1
|
Zhang X, Zhang H, Lv X, Xie T, Chen J, Fang D, Yi S. Construction of mechanically robust and recyclable catalytic hydrogel based on hydroxypropyl cellulose-supported by montmorillonite/ionic liquid with different anions for pollutants(4-NP, MB, CR, Rhb) degradation. Int J Biol Macromol 2024; 273:132788. [PMID: 38942669 DOI: 10.1016/j.ijbiomac.2024.132788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/30/2024]
Abstract
Dye wastewater poses a serious threat to the environment and human health, necessitating sustainable degradation methods. In this study, Na-based Montmorillonite (MMT) was exfoliated using different ionic liquids ([C16MIM][Cl], [C16MIM][BF4], [C16MIM][PF6]), and silver nanoparticles (Ag NPs) were green-synthesized using hydroxypropyl cellulose (HPC). The HPC significantly enhanced the dispersion of MMT in the hydrogel. By introducing lauryl methacrylate (LMA), a hydrophobic associative network was constructed in PAM/LMA/HPC/MMT@ILs&Ag NPs hydrogel. This hydrogel demonstrated outstanding mechanical properties, with a stress of 833.21 kPa, strain of 3300 %, and toughness of 14.36 MJ/m3. It also exhibited excellent catalytic activity, with a rate constant of 0.83 min-1 for 4-nitrophenol degradation at 28 °C. The effects of temperature and catalyst concentration on the catalytic reaction were systematically investigated. This study presents a simple green synthesis approach for Ag NPs using HPC, achieving superior mechanical performance and stable MMT dispersion in aqueous solutions.
Collapse
Affiliation(s)
- Xikun Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - He Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Xue Lv
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China.
| | - Ting Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Junzheng Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Di Fang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Shurui Yi
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China; Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
2
|
Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin. Nat Commun 2022; 13:7138. [PMID: 36414665 PMCID: PMC9681837 DOI: 10.1038/s41467-022-34908-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 11/10/2022] [Indexed: 11/23/2022] Open
Abstract
The process of recycling poly(ethylene terephthalate) (PET) remains a major challenge due to the enzymatic degradation of high-crystallinity PET (hcPET). Recently, a bacterial PET-degrading enzyme, PETase, was found to have the ability to degrade the hcPET, but with low enzymatic activity. Here we present an engineered whole-cell biocatalyst to simulate both the adsorption and degradation steps in the enzymatic degradation process of PETase to achieve the efficient degradation of hcPET. Our data shows that the adhesive unit hydrophobin and degradation unit PETase are functionally displayed on the surface of yeast cells. The turnover rate of the whole-cell biocatalyst toward hcPET (crystallinity of 45%) dramatically increases approximately 328.8-fold compared with that of purified PETase at 30 °C. In addition, molecular dynamics simulations explain how the enhanced adhesion can promote the enzymatic degradation of PET. This study demonstrates engineering the whole-cell catalyst is an efficient strategy for biodegradation of PET.
Collapse
|
3
|
Shchapova E, Titov E, Gurkov A, Nazarova A, Borvinskaya E, Timofeyev M. Durability of Implanted Low-Density Polyacrylamide Hydrogel Used as a Scaffold for Microencapsulated Molecular Probes inside Small Fish. Polymers (Basel) 2022; 14:polym14193956. [PMID: 36235907 PMCID: PMC9573640 DOI: 10.3390/polym14193956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 01/19/2023] Open
Abstract
Implantable sensors based on shaped biocompatible hydrogels are now being extensively developed for various physiological tasks, but they are usually difficult to implant into small animals. In this study, we tested the long-term in vivo functionality of pH-sensitive implants based on amorphous 2.7% polyacrylamide hydrogel with the microencapsulated fluorescent probe SNARF-1. The sensor was easy to manufacture and introduce into the tissues of a small fish Danio rerio, which is the common model object in biomedical research. Histological examination revealed partial degradation of the gel by the 7th day after injection, but it was not the case on the 1st day. Using the hydrogel sensor, we were able to trace the interstitial pH in the fish muscles under normal and hypercapnic conditions for at least two days after the implantation. Thus, despite later immune response, amorphous polyacrylamide is fully suitable for preparing implantable sensors for various mid-term physiological experiments on small fishes. The proposed approach can be further developed to create implantable sensors for animals with similar anatomy.
Collapse
Affiliation(s)
- Ekaterina Shchapova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Evgeniy Titov
- East Siberian Institute of Medical and Ecological Research, 665827 Angarsk, Russia
| | - Anton Gurkov
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Baikal Research Centre, 664003 Irkutsk, Russia
| | - Anna Nazarova
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
| | | | - Maxim Timofeyev
- Institute of Biology, Irkutsk State University, 664025 Irkutsk, Russia
- Correspondence:
| |
Collapse
|
4
|
Zhang H, Zhang T, Zang J, Lv C, Zhao G. Construction of alginate beads for efficient conversion of CO2 into vaterite CaCO3 particles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Atomic Details of Biomineralization Proteins Inspiring Protein Design and Reengineering for Functional Biominerals. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biominerals are extraordinary materials that provide organisms with a variety of functions to support life. The synthesis of biominerals and organization at the macroscopic level is a consequence of the interactions of these materials with proteins. The association of biominerals and proteins is very ancient and has sparked a wealth of research across biological, medical and material sciences. Calcium carbonate, hydroxyapatite, and silica represent widespread natural biominerals. The atomic details of the interface between macromolecules and these biominerals is very intriguing from a chemical perspective, considering the association of chemical entities that are structurally different. With this review I provide an overview of the available structural studies of biomineralization proteins, explored from the Protein Data Bank (wwPDB) archive and scientific literature, and of how these studies are inspiring the design and engineering of proteins able to synthesize novel biominerals. The progression of this review from classical template proteins to silica polymerization seeks to benefit researchers involved in various interdisciplinary aspects of a biomineralization project, who need background information and a quick update on advances in the field. Lessons learned from structural studies are exemplary and will guide new projects for the imaging of new hybrid biomineral/protein superstructures at the atomic level.
Collapse
|
6
|
Hollow Hierarchical Cu-BTC as Nanocarriers to Immobilize Lipase for Electrochemical Biosensor. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02434-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
7
|
Sun Y, Shi J, Wang Z, Wang H, Zhang S, Wu Y, Wang H, Li S, Jiang Z. Thylakoid Membrane-Inspired Capsules with Fortified Cofactor Shuttling for Enzyme-Photocoupled Catalysis. J Am Chem Soc 2022; 144:4168-4177. [PMID: 35107007 DOI: 10.1021/jacs.1c12790] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Enzyme-photocoupled catalytic systems (EPCSs), combining the natural enzyme with a library of semiconductor photocatalysts, may break the constraint of natural evolution, realizing sustainable solar-to-chemical conversion and non-natural reactivity of the enzyme. The overall efficiency of EPCSs strongly relies on the shuttling of energy-carrying molecules, e.g., NAD+/NADH cofactor, between active centers of enzyme and photocatalyst. However, few efforts have been devoted to NAD+/NADH shuttling. Herein, we propose a strategy of constructing a thylakoid membrane-inspired capsule (TMC) with fortified and tunable NAD+/NADH shuttling to boost the enzyme-photocoupled catalytic process. The apparent shuttling number (ASN) of NAD+/NADH for TMC could reach 17.1, ∼8 times as high as that of non-integrated EPCS. Accordingly, our TMC exhibits a turnover frequency (TOF) of 38 000 ± 365 h-1 with a solar-to-chemical efficiency (STC) of 0.69 ± 0.12%, ∼6 times higher than that of non-integrated EPCS.
Collapse
Affiliation(s)
- Yiying Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jiafu Shi
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| | - Zhuo Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Han Wang
- School of Environmental Science and Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shaohua Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Yizhou Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shihao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. China
| |
Collapse
|
8
|
Wang J, Lv Y. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Liu J, Tian L, Qiao Y, Zhou S, Patil AJ, Wang K, Li M, Mann S. Hydrogel‐Immobilized Coacervate Droplets as Modular Microreactor Assemblies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan ProvinceHunan University Changsha 410082 P. R. China
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Yan Qiao
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Shaohong Zhou
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan ProvinceHunan University Changsha 410082 P. R. China
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan ProvinceHunan University Changsha 410082 P. R. China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|
10
|
Chen Z, Wang Y, Cheng Y, Wang X, Tong S, Yang H, Wang Z. Efficient biodegradation of highly crystallized polyethylene terephthalate through cell surface display of bacterial PETase. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 709:136138. [PMID: 31887523 DOI: 10.1016/j.scitotenv.2019.136138] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 05/16/2023]
Abstract
Polyethylene terephthalate (PET) is one of the most widely used plastics in the world. Accumulation of the discarded PET in the environment is creating a global environmental problem. Recently, a bacterial enzyme named PETase was found to have the novel ability to degrade the highly crystallized PET. However, the enzymatic activity of native PETase is still low limiting its possible use in recycling of PET. In this study, we developed a whole-cell biocatalyst by displaying PETase on the surface of yeast (Pichia pastoris) cell to improve its degradation efficiency. Our data shows that PETase could be functionally displayed on the yeast cell with enhanced pH and thermal stability. The turnover rate of the PETase-displaying yeast whole-cell biocatalyst towards highly crystallized PET dramatically increased about 36-fold compared with that of purified PETase. Furthermore, the whole-cell biocatalyst showed stable turnover rate after seven repeated use and under some chemical/solvent conditions, and its ability to degrade different commercial highly crystallized PET bottles. Our results reveal that PETase-displaying whole-cell biocatalyst affords a promising route for efficient biological recycling of PET.
Collapse
Affiliation(s)
- Zhuozhi Chen
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Yanyan Wang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Yingying Cheng
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Xue Wang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China
| | - Shanwei Tong
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Haitao Yang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China.
| | - Zefang Wang
- School of Life Sciences, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin, 300072, China; Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China.
| |
Collapse
|
11
|
Liu J, Tian L, Qiao Y, Zhou S, Patil AJ, Wang K, Li M, Mann S. Hydrogel‐Immobilized Coacervate Droplets as Modular Microreactor Assemblies. Angew Chem Int Ed Engl 2020; 59:6853-6859. [DOI: 10.1002/anie.201916481] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan ProvinceHunan University Changsha 410082 P. R. China
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Yan Qiao
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Shaohong Zhou
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan ProvinceHunan University Changsha 410082 P. R. China
| | - Avinash J. Patil
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of Chemistry and Chemical EngineeringKey Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan ProvinceHunan University Changsha 410082 P. R. China
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter ChemistrySchool of ChemistryUniversity of Bristol Bristol BS8 1TS UK
| |
Collapse
|
12
|
|
13
|
Huo Q, Zhao J, Li W, Yang D, Zhang S, Shi J, Jiang Z. Crackled nanocapsules: the “imperfect” structure for enzyme immobilization. Chem Commun (Camb) 2019; 55:7155-7158. [DOI: 10.1039/c9cc02797a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Crackled organosilica nanocapsules (CONs) are prepared using a metal–organic framework (MOF) hard-templating method to directly immobilize enzymes without post modification.
Collapse
Affiliation(s)
- Qian Huo
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Key Laboratory of Bioengineering of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Jingjing Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Key Laboratory of Bioengineering of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Weiran Li
- School of Environmental Science and Engineering
- Tianjin University
- Tianjin 300072
- China
| | - Dong Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Key Laboratory of Bioengineering of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Haidian District
- P. R. China
| | - Jiafu Shi
- School of Environmental Science and Engineering
- Tianjin University
- Tianjin 300072
- China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education
- Key Laboratory of Bioengineering of Ministry of Education
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
| |
Collapse
|
14
|
Mugo SM, Berg D, Bharath G. Integrated Microcentrifuge Carbon Entrapped Glucose Oxidase Poly (N-Isopropylacrylamide) (pNIPAm) Microgels for Glucose Amperometric Detection. ANAL LETT 2018. [DOI: 10.1080/00032719.2018.1499027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Samuel M. Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - Darren Berg
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, Alberta T5J 4S2, Canada
| | - G. Bharath
- Department of Chemical Engineering, Khalifa University for Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
15
|
Li J, Zou J, Xiao H, He B, Hou X, Qian L. Preparation of Novel Nano-Sized Hydrogel Microcapsules via Layer-By-Layer Assembly as Delivery Vehicles for Drugs onto Hygiene Paper. Polymers (Basel) 2018; 10:E335. [PMID: 30966370 PMCID: PMC6414901 DOI: 10.3390/polym10030335] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/27/2018] [Accepted: 03/15/2018] [Indexed: 01/07/2023] Open
Abstract
Hydrogel microcapsules are improved transplantation delivery vehicles for pharmaceuticals by effectively segregating the active ingredients from the surroundings and delivering them to a certain target site. Layer-by-layer (LbL) assembly is an attractive process to fabricate the nano-sized hydrogel microcapsules. In this study, nano-sized hydrogel microcapsules were prepared through LbL assembly using calcium carbonate nanoparticles (CaCO₃ NPs) as the sacrificial inorganic template, sodium alginate (SA) and polyethyleneimine (PEI) as the shell materials. Ciprofloxacin was used to study the encapsulation and release properties of the hydrogel microcapsules. The hydrogel microcapsules were further adsorbed onto the paper to render antimicrobial properties. The results showed that the mean size of the CaCO₃ template was reduced after dispersing into sodium n-dodecyl sulfate (SDS) solution under sonication. Transmission electron microscope (TEM) and atomic force microscope (AFM) revealed that some hydrogel microcapsules had a diameter under 200 nm, typical creases and collapses were found on the surface. The nano-sized PEI/SA hydrogel microcapsules showed high loading capacity of ciprofloxacin and a sustained release. PEI/SA hydrogel microcapsules rendered good antimicrobial properties onto the paper by the adsorption of hydrogel microcapsules, however, the mechanical properties of the hygiene paper were decreased.
Collapse
Affiliation(s)
- Junrong Li
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jing Zou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| | - Beihai He
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Xiaobang Hou
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
| | - Liying Qian
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
16
|
Yang T, Hu Y, Wang C, Binks BP. Fabrication of Hierarchical Macroporous Biocompatible Scaffolds by Combining Pickering High Internal Phase Emulsion Templates with Three-Dimensional Printing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:22950-22958. [PMID: 28636315 DOI: 10.1021/acsami.7b05012] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biocompatible and biodegradable porous scaffolds with adjustable pore structure have aroused increasing interest in bone tissue engineering. Here, we report a facile method to fabricate hierarchical macroporous biocompatible (HmPB) scaffolds by combining Pickering high internal phase emulsion (HIPE) templates with three-dimensional (3D) printing. HmPB scaffolds composed of a polymer matrix of poly(l-lactic acid), PLLA, and poly(ε-caprolactone), PCL, are readily fabricated by solvent evaporation of 3D printed Pickering HIPEs which are stabilized by hydrophobically modified silica nanoparticles (h-SiO2). The pore structure of HmPB scaffolds is easily tailored to be similar to natural extracellular matrix (ECM) by varying the fabrication conditions of the Pickering emulsion or adjusting the printing parameters. In addition, in vivo drug release studies which employ enrofloxacin (ENR) as a model drug indicate the potential of HmPB scaffolds as a drug carrier. Furthermore, in vivo cell culture assays prove that HmPB scaffolds that possess good biocompatibility as mouse bone mesenchymal stem cells (mBMSCs) can adhere and proliferate well on them. All the results suggest that HmPB scaffolds hold great potential in bone tissue engineering applications.
Collapse
Affiliation(s)
- Ting Yang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Yang Hu
- College of Materials and Energy, South China Agricultural University , Guangzhou 510642, People's Republic of China
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Bernard P Binks
- School of Mathematics and Physical Sciences, University of Hull , Hull HU6 7RX, United Kingdom
| |
Collapse
|
17
|
Zhao F, Wang Q, Dong J, Xian M, Yu J, Yin H, Chang Z, Mu X, Hou T, Wang J. Enzyme-inorganic nanoflowers/alginate microbeads: An enzyme immobilization system and its potential application. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Zhang S, Jiang Z, Qian W, Shi J, Wang X, Tang L, Zou H, Liu H. Preparation of Ultrathin, Robust Nanohybrid Capsules through a "Beyond Biomineralization" Method. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12841-12850. [PMID: 28322056 DOI: 10.1021/acsami.7b00308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, a facile and generic method is developed to prepare ultrathin, robust nanohybrid capsules by manipulating the dynamic structure of supramolecular nanocoatings on CaCO3 sacrificial templates by incorporating a multivalent-anion substitution process into biomineralization. Above the biomineralization level, multivalent anions, for example, phosphate, sulfate, or citrate, are used to initiate the assembly of polyamine into continuous (nonsegregated) polyamine-anion supramolecular nanocoatings on CaCO3 sacrificial templates. When contacting with the sodium silicate solution, the multivalent anions in the supramolecular nanocoatings are substituted by silicate because of the difference in dissociation behavior, facilitating the structure-reconstruction of supramolecular nanocoatings. At the biomineralization level, the substituted silicate can not only bind to the polyamine through electrostatic and hydrogen bonding interactions but also undergo silicification to generate an interpenetrating silica framework. After dissolution of CaCO3, polyamine-silica nanohybrid capsules bearing an ultrathin wall of ∼10-17 nm in thickness are formed, which exhibit a super-high mechanical strength of ∼2337 MPa in elasticity modulus. The capsules are then utilized for bioreactor construction by encapsulating glucose oxidase. The ultrathin capsule wall facilitates the diffusion of substrates/products and elevates the conversion efficiency, whereas the high mechanical strength ensures the structural integrity of the capsules during multiple-cycle reactions. This method can also be applied for the preparation of ultrathin films on planar substrates, which would open a feasible way to prepare nanohybrid materials with different compositions and shapes.
Collapse
Affiliation(s)
- Shaohua Zhang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Zhongyi Jiang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Weilun Qian
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | | | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science , Tianjin 300192, China
| | - Lei Tang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Hongjian Zou
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| | - Hua Liu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072, China
| |
Collapse
|
19
|
Yoon JY, Kim JJ, El-Fiqi A, Jang JH, Kim HW. Ultrahigh protein adsorption capacity and sustained release of nanocomposite scaffolds: implication for growth factor delivery systems. RSC Adv 2017. [DOI: 10.1039/c6ra28841c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanocomposite scaffolds that can load growth factors effectively and release them sustainably are developed for the regeneration of tissues.
Collapse
Affiliation(s)
- Ji-Young Yoon
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Cheonan 330-714
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
| | - Jung-Ju Kim
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Cheonan 330-714
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Cheonan 330-714
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
| | - Jun-Hyeog Jang
- Department of Biochemistry
- Inha University School of Medicine
- Incheon 400-712
- Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN)
- Dankook University
- Cheonan 330-714
- Republic of Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine
| |
Collapse
|