1
|
Aldakkan BS, Chalmpes N, Qi G, Hammami MA, Kanj MY, Giannelis EP. Synthesis of Raspberry-like Nanoparticles via Surface Grafting of Positively Charged Polyelectrolyte Brushes: Colloidal Stability and Surface Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5837-5849. [PMID: 38457691 DOI: 10.1021/acs.langmuir.3c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
A method to synthesize stable, raspberry-like nanoparticles (NPs), using surface grafting of poly(glycidyl methacrylate) (PGMA) brushes on a polystyrene (PS) core with varying grafting densities, is reported. A two-step functionalization reaction of PGMA epoxide groups comprising an amination step first using ethylene diamine and then followed by a quaternization using glycidyltrimethylammonium chloride generates permanently and positively charged polyelectrolyte brushes, which result in both steric and electrostatic stabilization. The dispersion stability of the brush-bearing NPs is dramatically improved compared to that of the pristine PS core in salt solutions at ambient (25 °C) and elevated temperatures (60 °C). Additionally, the grafted polyelectrolyte chains undergo a reversible swelling in the presence of different ionic strength (IS) salts, which modulate the surface properties, including roughness, stiffness, and adhesion. An atomic force microscope under both dry and wet conditions was used to image conformational changes of the polyelectrolyte chains during the swelling and deswelling transitions as well as to probe the nanomechanical properties by analyzing the corresponding force-sample separation curves. The quaternized polyelectrolyte brushes undergo a conformational transition from a collapsed state to a swelled state in the osmotic brush (OB) regime triggered by the osmotic gradient of mobile ions to the interior of the polymer chain. At IS ∼ 1 M, the brushes contract and the globules reform (salted brush state) as evidenced by an increase in the surface roughness and a reduction in the adhesion of the brushes. Beyond IS ∼ 1 M, quartz crystal microbalance with dissipation monitoring measurements show that salt uptake continues to take place predominantly on the exterior surface of the brush since salt adsorption is not accompanied by a size increase as measured by dynamic light scattering. The study adds new insights into our understanding of the behavior of NPs bearing salt-responsive polyelectrolyte brushes with adaptive swelling thresholds that can ultimately modulate surface properties.
Collapse
Affiliation(s)
- Bashayer Saad Aldakkan
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Nikolaos Chalmpes
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Genggeng Qi
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mohamed Amen Hammami
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Mazen Yousef Kanj
- College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Emmanuel P Giannelis
- Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Akgonullu DZ, Murray BS, Connell SD, Fang Y, Linter B, Sarkar A. Synthetic and biopolymeric microgels: Review of similarities and difference in behaviour in bulk phases and at interfaces. Adv Colloid Interface Sci 2023; 320:102983. [PMID: 37690329 DOI: 10.1016/j.cis.2023.102983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
This review discusses the current knowledge of interfacial and bulk interactions of biopolymeric microgels in relation to the well-established properties of synthetic microgels for applications as viscosity modifiers and Pickering stabilisers. We present a timeline showing the key milestones in designing microgels and their bulk/ interfacial performance. Poly(N-isopropylacrylamide) (pNIPAM) microgels have remained as the protagonist in the synthetic microgel domain whilst proteins or polysaccharides have been primarily used to fabricate biopolymeric microgels. Bulk properties of microgel dispersions are dominated by the volume fraction (ϕ) of the microgel particles, but ϕ is difficult to pinpoint, as addressed by many theoretical models. By evaluating recent experimental studies over the last five years, we find an increasing focus on the analysis of microgel elasticity as a key parameter in modulating their packing at the interfaces, within the provinces of both synthetic and biopolymeric systems. Production methods and physiochemical factors shown to influence microgel swelling in the aqueous phase can have a significant impact on their bulk as well as interfacial performance. Compared to synthetic microgels, biopolymer microgels show a greater tendency for polydispersity and aggregation and do not appear to have a core-corona structure. Comprehensive studies of biopolymeric microgels are still lacking, for example, to accurately determine their inter- and intra- particle interactions, whilst a wider variety of techniques need to be applied in order to allow comparisons to real systems of practical usage.
Collapse
Affiliation(s)
- Daisy Z Akgonullu
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK
| | - Brent S Murray
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, UK
| | - Yuan Fang
- PepsiCo, Valhalla, New York, NY, USA
| | | | - Anwesha Sarkar
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, UK.
| |
Collapse
|
3
|
Niu H, Chen X, Luo T, Chen H, Fu X. Relationships between the behavior of three different sources of pectin at the oil-water interface and the stability of the emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107566] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Li G, Varga I, Kardos A, Dobryden I, Claesson PM. Nanoscale Mechanical Properties of Core-Shell-like Poly-NIPAm Microgel Particles: Effect of Temperature and Cross-Linking Density. J Phys Chem B 2021; 125:9860-9869. [PMID: 34428041 DOI: 10.1021/acs.jpcb.1c04173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly-NIPAm microgel particles with two different cross-linking densities were prepared with the classical batch polymerization process. These particles were adsorbed onto modified silica surfaces, and their nanomechanical properties were measured by means of atomic force microscopy. It was found that these particles have a hard core-soft shell structure both below and above the volume transition temperature. The core-shell-like structure appears due to a higher reaction rate of the cross-linker compared to that of the monomer, leading to depletion of cross-linker in the shell region. The microgel beads with lower average cross-linking density were found to be less stiff below the volume transition temperature than the microgel with higher cross-linking density. Increasing the temperature further to just above the volume transition temperature led to lower stiffness of the more highly cross-linked microgel compared to its less cross-linked counterpart. This effect is explained with the more gradual deswelling with temperature for the more cross-linked microgel particles. This phenomenon was confirmed by dynamic light scattering measurements in the bulk phase, which showed that the larger cross-linking density microgel showed a more gradual collapse in aqueous solution as the temperature was increased.
Collapse
Affiliation(s)
- Gen Li
- Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary.,Department of Chemistry, University J. Selyeho, 945 01 Komarno, Slovakia
| | - Attila Kardos
- Institute of Chemistry, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary.,Department of Chemistry, University J. Selyeho, 945 01 Komarno, Slovakia
| | - Illia Dobryden
- Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden.,Department of Engineering Sciences and Mathematics, Division of Materials Science, Luleå University of Technology, 97187 Luleå, Sweden
| | - Per M Claesson
- Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, School of Engineering Sciences in Chemistry, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden.,Division of Bioscience and Materials, RISE Research Institutes of Sweden, Box 5607, SE 114 86 Stockholm, Sweden
| |
Collapse
|
5
|
Oevreeide IH, Szydlak R, Luty M, Ahmed H, Prot V, Skallerud BH, Zemła J, Lekka M, Stokke BT. On the Determination of Mechanical Properties of Aqueous Microgels-Towards High-Throughput Characterization. Gels 2021; 7:64. [PMID: 34072792 PMCID: PMC8261632 DOI: 10.3390/gels7020064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Aqueous microgels are distinct entities of soft matter with mechanical signatures that can be different from their macroscopic counterparts due to confinement effects in the preparation, inherently made to consist of more than one domain (Janus particles) or further processing by coating and change in the extent of crosslinking of the core. Motivated by the importance of the mechanical properties of such microgels from a fundamental point, but also related to numerous applications, we provide a perspective on the experimental strategies currently available and emerging tools being explored. Albeit all techniques in principle exploit enforcing stress and observing strain, the realization differs from directly, as, e.g., by atomic force microscope, to less evident in a fluid field combined with imaging by a high-speed camera in high-throughput strategies. Moreover, the accompanying analysis strategies also reflect such differences, and the level of detail that would be preferred for a comprehensive understanding of the microgel mechanical properties are not always implemented. Overall, the perspective is that current technologies have the capacity to provide detailed, nanoscopic mechanical characterization of microgels over an extended size range, to the high-throughput approaches providing distributions over the mechanical signatures, a feature not readily accessible by atomic force microscopy and micropipette aspiration.
Collapse
Affiliation(s)
- Ingrid Haga Oevreeide
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Renata Szydlak
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Marcin Luty
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Husnain Ahmed
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| | - Victorien Prot
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Bjørn Helge Skallerud
- Biomechanics, Department of Structural Engineering, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (V.P.); (B.H.S.)
| | - Joanna Zemła
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (R.S.); (M.L.); (J.Z.)
| | - Bjørn Torger Stokke
- Biophysics and Medical Technology, Department of Physics, NTNU The Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; (I.H.O.); (H.A.)
| |
Collapse
|
6
|
Li G, Varga I, Kardos A, Dobryden I, Claesson PM. Temperature-Dependent Nanomechanical Properties of Adsorbed Poly-NIPAm Microgel Particles Immersed in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1902-1912. [PMID: 33502872 PMCID: PMC7879429 DOI: 10.1021/acs.langmuir.0c03386] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Indexed: 05/24/2023]
Abstract
The temperature dependence of nanomechanical properties of adsorbed poly-NIPAm microgel particles prepared by a semibatch polymerization process was investigated in an aqueous environment via indentation-based atomic force microscopy (AFM) methods. Poly-NIPAm microgel particles prepared by the classical batch process were also characterized for comparison. The local mechanical properties were measured between 26 and 35 °C, i.e., in the temperature range of the volume transition. Two different AFM tips with different shapes and end radii were utilized. The nanomechanical properties measured by the two kinds of tips showed a similar temperature dependence of the nanomechanical properties, but the actual values were found to depend on the size of the tip. The results suggest that the semibatch synthesis process results in the formation of more homogeneous microgel particles than the classical batch method. The methodological approach reported in this work is generally applicable to soft surface characterization in situ.
Collapse
Affiliation(s)
- Gen Li
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
| | - Imre Varga
- Institute
of Chemistry, Eötvös Loránd
University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
- Department
of Chemistry, University J. Selyeho, 945 01 Komarno, Slovakia
| | - Attila Kardos
- Institute
of Chemistry, Eötvös Loránd
University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
- Department
of Chemistry, University J. Selyeho, 945 01 Komarno, Slovakia
| | - Illia Dobryden
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Department
of Engineering Sciences and Mathematics, Division of Materials Science, Luleå University of Technology, 97187 Luleå, Sweden
| | - Per M. Claesson
- School
of Engineering Sciences in Chemistry, Biotechnology and Health, Department
of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division
of Bioscience and Materials, RISE Research
Institutes of Sweden, Box 5607, SE 114 86 Stockholm, Sweden
| |
Collapse
|
7
|
Zhang L, Abbaspourrad A, Parsa S, Tang J, Cassiola F, Zhang M, Tian S, Dai C, Xiao L, Weitz DA. Core-Shell Nanohydrogels with Programmable Swelling for Conformance Control in Porous Media. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34217-34225. [PMID: 32633933 DOI: 10.1021/acsami.0c09958] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conformance control during waterflooding in an oil reservoir is utilized to redistribute water and increase the sweep efficiency and hence oil production. Using preformed gel particles can effectively redirect the flow by blocking the high-permeability zones and forcing water into low-permeability zones where the oil is trapped. However, the size of such gel particles can limit their applications deeper within the reservoir and can result in shear-induced degradation near the well bore. Here, we fabricate core-shell nanohydrogels with delayed swelling behavior; their volume increases by a factor of 200 after about 30 days in brine under reservoir conditions. We study their effect on the flow behavior in a three-dimensional porous medium micromodel consisting of randomly packed glass beads. Using confocal microscopy, we directly visualize the spatial variations of flow in the micromodel before and after nanohydrogel injection and swelling. The swollen nanohydrogels block some pores reducing the permeability of the micromodel and diverting the water into low-permeability regions. A core flood experiment further confirms that the nanohydrogels can significantly reduce the permeability of a reservoir sample and divert the fluid flow. Our results demonstrate that these core-shell nanohydrogels might be useful for flow control in porous media and can be used as a conformance control agent.
Collapse
Affiliation(s)
- Liyuan Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Alireza Abbaspourrad
- Shell International Exploration and Production Inc., Shell Technology Center Houston, Houston, Texas 77082, United States
| | - Shima Parsa
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jizhou Tang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Flavia Cassiola
- Shell International Exploration and Production Inc., Shell Technology Center Houston, Houston, Texas 77082, United States
| | - Meng Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Shouceng Tian
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - Caili Dai
- School of Petroleum Engineering, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Lizhi Xiao
- State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Li H, Choi YS, Rutland MW, Atkin R. Nanotribology of hydrogels with similar stiffness but different polymer and crosslinker concentrations. J Colloid Interface Sci 2020; 563:347-353. [PMID: 31887698 DOI: 10.1016/j.jcis.2019.12.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The stiffness has been found to regulate hydrogel performances and applications. However, the key interfacial properties of hydrogels, like friction and adhesion are not controlled by the stiffness, but are altered by the structure and composition of hydrogels, like polymer volume fraction and crosslinking degree. EXPERIMENTS Colloidal probe atomic force microscopy has been use to investigate the relationship between tribological properties (friction and adhesion) and composition of hydrogels with similar stiffness, but different polymer volume fractions and crosslinking degrees. FINDINGS The interfacial normal and lateral (friction) forces of hydrogels are not directly correlated to the stiffness, but altered by the hydrogel structure and composition. For normal force measurements, the adhesion increases with polymer volume fraction but decreases with crosslinking degree. For lateral force measurements, friction increases with polymer volume fraction, but decreases with crosslinking degree. In the low normal force regime, friction is mainly adhesion-controlled and increases significantly with the adhesion and polymer volume fraction. In the high normal force regime, friction is predominantly load-controlled and shows slow increase with normal force.
Collapse
Affiliation(s)
- Hua Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Perth, WA 6009, Australia.
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Mark W Rutland
- School of Chemical Science and Engineering, KTH Royal Institute of Technology, SE100 44, Sweden; Surfaces, Processes and Formulation, RISE Research Institutes of Sweden, SE114 86 Stockholm, Sweden
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Bahri A, Chevalier-Lucia D, Marchesseau S, Schmitt C, Gergely C, Martin M. Effect of pH change on size and nanomechanical behavior of whey protein microgels. J Colloid Interface Sci 2019; 555:558-568. [PMID: 31404840 DOI: 10.1016/j.jcis.2019.07.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
Microgels specific structural and functional features are attracting high research interest in several applications such as bioactives and drug delivery or functional food ingredients. Whey protein microgels (WPM) are obtained by heat treatment of whey protein isolate (WPI) in order to promote intramolecular cross-linking. In the present work, atomic force microscopy (AFM) was used in contact mode and in liquid to investigate WPM particles topography and mechanical properties at the nanoscale at native pH (6.5) and acid pH (5.5 and 3.0). Prior to AFM, WPM particles were captured on a gold substrate via low energy interactions by means of specific monoclonal antibodies. AFM images clearly showed an increase in the size of WPM particles induced by pH decrease. AFM in force spectroscopy mode was employed to monitor the elasticity of WPMs. The obtained effective Young's modulus data showed a significant increase in stiffness at pH 5.5 and pH 3.0, over 15-fold compared to native pH. These findings indicate that the mechanical profile of the WPM network varied with the pH decrease. The WPM topographic and nanomechanical changes induced by acidification were most likely due to substantial changes in the shape and inner structure of WPM particles. Our results suggest that internally cross-linked structures, modified by acidification could display interesting functional properties when used as a food ingredient.
Collapse
Affiliation(s)
- Asma Bahri
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France; L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Sylvie Marchesseau
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Christophe Schmitt
- Nestlé Institute of Material Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Marta Martin
- L2C, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
10
|
Microgels as carriers of antimicrobial peptides – Effects of peptide PEGylation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.12.049] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Nyström L, Al-Rammahi N, Malekkhaiat Häffner S, Strömstedt AA, Browning KL, Malmsten M. Avidin-Biotin Cross-Linked Microgel Multilayers as Carriers for Antimicrobial Peptides. Biomacromolecules 2018; 19:4691-4702. [PMID: 30427659 DOI: 10.1021/acs.biomac.8b01484] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we report on the formation of cross-linked antimicrobial peptide-loaded microgel multilayers. Poly(ethyl acrylate- co-methacrylic acid) microgels were synthesized and functionalized with biotin to enable the formation of microgel multilayers cross-linked with avidin. Microgel functionalization and avidin cross-linking were verified with infrared spectroscopy, dynamic light scattering, and z-potential measurements, while multilayer formation (up to four layers) was studied with null ellipsometry and quartz crystal microbalance with dissipation (QCM-D). Incorporation of the antimicrobial peptide KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYTLR) into the microgel multilayers was achieved either in one shot after multilayer formation or through addition after each microgel layer deposition. The latter was found to strongly promote peptide incorporation. Further, antimicrobial properties of the peptide-loaded microgel multilayers against Escherichia coli were investigated and compared to those of a peptide-loaded microgel monolayer. Results showed a more pronounced suppression in bacterial viability in suspension for the microgel multilayers. Correspondingly, LIVE/DEAD staining showed promoted disruption of adhered bacteria for the KYE28-loaded multilayers. Taken together, cross-linked microgel multilayers thus show promise as high load surface coatings for antimicrobial peptides.
Collapse
Affiliation(s)
| | | | | | | | - Kathryn L Browning
- Department of Pharmacy , University of Copenhagen , DK-2100 Copenhagen , Denmark
| | - Martin Malmsten
- Department of Pharmacy , University of Copenhagen , DK-2100 Copenhagen , Denmark
| |
Collapse
|
12
|
Backes S, Von Klitzing R. Nanomechanics and Nanorheology of Microgels at Interfaces. Polymers (Basel) 2018; 10:E978. [PMID: 30960903 PMCID: PMC6404016 DOI: 10.3390/polym10090978] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 11/16/2022] Open
Abstract
The review addresses nanomechanics and nanorheology of stimuli responsive microgels adsorbed at an interface. In order to measure the mechanical properties on a local scale, an atomic force microscope is used. The tip presents an indenter with a radius of curvature of a few 10 s of nm. Static indentation experiments and dynamic studies with an excited cantilever are presented. The effect of several internal and external parameters on the mechanical properties is reviewed. The focus is on the correlation between the swelling abilities of the gels and their mechanical properties. Several results are surprising and show that the relationship is not as simple as one might expect.
Collapse
Affiliation(s)
- Sebastian Backes
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Technische Universität Berlin, Strasse des 17. Juni 124, D⁻10623 Berlin, Germany.
| | - Regine Von Klitzing
- Soft Matter at Interfaces, Department of Physics, TU Darmstadt, Alarich-Weiss-Strasse 10, D⁻62487 Darmstadt, Germany.
| |
Collapse
|
13
|
Nyström L, Strömstedt AA, Schmidtchen A, Malmsten M. Peptide-Loaded Microgels as Antimicrobial and Anti-Inflammatory Surface Coatings. Biomacromolecules 2018; 19:3456-3466. [DOI: 10.1021/acs.biomac.8b00776] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | | | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University, SE-22184 Lund, Sweden
| | | |
Collapse
|
14
|
Mackiewicz M, Marcisz K, Strawski M, Romanski J, Stojek Z, Karbarz M. Modification of gold electrode with a monolayer of self-assembled microgels. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Membrane interactions of microgels as carriers of antimicrobial peptides. J Colloid Interface Sci 2018; 513:141-150. [DOI: 10.1016/j.jcis.2017.11.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/01/2017] [Accepted: 11/04/2017] [Indexed: 12/11/2022]
|
16
|
Singh S, Datta A, Borro BC, Davoudi M, Schmidtchen A, Bhunia A, Malmsten M. Conformational Aspects of High Content Packing of Antimicrobial Peptides in Polymer Microgels. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40094-40106. [PMID: 29087182 DOI: 10.1021/acsami.7b13714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Successful use of microgels as delivery systems of antimicrobial peptides (AMPs) requires control of factors determining peptide loading and release to/from the microgels as well as of membrane interactions of both microgel particles and released peptides. Addressing these, we here investigate effects of microgel charge density and conformationally induced peptide amphiphilicity on AMP loading and release using detailed nuclear magnetic resonance (NMR) structural studies combined with ellipsometry, isothermal titration calorimetry, circular dichroism, and light scattering. In parallel, consequences of peptide loading and release for membrane interactions and antimicrobial effects were investigated. In doing so, poly(ethyl acrylate-co-methacrylic acid) microgels were found to incorporate the cationic AMPs EFK17a (EFKRIVQRIKDFLRNLV) and its partially d-amino acid-substituted variant EFK17da (E(dF)KR(dI)VQR(dI)KD(dF)LRNLV). Peptide incorporation was found to increase with increasing with microgel charge density and peptide amphiphilicity. After microgel incorporation, which appeared to occur preferentially in the microgel core, NMR showed EFK17a to form a helix with pronounced amphiphilicity, while EFK17da displayed a folded conformation, stabilized by a hydrophobic hub consisting of aromatic/aromatic and aliphatic/aromatic interactions, resulting in much lower amphiphilicity. Under wide ranges of peptide loading, the microgels displayed net negative z-potential. Such negatively charged microgels do not bind to, nor lyse, bacteria-mimicking membranes. Instead, membrane disruption in these systems is mediated largely by peptide release, which in turn is promoted at higher ionic strength and lower peptide amphiphilicity. Analogously, antimicrobial effects against Escherichia coli were found to be dictated by peptide release. Taken together, the findings show that peptide loading, packing, and release strongly affect the performance of microgels as AMP delivery systems, effects that can be tuned by (conformationally induced) peptide amphiphilicity and by microgel charge density.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Pharmacy, Uppsala University , SE-75232 Uppsala, Sweden
| | - Aritreyee Datta
- Department of Biophysics, Bose Institute , P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Bruno C Borro
- Department of Pharmacy, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Mina Davoudi
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University , SE-221 84 Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University , SE-221 84 Lund, Sweden
- Lee Kong Chian School of Medicine, Nanyang Technological University , 11 Mandalay Road, Singapore 308232, Singapore
- Wound Healing Centre, Bispebjerg University Hospital , DK-2100 Copenhagen, Denmark
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute , P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University , SE-75232 Uppsala, Sweden
- Department of Pharmacy, University of Copenhagen , DK-2100 Copenhagen, Denmark
| |
Collapse
|
17
|
Deswelling and deformation of microgels in concentrated packings. Sci Rep 2017; 7:10223. [PMID: 28860537 PMCID: PMC5579048 DOI: 10.1038/s41598-017-10788-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/14/2017] [Indexed: 11/08/2022] Open
Abstract
Increasing the particle density of a suspension of microgel colloids above the point of random-close packing, must involve deformations of the particle to accommodate the increase in volume fraction. By contrast to the isotropic osmotic deswelling of soft particles, the particle-particle contacts give rise to a non-homogeneous pressure, raising the question if these deformations occur through homogeneous deswelling or by the formation of facets. Here we aim to answer this question through a combination of imaging of individual microgels in dense packings and a simple model to describe the balance between shape versus volume changes. We find a transition from shape changes at low pressures to volume changes at high pressures, which can be explained qualitatively with our model. Whereas contact mechanics govern at low pressures giving rise to facets, osmotic effects govern at higher pressures, which leads to a more homogeneous deswelling. Our results show that both types of deformation play a large role in highly concentrated microgel suspensions and thus must be taken into account to arrive at an accurate description of the structure, dynamics and mechanics of concentrated suspensions of soft spheres.
Collapse
|
18
|
Nyström L, Malmsten M. Surface-bound microgels - From physicochemical properties to biomedical applications. Adv Colloid Interface Sci 2016; 238:88-104. [PMID: 27865424 DOI: 10.1016/j.cis.2016.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022]
Abstract
Microgels offer robust and facile approaches for surface modification, as well as opportunities to introduce biological functionality by loading such structures with bioactive agents, e.g., in the context of drug delivery, functional biomaterials, and biosensors. As such, they provide a versatile approach for the design of surfaces with pre-determined characteristics compared to more elaborate bottom-up approaches, such as layer-by-layer deposition and surface-initiated polymerization. In the present overview, properties of surface-bound microgels are discussed, ranging from physical adsorption and covalent grafting in dilute systems, to directed self-assembly, multilayer structures, and composites, as well as loading an release of drugs and other cargo molecules into/from such systems, and biomedical applications of these.
Collapse
|