1
|
Geng Z, Zhang M, Huang B, Zhang X, Wang Z. A novel nanoparticle fluorescent probe based on a water-soluble conjugated polymer for real-time monitoring of ATP fluctuation and configuration of the Golgi apparatus during the inhibition of glycolysis. Anal Chim Acta 2024; 1304:342572. [PMID: 38637042 DOI: 10.1016/j.aca.2024.342572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Adenosine 5'-triphosphate (ATP) plays an important role in cell metabolism and has been regarded as an indicator of cell survival and damage. Golgi apparatus participates in the signal transduction processes of substance transport, ion homeostasis and stress when extracellular substances enter cells. Till now, there is no fluorescent probe for monitoring Golgi ATP level fluctuation and visualizing the configuration change of the Golgi apparatus during the inhibition of glycolysis. RESULTS Herein, we report the synthesis of a novel water-soluble cationic polythiophene derivative (PEMTEA) that can be employed as a fluorescent sensor for measuring ATP in the Golgi apparatus. PEMTEA self-assembles into PT-NP nanoparticles in aqueous solution with a diameter of approximately 2 nm. PT-NP displays high sensitivity and superb selectivity towards ATP with a detection limit of 90 nM and a linear detection range from 0 to 3.0 μM. The nanoparticles show low toxicity to HepG2 cells and good photostability in the Golgi apparatus. With the stimulation of Ca2+, PT-NP was practically applied to real-time monitor of endogenous ATP levels in the Golgi apparatus through fluorescence microscopy. Finally, we studied the relationship between the concentration of ATP and configuration of the Golgi apparatus during the inhibition of glycolysis using PT-NP. SIGNIFICANCE We have demonstrated that PT-NP can not only indicate the fluctuation and distribution of ATP in the Golgi apparatus, but also give the information of the configuration change of the Golgi apparatus at the single-cell level during the inhibition of glycolysis.
Collapse
Affiliation(s)
- Zhirong Geng
- College of Pharmacy, Jiangsu Joint International Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, PR China.
| | - Miaomiao Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, PR China
| | - Binghuan Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, PR China
| | - Xiaohong Zhang
- College of Pharmacy, Jiangsu Joint International Laboratory of Animal-Derived Chinese Medicine and Functional Peptides, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Zhilin Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
2
|
Conjugated polymer nanoparticles and their nanohybrids as smart photoluminescent and photoresponsive material for biosensing, imaging, and theranostics. Mikrochim Acta 2022; 189:83. [PMID: 35118576 DOI: 10.1007/s00604-021-05153-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/13/2021] [Indexed: 02/06/2023]
Abstract
The emergence of conjugated polymers (CPs) has provided a pathway to attain smart multifunctional conjugated polymer nanoparticles (CPNs) with enhanced properties and diverse applications. CPNs based on π-extended CPs exhibit high fluorescence brightness, low cytotoxicity, excellent photostability, reactive oxygen species (ROS) generation ability, high photothermal conversion efficiency (PCE), etc. which endorse them as an excellent theranostic tool. Furthermore, the unique light-harvesting and energy transfer properties of CPNs enables their transformation into smart functional nanohybrids with augmented performance. Owing to such numerous features, simple preparation method and an easy separation process, the CPNs and their hybrids have been constantly rising as a frontrunner in the domain of medicine and much work has been done in the respective research area. This review summarizes the recent progress that has been made in the field of CPNs for biological and biomedical applications with special emphasis on biosensing, imaging, and theranostics. Following an introduction into the field, a first large section provides overview of the conventional as well as recently established synthetic methods for various types of CPNs. Then, the CPNs-based fluorometric assays for biomolecules based on different detection strategies have been described. Later on, examples of CPNs-based probes for imaging, both in vitro and in vivo using cancer cells and animal models have been explored. The next section highlighted the vital theranostic applications of CPNs and corresponding nanohybrids, mainly via imaging-guided photodynamic therapy (PDT), photothermal therapy (PTT) and drug delivery. The last section summarizes the current challenges and gives an outlook on the potential future trends on CPNs as advanced healthcare material.
Collapse
|
3
|
Yang S, Zhan Y, Shou W, Chen L, Lin Z, Guo L. 1,2,4-Triaminobenzene as a Fluorescent Probe for Intracellular pH Imaging and Point-of-Care Ammonia Sensing. ACS APPLIED BIO MATERIALS 2021; 4:6065-6072. [PMID: 35006915 DOI: 10.1021/acsabm.1c00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
As one of the health indicators, intracellular pH plays important roles in many processes of cell functions. Abnormal pH changes would result in the occurrence of inflammation, cancer, and other diseases. Thus, it is of significant importance to develop effective techniques for sensitive detection of pH changes for the clinical diagnosis of various diseases related to cells. In this paper, 1,2,4-triaminobenzene hydrochloride was explored as an organic molecular fluorescent probe for sensitive and selective detection of intracellular pH changes for the first time. Due to the protonation and deprotonation of amino groups of the probe, its fluorescent intensity at 599 nm or the ratio of absorbance at 505 and 442 nm has a good linear relationship with pH values in the range of 5.0-7.0. Benefiting from the excellent physical and chemical properties of 1,2,4-triaminobenzene hydrochloride, the fluorescent probe has good water solubility, low toxicity, high photostability, great reversibility, good cell penetration, fast response speed, and so on. As a proof-of-concept demonstration, the proposed probe is employed for the fluorescence imaging of cells and mouse tissue sections with satisfactory performance in pH differentiation. Additionally, the probe was successfully employed to prepare test strips as a kind of point-of-care testing device to detect ammonia, which showed great potential in practical applications.
Collapse
Affiliation(s)
- Shuangting Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350116, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Yuanjin Zhan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350116, China
| | - Wen Shou
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350116, China.,College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Lifen Chen
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350116, China
| | - Longhua Guo
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, Zhejiang Province, China
| |
Collapse
|
4
|
Wu P, Tan C. Biological Sensing and Imaging Using Conjugated Polymers and Peptide Substrates. Protein Pept Lett 2021; 28:2-10. [PMID: 32586238 DOI: 10.2174/0929866527666200625162308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/03/2020] [Accepted: 05/07/2020] [Indexed: 11/22/2022]
Abstract
Peptides have been widely applied as targeting elements or enzyme-substrates in biological sensing and imaging. Conjugated Polymers (CPs) have emerged as a novel biosensing material and received considerable attention due to their excellent light absorption, strong fluorescence emission, as well as amplified quenching properties. In this review, we summarize the recent advances of using CPs and peptide substrates in biosensing and bioimaging. After a brief introduction of the advantages of CPs and peptide substrates, different sensing designs and mechanisms are discussed based on peptides' structures and functions, including targeting recognition elements, enzyme-substrates, and cell-penetrating elements. Applications of CPs and peptides in fluorescent imaging and Raman imaging in living cells are subsequently reviewed.
Collapse
Affiliation(s)
- Pan Wu
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chunyan Tan
- The State Key Laboratory of Chemical Oncogenomics, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
5
|
Jessop IA, Pérez YP, Jachura A, Nuñez H, Saldías C, Isaacs M, Tundidor-Camba A, Terraza CA, Araya-Durán I, Camarada MB, Cárcamo-Vega JJ. New Hybrid Copper Nanoparticles/Conjugated Polyelectrolyte Composite with Antibacterial Activity. Polymers (Basel) 2021; 13:polym13030401. [PMID: 33513801 PMCID: PMC7865910 DOI: 10.3390/polym13030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 01/16/2023] Open
Abstract
In the search for new materials to fight against antibiotic-resistant bacteria, a hybrid composite from metallic copper nanoparticles (CuNPs) and a novel cationic π-conjugated polyelectrolyte (CPE) were designed, synthesized, and characterized. The CuNPs were prepared by chemical reduction in the presence of CPE, which acts as a stabilizing agent. Spectroscopic analysis and electron microscopy showed the distinctive band of the metallic CuNP surface plasmon and their random distribution on the CPE laminar surface, respectively. Theoretical calculations on CuNP/CPE deposits suggest that the interaction between both materials occurs through polyelectrolyte side chains, with a small contribution of its backbone electron density. The CuNP/CPE composite showed antibacterial activity against Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative (Escherichia coli and Salmonella enteritidis) bacteria, mainly attributed to the CuNPs’ effect and, to a lesser extent, to the cationic CPE.
Collapse
Affiliation(s)
- Ignacio A. Jessop
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá. P.O. Box 7-D, Arica 1000007, Chile; (Y.P.P.); (A.J.); (H.N.)
- Correspondence: (I.A.J.); (M.B.C.)
| | - Yasmín P. Pérez
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá. P.O. Box 7-D, Arica 1000007, Chile; (Y.P.P.); (A.J.); (H.N.)
| | - Andrea Jachura
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá. P.O. Box 7-D, Arica 1000007, Chile; (Y.P.P.); (A.J.); (H.N.)
| | - Hipólito Nuñez
- Organic and Polymeric Materials Research Laboratory, Facultad de Ciencias, Universidad de Tarapacá. P.O. Box 7-D, Arica 1000007, Chile; (Y.P.P.); (A.J.); (H.N.)
| | - Cesar Saldías
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (C.S.); (M.I.)
| | - Mauricio Isaacs
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (C.S.); (M.I.)
| | - Alain Tundidor-Camba
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (A.T.-C.); (C.A.T.)
| | - Claudio A. Terraza
- Research Laboratory for Organic Polymers (RLOP), Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (A.T.-C.); (C.A.T.)
| | - Ingrid Araya-Durán
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
| | - María B. Camarada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile;
- Núcleo de Química y Bioquímica, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago 8580745, Chile
- Correspondence: (I.A.J.); (M.B.C.)
| | | |
Collapse
|
6
|
Zhao Y, Zhang C, Liu J, Li D, Tian X, Wang A, Li S, Wu J, Tian Y. Dual-channel fluorescent probe bearing two-photon activity for cell viability monitoring. J Mater Chem B 2019. [DOI: 10.1039/c9tb00512a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We developed a dual-channel two-photon fluorescence probe to monitor cell viability.
Collapse
Affiliation(s)
- Yanqian Zhao
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Chengkai Zhang
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Jiejie Liu
- School of Life Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Dandan Li
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Xiaohe Tian
- School of Life Science
- Anhui University
- Hefei 230601
- P. R. China
| | - Aidong Wang
- School of Chemistry and Chemical Engineering
- Huangshan College
- Huangshan University
- Huangshan 245041
- P. R. China
| | - Shengli Li
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Jieying Wu
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| | - Yupeng Tian
- College of Chemistry and Chemical Engineering
- Institutes of Physics Science and Information Technology
- Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials
- Anhui University
| |
Collapse
|
7
|
Liu D, Zhang M, Du W, Hu L, Li F, Tian X, Wang A, Zhang Q, Zhang Z, Wu J, Tian Y. A Series of Zn(II) Terpyridine-Based Nitrate Complexes as Two-Photon Fluorescent Probe for Identifying Apoptotic and Living Cells via Subcellular Immigration. Inorg Chem 2018; 57:7676-7683. [PMID: 29916691 DOI: 10.1021/acs.inorgchem.8b00620] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two-photon active probe to label apoptotic cells plays a significant role in biological systems. However, discrimination of live/apoptotic cells at subcellular level under microscopy remains unachieved. Here, three novel Zn(II) terpyridine-based nitrate complexes (C1-C3) containing different pull/push units were designed. The structures of the ligands and their corresponding Zn(II) complexes were confirmed by single-crystal X-ray diffraction analysis. On the basis of the comprehensive comparison, C3 had a suitable two-photon absorption cross section in the near-infrared wavelength and good biocompatibility. Under two-photon confocal microscopy and transmission electron microscopy, it is found that C3 could target mitochondria in living cells but immigrate into the nucleolus during the apoptotic process. This dual-functional probe (C3) not only offers a valuable image tool but also acts as an indicator for cell mortality at subcellular level in a real-time manner.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aidong Wang
- School of Chemistry and Chemical Engineering , Huangshan College , Huangshan , P. R. China
| | | | - Zhongping Zhang
- School of Chemistry and Chemical Engineering , Anhui University , Hefei 230601 , P. R. China
| | | | | |
Collapse
|
8
|
Wang Y, Yao H, Zhou J, Hong Y, Chen B, Zhang B, Smith TA, Wong WWH, Zhao Z. A water-soluble, AIE-active polyelectrolyte for conventional and fluorescence lifetime imaging of mouse neuroblastoma neuro-2A cells. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28943] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yinan Wang
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 People's Republic of China
| | - Hongming Yao
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 People's Republic of China
| | - Jian Zhou
- College of Material, Chemistry and Chemical Engineering; Hangzhou Normal University; Hangzhou 310036 People's Republic of China
| | - Yuning Hong
- Department of Chemistry and Physics; La Trobe University; Victoria 3086 Australia
| | - Bin Chen
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 People's Republic of China
| | - Bolong Zhang
- School of Chemistry; The University of Melbourne; Victoria 3010 Australia
| | - Trevor A. Smith
- School of Chemistry; The University of Melbourne; Victoria 3010 Australia
| | - Wallace W. H. Wong
- School of Chemistry; The University of Melbourne; Victoria 3010 Australia
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 People's Republic of China
| |
Collapse
|
9
|
Zhang M, Du W, Tian X, Zhang R, Zhao M, Zhou H, Ding Y, Li L, Wu J, Tian Y. Real-time noninvasive monitoring of cell mortality using a two-photon emissive probe based on quaternary ammonium. J Mater Chem B 2018; 6:4417-4421. [DOI: 10.1039/c8tb00976g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report that a dicyanyl derivative QN2 containing quaternary ammonium was capable of identifying apoptotic cells by targeting nucleic acid (DNA and RNA).
Collapse
Affiliation(s)
- Mingzhu Zhang
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University
- Hefei 230039
- China
| | - Wei Du
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University
- Hefei 230039
- China
| | - Xiaohe Tian
- School of Life Science, Anhui University
- Hefei 230039
- China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Anhui University
- Hefei 230601
- P. R. China
| | - Meng Zhao
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University
- Hefei 230039
- China
| | - Hongping Zhou
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University
- Hefei 230039
- China
| | - Yaqi Ding
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University
- Nanjing 211816
- China
| | - Lin Li
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University
- Nanjing 211816
- China
| | - Jieying Wu
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University
- Hefei 230039
- China
| | - Yupeng Tian
- Department of Chemistry, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University
- Hefei 230039
- China
- State Key Laboratory of Coordination Chemistry, Nanjing University
- Nanjing 210093
| |
Collapse
|
10
|
Novel tetraphenylethylene diol amphiphile with aggregation-induced emission: self-assembly, cell imaging and tagging property. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:580-587. [DOI: 10.1016/j.msec.2017.08.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/19/2017] [Accepted: 08/10/2017] [Indexed: 02/06/2023]
|
11
|
Wu W, Chen A, Tong L, Qing Z, Langone KP, Bernier WE, Jones WE. Facile Synthesis of Fluorescent Conjugated Polyelectrolytes Using Polydentate Sulfonate as Highly Selective and Sensitive Copper(II) Sensors. ACS Sens 2017; 2:1337-1344. [PMID: 28795572 DOI: 10.1021/acssensors.7b00400] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorescent conjugated polyelectrolytes represent an exciting area of research into new chemosensors. By virtue of their rapid electron and energy transfer paths, these highly correlated, one-dimensional systems have been depicted as "molecular wires" and show "million-fold" sensitivity compared to monomolecular sensor analogs. In this paper, a novel polyelectrolyte sensor, the ttp-PPESO3, has been designed by incorporating terpyridine and sulfonate functional groups into the polyelectrolyte. This specifically tailored sensor has displayed remarkable quenching response toward copper(II) with a detection limit of 14.7 nM (0.93 ppb). It is capable of selectively screening copper without interference from 12 common cations. Molecular modeling suggests that binding occurs through a coordination interaction of the terpyridine and sulfonate. The additional multidentate nature from the sulfonate offers extraordinary chelating ability to the analyte. We anticipate that this unique binding mode will provide insight for the design of future more sensitive and selective systems.
Collapse
Affiliation(s)
- Wei Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Anting Chen
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Linyue Tong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Ziqi Qing
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Kevin P. Langone
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - William E. Bernier
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| | - Wayne E. Jones
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902-6016, United States
| |
Collapse
|
12
|
Kuehne AJC. Conjugated Polymer Nanoparticles toward In Vivo Theranostics - Focus on Targeting, Imaging, Therapy, and the Importance of Clearance. ACTA ACUST UNITED AC 2017; 1:e1700100. [DOI: 10.1002/adbi.201700100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/28/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Alexander J. C. Kuehne
- DWI - Leibniz Institute for Interactive Materials; RWTH Aachen University; Forckenbeckstraße 50 52076 Aachen Germany
| |
Collapse
|
13
|
Wu P, Xu N, Tan C, Liu L, Tan Y, Chen Z, Jiang Y. Light-Induced Translocation of a Conjugated Polyelectrolyte in Cells: From Fluorescent Probe to Anticancer Agent. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10512-10518. [PMID: 28287688 DOI: 10.1021/acsami.7b00540] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Dual-functional probes, which not only enable visualization of diseased cells but also induce therapeutic cellular responses, are essential to biological studies. In the current work, a conjugated polyelectrolyte, PPET3-N2, was designed and synthesized as a dual-functional probe. The poly(phenylene ethynylene) terthiophene polymer backbone contributes to the polymer's light-harvesting property to ensure the strong fluorescence as well as photosensitization, whereas quantanary ammonium side chains interact with target organelle for localization. As a fluorescent probe, PPET3-N2 was endocytosed to lysosomes through clathrin-mediated endocytosis (CME) and macropinocytosis (MPC) pathways. Colocalization of the probe with commercial fluorescent lysosome labels confirmed that this probe localized on lysosomes with high specificity and photostability. Real-time monitoring of autolysosome formation in autophagic cells was also demonstrated, providing a viable platform for cell-based screening of autophagy inhibitors. Finally, as a photosensitizer, PPET3-N2 can efficiently generate singlet oxygen in living cells upon irradiation of white light, leading to the destruction of lysosome membrane and release of ROS and lysosomal enzymes in cytoplasma, causing cell death.
Collapse
Affiliation(s)
- Pan Wu
- Department of Chemistry and ‡School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, ∥Open FIESTA Center, and ⊥The Key Lab in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Naihan Xu
- Department of Chemistry and ‡School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, ∥Open FIESTA Center, and ⊥The Key Lab in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Chunyan Tan
- Department of Chemistry and ‡School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, ∥Open FIESTA Center, and ⊥The Key Lab in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Lei Liu
- Department of Chemistry and ‡School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, ∥Open FIESTA Center, and ⊥The Key Lab in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Ying Tan
- Department of Chemistry and ‡School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, ∥Open FIESTA Center, and ⊥The Key Lab in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Zhifang Chen
- Department of Chemistry and ‡School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, ∥Open FIESTA Center, and ⊥The Key Lab in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| | - Yuyang Jiang
- Department of Chemistry and ‡School of Pharmaceutical Sciences, Tsinghua University , Beijing 100084, P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, Graduate School at Shenzhen, ∥Open FIESTA Center, and ⊥The Key Lab in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, P. R. China
| |
Collapse
|
14
|
Chen A, Wu W, Fegley MEA, Pinnock SS, Duffy-Matzner JL, Bernier WE, Jones WE. Pentiptycene-Derived Fluorescence Turn-Off Polymer Chemosensor for Copper(II) Cation with High Selectivity and Sensitivity. Polymers (Basel) 2017; 9:polym9040118. [PMID: 30970797 PMCID: PMC6432232 DOI: 10.3390/polym9040118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 03/20/2017] [Accepted: 03/21/2017] [Indexed: 12/23/2022] Open
Abstract
Fluorescent conjugated polymers (FCPs) have been explored for selective detection of metal cations with ultra-sensitivity in environmental and biological systems. Herein, a new FCP sensor, tmeda-PPpETE (poly[(pentiptycene ethynylene)-alt-(thienylene ethynylene)] with a N,N,N′-trimethylethylenediamino receptor), has been designed and synthesized via Sonogashira cross-coupling reaction with the goal of improving solid state polymer sensor development. The polymer was found to be emissive at λmax ~ 459 nm under UV radiation with a quantum yield of 0.119 at room temperature in THF solution. By incorporating diamino receptors and pentiptycene groups into the poly[(phenylene ethynylene)-(thiophene ethynylene)] (PPETE) backbone, the polymer showed an improved turn-off response towards copper(II) cation, with more than 99% quenching in fluorescence emission. It is capable of discriminating copper(II) cation from sixteen common cations, with a detection limit of 16.5 nM (1.04 ppb).
Collapse
Affiliation(s)
- Anting Chen
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
| | - Wei Wu
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
| | - Megan E A Fegley
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
| | - Sherryllene S Pinnock
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
| | | | - William E Bernier
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
| | - Wayne E Jones
- Department of Chemistry, Binghamton University, State University of New York, Binghamton, NY 13902, USA.
| |
Collapse
|
15
|
Cai K, Tan Y, Tan C, Wu J, Wu P, Liang J, Liu S, Zhang B, Jiang Y. An iminodiacetate-modified conjugated polyelectrolyte for fluorescent labeling of histidine-tagged proteins. Chem Commun (Camb) 2017; 53:4191-4194. [DOI: 10.1039/c7cc00850c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iminodiacetate-modified conjugated polyelectrolyte was used in the fluorescent labeling of hexahistidine-tagged proteins.
Collapse
Affiliation(s)
- Kai Cai
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
| | - Ying Tan
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
| | - Chunyan Tan
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
| | - Jiatao Wu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
| | - Pan Wu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
| | - Jiamei Liang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
| | - Shuwen Liu
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
| | - Bibo Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
| | - Yuyang Jiang
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology
- the Graduate School at Shenzhen
- Tsinghua University
- Shenzhen 518055
- P. R. China
| |
Collapse
|
16
|
Calver CF, Lago BA, Schanze KS, Cosa G. Enhancing the photostability of poly(phenylene ethynylene) for single particle studies. Photochem Photobiol Sci 2017; 16:1821-1831. [DOI: 10.1039/c7pp00276a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enhanced photostability of conjugated polyelectrolytes achieved by using anti-fading agents opens the way for advanced single molecule fluorescence imaging studies.
Collapse
Affiliation(s)
- C. F. Calver
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal
- Canada
| | - B. A. Lago
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal
- Canada
| | - K. S. Schanze
- Department of Chemistry
- University of Texas at San Antonio
- San Antonio
- USA
| | - G. Cosa
- Department of Chemistry and Centre for Self-Assembled Chemical Structures (CSACS/CRMAA)
- McGill University
- Montreal
- Canada
| |
Collapse
|