionalized nanostructured electrodes to stablish highly advanced electrochemical biosensors for various target analytes of diagnostic importance. The increasing application of aptamers in bioassays has triggered a lot of research interest for development of highly sensitive and selective sensing platforms.![]()
Collapse
|
16
|
Alizadeh N, Ghoorchian A. Hybrid Optoelectrochemical Sensor for Superselective Detection of 2,4,6-Trinitrotoluene Based on Electrochemical Reduced Meisenheimer Complex. Anal Chem 2018; 90:10360-10368. [DOI: 10.1021/acs.analchem.8b02183] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Naader Alizadeh
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran 14115-175
| | - Arash Ghoorchian
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran 14115-175
| |
Collapse
|
17
|
Laster JS, Ezeamaku CD, Beaudoin SP, Boudouris BW. Impact of surface chemistry on the adhesion of an energetic small molecule to a conducting polymer surface. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.04.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Zhou W, Lu L, Chen D, Wang Z, Zhai J, Wang R, Tan G, Mao J, Yu P, Ning C. Construction of high surface potential polypyrrole nanorods with enhanced antibacterial properties. J Mater Chem B 2018; 6:3128-3135. [DOI: 10.1039/c7tb03085a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High surface potential polypyrrole nanorods with enhanced antibacterial properties.
Collapse
|
19
|
Tarasi S, Azhdari Tehrani A, Morsali A, Retailleau P. Fabrication of amine and imine-functionalized isoreticular pillared-layer metal–organic frameworks for the highly selective detection of nitro-aromatics. NEW J CHEM 2018. [DOI: 10.1039/c8nj02407c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemical sensors for the rapid and selective detection of explosives such as 2,4,6-trinitrotoluene (TNT) are very important.
Collapse
Affiliation(s)
- Somayeh Tarasi
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | | | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Iran
| | - Pascal Retailleau
- CNRS UPR 2301
- Institut de Chimie des Substances Naturelles
- Univ. Paris-Sud
- Université Paris-Saclay
- 91198 Gif-sur-Yvette
| |
Collapse
|
20
|
Nie K, Dong B, Shi H, Liu Z, Liang B. Diketopyrrolopyrrole Amphiphile-Based Micelle-Like Fluorescent Nanoparticles for Selective and Sensitive Detection of Mercury(II) Ions in Water. Anal Chem 2017; 89:2928-2936. [DOI: 10.1021/acs.analchem.6b04258] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Kaixuan Nie
- Hunan
Key Laboratory for Super Microstructure and Ultrafast Process, School
of Physics and Electronics, Central South University, Changsha, Hunan 410083, People’s Republic of China
| | - Bo Dong
- Hunan
Key Laboratory for Super Microstructure and Ultrafast Process, School
of Physics and Electronics, Central South University, Changsha, Hunan 410083, People’s Republic of China
| | - Huanhuan Shi
- Hunan
Key Laboratory for Super Microstructure and Ultrafast Process, School
of Physics and Electronics, Central South University, Changsha, Hunan 410083, People’s Republic of China
| | - Zhengchun Liu
- Hunan
Key Laboratory for Super Microstructure and Ultrafast Process, School
of Physics and Electronics, Central South University, Changsha, Hunan 410083, People’s Republic of China
| | - Bo Liang
- State
Engineering Laboratory of Highway Maintenance Technology, Changsha University of Science and Technology, Changsha, 410114, People’s Republic of China
| |
Collapse
|