1
|
Sofian M, Nasim F, Ali H, Nadeem MA. Pronounced effect of yttrium oxide on the activity of Pd/rGO electrocatalyst for formic acid oxidation reaction. RSC Adv 2023; 13:14306-14316. [PMID: 37197672 PMCID: PMC10184137 DOI: 10.1039/d3ra01929b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/29/2023] [Indexed: 05/19/2023] Open
Abstract
A highly efficient and stable electrocatalyst comprised of yttrium oxide (Y2O3) and palladium nanoparticles has been synthesized via a sodium borohydride reduction approach. The molar ratio of Pd and Y was varied to fabricate various electrocatalysts and the oxidation reaction of formic acid was checked. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and X-ray powder diffraction (XRD) are used to characterize the synthesized catalysts. Among the synthesized catalysts (PdyYx/rGO), the optimized catalyst i.e., Pd6Y4/rGO exhibits the highest current density (106 mA cm-2) and lowest onset potential compared to Pd/rGO (28.1 mA cm-2) and benchmark Pd/C (21.7 mA cm-2). The addition of Y2O3 to the rGO surface results in electrochemically active sites due to the improved geometric structure and bifunctional components. The electrochemically active surface area 119.4 m2 g-1 is calculated for Pd6Y4/rGO, which is ∼1.108, ∼1.24, ∼1.47 and 1.55 times larger than Pd4Y6/rGO, Pd2Y8/rGO, Pd/C and Pd/rGO, respectively. The redesigned Pd structures on Y2O3-promoted rGO give exceptional stability and enhanced resistance to CO poisoning. The outstanding electrocatalytic performance of the Pd6Y4/rGO electrocatalyst is ascribed to uniform dispersion of small size palladium nanoparticles which is possibly due to the presence of yttrium oxide.
Collapse
Affiliation(s)
- Muhammad Sofian
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Fatima Nasim
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Hassan Ali
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry, Quaid-i-Azam University Islamabad 45320 Pakistan
- Pakistan Academy of Sciences 3-Constitution Avenue Sector G-5/2 Islamabad Pakistan
| |
Collapse
|
2
|
Majeed I, Arif A, Idrees A, Ullah H, Ali H, Mehmood A, Rashid A, Nadeem MA, Nadeem MA. Synergistic Effect of Pd Co-Catalyst and rGO–TiO2 Hybrid Support for Enhanced Photoreforming of Oxygenates. HYDROGEN 2023. [DOI: 10.3390/hydrogen4010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Photoreforming biomass-derived waste such as glycerol into hydrogen fuel is a renewable hydrogen generation technology that has the potential to become important due to unavoidable CO2 production during methane steam reforming. Despite tremendous efforts, the challenge of developing highly active photocatalysts at a low cost still remains elusive. Here, we developed a novel photocatalyst with a hybrid support comprising reduced graphene oxide (rGO) and TiO2 nanorods (TNR). rGO in the hybrid support not only performed as an excellent scavenger of electrons from the semiconductor conduction band due to its suitable electrochemical potential, but also acted as an electron transport highway to the metal co-catalyst, which otherwise is not possible by simply increasing metal loading due to the shadowing effect. A series of hybrid supports with different TNR and rGO ratios were prepared by the deposition method. Pd nanoparticles were deposited over hybrid support through the chemical reduction method. Pd/rGO-TNRs photocatalyst containing 4 wt.% rGO contents in the support and 1 wt.% nominal Pd loading demonstrated hydrogen production activity ~41 mmols h−1g−1, which is 4 and 40 times greater than benchmark Au/TiO2 and pristine P25. The findings of this works provide a new strategy in optimizing charge extraction from TiO2, which otherwise has remained impossible due to a fixed tradeoff between metal loading and the detrimental shadowing effect.
Collapse
|
3
|
Chemically prepared Pd-Cd alloy nanocatalysts as the highly active material for formic acid electrochemical oxidation. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Safdar Hossain SK, Saleem J, Mudassir Ahmad Alwi M, Al-Odail FA, Mozahar Hossain M. Recent Advances in Anode Electrocatalysts for Direct Formic Acid Fuel Cells - Part I - Fundamentals and Pd Based Catalysts. CHEM REC 2022; 22:e202200045. [PMID: 35733082 DOI: 10.1002/tcr.202200045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Indexed: 11/11/2022]
Abstract
Direct formic acid fuel cells (DFAFCs) have gained immense importance as a source of clean energy for portable electronic devices. It outperforms other fuel cells in several key operational and safety parameters. However, slow kinetics of the formic acid oxidation at the anode remains the main obstacle in achieving a high power output in DFAFCs. Noble metal-based electrocatalysts are effective, but are expensive and prone to CO poisoning. Recently, a substantial volume of research work have been dedicated to develop inexpensive, high activity and long lasting electrocatalysts. Herein, recent advances in the development of anode electrocatalysts for DFAFCs are presented focusing on understanding the relationship between activity and structure. This review covers the literature related to the electrocatalysts based on noble metals, non-noble metals, metal-oxides, synthesis route, support material, and fuel cell performance. The future prospects and bottlenecks in the field are also discussed at the end.
Collapse
Affiliation(s)
- S K Safdar Hossain
- Department of Chemical Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Junaid Saleem
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - M Mudassir Ahmad Alwi
- Department of Materials Engineering, College of Engineering, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Faisal A Al-Odail
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, 31982, Kingdom of Saudi Arabia
| | - Mohammad Mozahar Hossain
- Department of Chemical Engineering, College of Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31612, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Gao S, Hu S, Luo G, Sun S, Zhang X. 2,2′-bipyridine palladium (II) complexes derived N-doped carbon encapsulated palladium nanoparticles for formic acid oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Nguyen THT, Lee MW, Hong S, Ahn HS, Kim BK. Electrosynthesis of palladium nanocatalysts using single droplet reactors and catalytic activity for formic acid oxidation. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139446] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
PdAgPt Corner-Satellite Nanocrystals in Well-Controlled Morphologies and the Structure-Related Electrocatalytic Properties. NANOMATERIALS 2021; 11:nano11020340. [PMID: 33572848 PMCID: PMC7911664 DOI: 10.3390/nano11020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
The functions of heterogeneous metallic nanocrystals (HMNCs) can be undoubtedly tuned by controlling their morphologies and compositions. As a less-studied kind of HMNCs, corner-satellite multi-metallic nanocrystals (CSMNCs) have great research value in structure-related electrocatalytic performance. In this work, PdAgPt corner-satellite nanocrystals with well-controlled morphologies and compositions have been developed by temperature regulation of a seed-mediated growth process. Through the seed-mediated growth, the morphology of PdAgPt products evolves from Pd@Ag cubes to PdAgPt corner-satellite cubes, and eventually to truncated hollow octahedra, as a result of the expansion of {111} facets in AgPt satellites. The growth of AgPt satellites exclusively on the corners of central cubes is realized with the joint help of Ag shell and moderate bromide, and hollow structures form only at higher reaction temperatures on account of galvanic displacement promoted by the Pd core. In view of the different performances of Pd and Pt toward formic acid oxidation (FAO), this structure-sensitive reaction is chosen to measure electrocatalytic properties of PdAgPt HMNCs. It is proven that PdAgPt CSMNCs display greatly improved activity toward FAO in direct oxidation pathway. In addition, with the help of AgPt heterogeneous shells, all PdAgPt HMNCs exhibit better durability than Pd cubes and commercial Pt.
Collapse
|
8
|
Shamraiz U, Ahmad Z, Raza B, Badshah A, Ullah S, Nadeem MA. CaO-Promoted Graphene-Supported Palladium Nanocrystals as a Universal Electrocatalyst for Direct Liquid Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4396-4404. [PMID: 31904922 DOI: 10.1021/acsami.9b16151] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, we present the fabrication of a reduced graphene oxide-supported PdCa (PdCa/rGO) alloyed catalyst via a NaBH4 reduction method for direct alcohol fuel cells in basic medium and direct formic acid fuel cells in acidic medium. Powder X-ray diffraction, energy-dispersive X-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller, inductively coupled plasma mass spectrometry, and Raman spectroscopy are used to characterize the PdCa/rGO catalyst. We proved that the calcium oxide significantly enhances the electrocatalytic methanol, ethanol, and formic acid oxidation over the Pd/rGO surface. The obtained mass activities for PdCa/rGO are 4838.06, 4674.70, and 3906.49 mA mg-1 for formic acid, methanol, and ethanol, respectively. Long-term stability, high activity, and high level of tolerance to CO poisoning of the PdCa/rGO electrocatalyst are attributed to the presence of calcium oxide. These results prove that the PdCa/rGO catalyst has improved electrocatalytic performance for the oxidation of formic acid, methanol, and ethanol with reference to the Pd/rGO.
Collapse
Affiliation(s)
- Umair Shamraiz
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320 , Pakistan
| | - Zeeshan Ahmad
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320 , Pakistan
| | - Bareera Raza
- School of Chemistry and Chemical Engineering , Shanghai Jiatong University , Shanghai 200240 , China
| | - Amin Badshah
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320 , Pakistan
| | - Sajid Ullah
- Department of Chemistry , Quaid-i-Azam University , Islamabad 45320 , Pakistan
| | | |
Collapse
|
9
|
Wang H, Teng F, Zhang L, Zhang Q, Zhang H, Pei T, Li S, Xia L. Meso-Cellular Silicate Foam-Modified Reduced Graphene Oxide with a Sandwich Structure for Enzymatic Immobilization and Bioelectrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29522-29535. [PMID: 31347823 DOI: 10.1021/acsami.9b08569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An integrated composite of meso-cellular silicate foam (MCF)-modified reduced graphene oxide (MCF@rGO) was designed and synthesized based on polyethylene oxide-polypropylene oxide-polyethylene oxide (P123)-modified rGO (P123-rGO). As the polymeric template for the fabrication of mesoporous silicates, modified P123 greatly improved the affinity between the nanosheet and the in situ formed MCFs, resulting in the formation of thin layers of MCFs on both sides of rGO. Therefore, the MCFs@rGO formed exhibited a unique sandwich structure with an inner skeleton of rGO and two outer layers of MCFs. The outer modification by MCFs, with the presence of large mesopores, not only shifted the surface property of rGO from hydrophobic to hydrophilic but also offered immobilized enzymes a favorable microenvironment to maintain their bioactivity. Meanwhile, the inner skeleton of rGO compensated for the weak conductivity of MCFs, providing a pathway for the direct electron transfer (DET) of various redox enzymes or proteins, such as hemoglobin (Hb), horseradish peroxidase, glucose oxidase (GOD), and cholesterol oxidase. It was found that the DET signal obtained from Hb-MCFs@rGO/glassy carbon electrode (GCE) was much larger than the sum of the signals from two components-based modified electrodes of Hb-P123-rGO/GCE and Hb-MCFs/GCE. A similar improvement in DET signal was also observed using GOD-MCFs@rGO/GCE. The significant enhancement of DET signals for both protein electrodes can be ascribed to the synergistic effects generated from the integration of the two components, one of which enhances biocompatibility and the other enhances conductivity. The bioelectrocatalytic performance of Hb and GOD electrodes was further investigated. As for Hb-MCFs@rGO/GCE, the GOD electrode displayed excellent analytical performance for the detection of hydrogen peroxide (H2O2), including a good sensitivity of 0.25 μA μmol-1 L cm-2, a low detection limit of 63.6 nmol L-1 based on S/N = 3, and a low apparent Michaelis-Menten constant (KMapp) of 49.05 μmol L-1. GOD-MCFs@rGO/GCE also exhibited good analytical performance for the detection of glucose, with a wide linear range of 0.25-8.0 mmol L-1. In addition, blood glucose detection in samples of human serum was successfully achieved using GOD-MCFs@rGO/GCE with a low quantification limit.
Collapse
Affiliation(s)
- Huiting Wang
- College of Chemistry , Liaoning University , Shenyang 110036 , China
| | - Fei Teng
- College of Chemistry , Liaoning University , Shenyang 110036 , China
| | - Ling Zhang
- College of Chemistry and Chemical Engineering , Shenyang Normal University , Shenyang 110034 , China
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China , Heilongjiang University , Harbin 150080 , China
| | - Qian Zhang
- College of Chemistry , Liaoning University , Shenyang 110036 , China
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China , Heilongjiang University , Harbin 150080 , China
| | - Hairan Zhang
- College of Chemistry , Liaoning University , Shenyang 110036 , China
| | - Tingting Pei
- College of Chemistry , Liaoning University , Shenyang 110036 , China
| | - Shun Li
- College of Chemistry , Liaoning University , Shenyang 110036 , China
| | - Lixin Xia
- College of Chemistry , Liaoning University , Shenyang 110036 , China
| |
Collapse
|
10
|
Twisted palladium-copper nanochains toward efficient electrocatalytic oxidation of formic acid. J Colloid Interface Sci 2019; 537:366-374. [DOI: 10.1016/j.jcis.2018.11.038] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022]
|
11
|
Lou M, Wang R, Zhang J, Tang X, Wang L, Guo Y, Jia D, Shi H, Yang L, Wang X, Sun Z, Wang T, Huang Y. Optimized Synthesis of Nitrogen and Phosphorus Dual-Doped Coal-Based Carbon Fiber Supported Pd Catalyst with Enhanced Activities for Formic Acid Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6431-6441. [PMID: 30640425 DOI: 10.1021/acsami.8b20736] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Development of a Pd-based catalyst with highly active and durable properties for formic acid oxidation reaction at the anode remains an important matter of interest in the research community. Herein, we have designed novel coal-based carbon fibers (Coal-CFs) with dicyandiamide (DCD) as nitrogen (N) source, triphenylphosphine (TPP) as phosphorus (P) source dual-doped to support Pd catalysts (Pd/NP-Coal-CFs(DCD/TPP)), which exhibit superior catalytic performance toward formic acid oxidation reaction. Mass activity of formic acid oxidation of Pd/NP-Coal-CFs(DCD/TPP) catalyst is 536.6 mA·mg-1Pd, which is 2.5 times higher than that of Pd/Coal-CFs catalyst. The higher specific surface areas, exclusive electron transport path, and the high synergistic interaction of N and P are the favorable phenomena for catalytic performance. The addition of coal not only increases the abundant defects sites but also makes the utilization of coal with high added value. This N and P dual-doped catalyst inspires an idea for promoting applications in practical fuel cells.
Collapse
Affiliation(s)
- Mengran Lou
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Ruiying Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
- Physics and Chemistry Detecting Center , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Jie Zhang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Xincun Tang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - Luxiang Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Yong Guo
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
- Physics and Chemistry Detecting Center , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Dianzeng Jia
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Hongli Shi
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Lili Yang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Xingchao Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
- Physics and Chemistry Detecting Center , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Zhipeng Sun
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Tao Wang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
- Physics and Chemistry Detecting Center , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| | - Yudai Huang
- Key Laboratory of Energy Materials Chemistry, Ministry of Education, Key Laboratory of Advanced Functional Materials, Autonomous Region, Institute of Applied Chemistry , Xinjiang University , Urumqi , Xinjiang 830046 , P. R. China
| |
Collapse
|
12
|
Han Y, Lee DK, Kim SH, Lee S, Jeon S, Cho WS. High inflammogenic potential of rare earth oxide nanoparticles: the New Hazardous Entity. Nanotoxicology 2018; 12:712-728. [DOI: 10.1080/17435390.2018.1472311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Youngju Han
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Dong-Keon Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Sung-Hyun Kim
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Seonghan Lee
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Soyeon Jeon
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, Republic of Korea
| |
Collapse
|
13
|
Ali H, Zaman S, Majeed I, Kanodarwala FK, Nadeem MA, Stride JA, Nadeem MA. Porous Carbon/rGO Composite: An Ideal Support Material of Highly Efficient Palladium Electrocatalysts for the Formic Acid Oxidation Reaction. ChemElectroChem 2017. [DOI: 10.1002/celc.201700879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hassan Ali
- Catalysis and Nanomaterials Lab 27, Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Shahid Zaman
- Catalysis and Nanomaterials Lab 27, Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | - Imran Majeed
- Catalysis and Nanomaterials Lab 27, Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| | | | - Muhammad Amtiaz Nadeem
- Department of Environmental Sciences; Quaid-i-Azam University; Islamabad 45320 Pakistan
- SABIC-Corporate Research and Development (CRD) at; KAUST, Thuwal 23955, KSA
| | - John Arron Stride
- School of Chemistry; University of New South Wales; Sydney NSW 2052 Australia
| | - Muhammad Arif Nadeem
- Catalysis and Nanomaterials Lab 27, Department of Chemistry; Quaid-i-Azam University; Islamabad 45320 Pakistan
| |
Collapse
|
14
|
Enhanced photoelectrochemical activities for water oxidation and phenol degradation on WO 3 nanoplates by transferring electrons and trapping holes. Sci Rep 2017; 7:1303. [PMID: 28465558 PMCID: PMC5430972 DOI: 10.1038/s41598-017-01300-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/28/2017] [Indexed: 11/09/2022] Open
Abstract
It is highly desired to improve the photoelectrochemical (PEC) performance of nanosized WO3 by artificially modulating the photogenerated electrons and holes simultaneously. Herein, WO3 nanoplates have been successfully prepared by a simple one-pot two-phase separated hydrolysis-solvothermal method, and then co-modified with RGO and phosphate acid successively by wet chemical processes. Subsequently, the as-prepared WO3-based nanoplates were immobilized on the conductive glasses to explore the PEC activities for both water oxidation to evolve O2 and phenol degradation. It is clearly demonstrated that the co-modified WO3 nanoplates exhibit significantly improved PEC activities compared with pristine WO3, especially for that with the amount-optimized modifiers by ca. 6-time enhancement. Mainly based on the evaluated hydroxyl radical amounts produced and the electrochemical impedance spectra, it is suggested that the improved PEC activities are attributed to the greatly enhanced photogenerated charge separation after chemically modification with RGO and phosphate groups to WO3, respectively by transferring electrons as the collectors and trapping holes via the formed negative field after phosphate disassociation. This work provides a feasible synthetic strategy to improve the photoactivities of nanosized WO3 for energy production and environmental remediation.
Collapse
|