1
|
Barakat NAM, Tayeb AM, Hamad R, Hashem M, Fouad H, Kim HY, Hefny RA. Enhanced photocatalytic hydrogen production via water splitting using cobalt-based organic nanofibers under visible light irradiation. RSC Adv 2024; 14:34904-34917. [PMID: 39483383 PMCID: PMC11526821 DOI: 10.1039/d4ra06778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 11/03/2024] Open
Abstract
This study focuses on the development of cobalt-based organic nanofibers as efficient photocatalysts for hydrogen production via water splitting under visible light irradiation. The depletion of fossil fuels necessitates the exploration of alternative energy sources, with hydrogen emerging as a promising candidate due to its clean and renewable nature. While conventional photocatalysts have shown potential, their limited activity under visible light and fast electron-hole recombination hinder their efficiency. In this work, cobalt acetate/poly(vinyl alcohol) (CoAc/PVA) nanofibers were electrospun and treated in a novel reactor design under water gas atmosphere at 160 °C to produce continuous, smooth, and stable nanobelts. The nanofibers displayed a band gap energy of 2.29 eV, indicating strong absorption in the visible light range. Detailed characterization using FTIR, XPS, SEM, and TGA confirmed the formation of organic-inorganic hybrid nanofibers with uniform cobalt distribution. Hydrogen production experiments showed that the proposed nanofibers significantly outperformed Co3O4 nanofibers, with an optimal hydrogen generation rate of 3.266 mmol gcat -1 s-1 at 70 vol% methanol. Furthermore, the treated nanofibers demonstrated good stability over multiple cycles, maintaining a constant hydrogen production rate after the third run. The study highlights the advantages of cobalt-based organic nanofibers in overcoming the limitations of traditional photocatalysts, providing a novel route for sustainable hydrogen production.
Collapse
Affiliation(s)
- Nasser A M Barakat
- Chemical Engineering Department, Faculty of Engineering, Minia University Minia 61516 Egypt +20862364420 +20862348005
| | - Aghareed M Tayeb
- Chemical Engineering Department, Faculty of Engineering, Minia University Minia 61516 Egypt +20862364420 +20862348005
| | - Rahma Hamad
- Chemical Engineering Department, Faculty of Engineering, Minia University Minia 61516 Egypt +20862364420 +20862348005
| | - Mohamed Hashem
- Department of Dental Health, College of Applied Medical Sciences, King Saud University P. O. Box. 12372 Riyadh Saudi Arabia
| | - Hassan Fouad
- Biomedical Engineering Department, Faculty of Engineering, Helwan University Helwan Egypt
| | - Hak Yong Kim
- Department of Nano Convergence Engineering, Jeonbuk National University Jeonju 54896 South Korea
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University Jeonju 54896 South Korea
| | - Rasha A Hefny
- Chemical Engineering Department, Faculty of Engineering, Minia University Minia 61516 Egypt +20862364420 +20862348005
| |
Collapse
|
2
|
Liu W, Xu W, Dong G, Fang M. Controlled Fabrication of Hierarchically Structured MnO 2@NiCo-LDH Nanoarrays for Efficient Electrocatalytic Urea Oxidization. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2268. [PMID: 37570585 PMCID: PMC10421065 DOI: 10.3390/nano13152268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023]
Abstract
Urea, a prevalent component found in wastewater, shows great promise as a substrate for energy-efficient hydrogen production by electrolysis. However, the slow kinetics of the anodic urea oxidation reaction (UOR) significantly hamper the overall reaction rate. This study presents the design and controlled fabrication of hierarchically structured nanomaterials as potential catalysts for UOR. The prepared MnO2@NiCo-LDH hybrid catalyst demonstrates remarkable improvements in reaction kinetics, benefiting from synergistic enhancements in charge transfer and efficient mass transport facilitated by its unique hierarchical architecture. Notably, the catalyst exhibits an exceptionally low onset potential of 1.228 V and requires only 1.326 V to achieve an impressive current density of 100 mA cm-2, representing a state-of-the-art performance in UORs. These findings highlight the tremendous potential of this innovative material designing strategy to drive advancements in electrocatalytic processes.
Collapse
Affiliation(s)
- Wenjun Liu
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Centre for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (W.L.); (W.X.)
| | - Wenbo Xu
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Centre for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (W.L.); (W.X.)
| | - Guofa Dong
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Ming Fang
- Shenzhen Key Laboratory of Special Functional Materials, Guangdong Research Centre for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China; (W.L.); (W.X.)
| |
Collapse
|
3
|
Liu S, Wang M, He Y, Cheng Q, Qian T, Yan C. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Meng F, Tian W, Tian Z, Tan X, Zhang H, Wang S. Enhanced photocatalytic organic pollutant degradation and H 2 evolution reaction over carbon nitride nanosheets: N defects abundant materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158360. [PMID: 36041623 DOI: 10.1016/j.scitotenv.2022.158360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Post thermal treatment of bulk graphitic carbon nitride (g-C3N4) by ammonia gas acts as a significant structure regulation approach, while pure ammonia-assisted g-C3N4 synthesis from precursors like melamine is rarely investigated. Here we prove the synthesis of N-defects abundant carbon nitride nanosheets (ACN) through a one-pot thermal polymerization of melamine in pure ammonia gas, for photocatalytic organic pollutant removal in water and H2 evolution applications. Compared to bulk g-C3N4 (BCN), ACN-550 (ACN prepared at 550 °C) exhibited thin-layered porous morphology with higher surface area and abundant N defects, resulting in wider distribution of active sites. Moreover, the abundant N defects in the heptazine heterocycle structure could change the electronic structure of g-C3N4, leading to more efficient transport of photogenerated charge carriers and enhanced photoreduction potential, which gives rise to notable improvement activities in photocatalytic reaction. With superoxide ion radical and photoinduced holes as the predominant reactive species, ACN-550 realized efficient photocatalytic bisphenol A (BPA) degradation, which is 1.6- and 4.7-fold high over commercial TiO2 (P25) and BCN, respectively. ACN-550 exhibited excellent reusability and stability in five consecutive photocatalytic BPA degradation tests. In photo-reductive H2 production system by ACN-550, 761.8 ± 4.3 μmol/h/g H2 was produced, which was 11.6-fold as high as that by BCN.
Collapse
Affiliation(s)
- Fanpeng Meng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Zhihao Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China.
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
5
|
Gao J, Tian W, Zhang H, Wang S. Engineered inverse opal structured semiconductors for solar light-driven environmental catalysis. NANOSCALE 2022; 14:14341-14367. [PMID: 36148646 DOI: 10.1039/d2nr03924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inverse opal (IO) macroporous semiconductor materials with unique physicochemical advantages have been widely used in solar-related environmental areas. In this minireview, we first summarize the synthetic methods of IO materials, emphasizing the two-step and three-step approaches, with the typical physicochemical properties being compared where applicable. We subsequently discuss the application of IO semiconductors (e.g., TiO2, ZnO, g-C3N4) in various photo-related environmental techniques, including photo- and photoelectro-catalytic organic pollutant degradation in water, optical sensors for environmental monitoring, and water disinfection. The engineering strategies of these hierarchical structures for optimizing the activities for different catalytic reactions are discussed, ranging from heterojunction construction, cocatalyst loading, and heteroatom doping, to surface defect construction. Structure-activity relationships are established correspondingly. With a systematic understanding of the unique properties and catalytic activities, this review is expected to orient the design and structure optimization of IO semiconductor materials for photo-related performance improvement in various environmental techniques. Finally, the challenges of emerging IO structured semiconductors and future development directions are proposed.
Collapse
Affiliation(s)
- Junxian Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
6
|
Doosti M, Jahanshahi R, Laleh S, Sobhani S, Sansano JM. Solar light induced photocatalytic degradation of tetracycline in the presence of ZnO/NiFe2O4/Co3O4 as a new and highly efficient magnetically separable photocatalyst. Front Chem 2022; 10:1013349. [PMID: 36311420 PMCID: PMC9606596 DOI: 10.3389/fchem.2022.1013349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, a new solar light-driven magnetic heterogeneous photocatalyst, denoted as ZnO/NiFe2O4/Co3O4, is successfully prepared. FT-IR, XPS, XRD, VSM, DRS, FESEM, TEM, EDS, elemental mapping, and ICP analysis are accomplished for full characterization of this catalyst. FESEM and TEM analyses of the photocatalyt clearly affirm the formation of a hexagonal structure of ZnO (25–40 nm) and the cubic structure of NiFe2O4 and Co3O4 (10–25 nm). Furthermore, the HRTEM images of the photocatalyst verify some key lattice fringes related to the photocatalyt structure. These data are in very good agreement with XRD analysis results. According to the ICP analysis, the molar ratio of ZnO/NiFe2O4/Co3O4 composite is obtained to be 1:0.75:0.5. Moreover, magnetization measurements reveals that the ZnO/NiFe2O4/Co3O4 has a superparamagnetic behavior with saturation magnetization of 32.38 emu/g. UV-vis DRS analysis indicates that the photocatalyst has a boosted and strong light response. ZnO/NiFe2O4/Co3O4, with band gap energy of about 2.65 eV [estimated according to the Tauc plot of (αhν)2vs. hν], exhibits strong potential towards the efficacious degradation of tetracycline (TC) by natural solar light. It is supposed that the synergistic optical effects between ZnO, NiFe2O4, and Co3O4 species is responsible for the increased photocatalytic performance of this photocatalyst under the optimal conditions (photocatalyst dosage = 0.02 g L−1, TC concentration = 30 mg L−1, pH = 9, irradiation time = 20 min, and TC degradation efficiency = 98%). The kinetic study of this degradation process is evaluated and it is well-matched with the pseudo-first-order kinetics. Based on the radical quenching tests, it can be perceived that •O2− species and holes are the major contributors in such a process, whereas the •OH radicals identify to have no major participation. The application of this methodology is implemented in a facile and low-cost photocatalytic approach to easily degrade TC by using a very low amount of the photocatalyst under natural sunlight source in an air atmosphere. The convenient magnetic isolation and reuse of the photocatalyst, and almost complete mineralization of TC (based on TOC analysis), are surveyed too, which further highlights the operational application of the current method. Notably, this method has the preferred performance among the very few methods reported for the photocatalytic degradation of TC under natural sunlight. It is assumed that the achievements of this photocatalytic method have opened an avenue for sustainable environmental remediation of a broad range of contaminants.
Collapse
Affiliation(s)
- Mohammadreza Doosti
- Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Roya Jahanshahi
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
| | - Shaghayegh Laleh
- Department of Civil Engineering, Faculty of Engineering, University of Birjand, Birjand, Iran
| | - Sara Sobhani
- Department of Chemistry, College of Sciences, University of Birjand, Birjand, Iran
- *Correspondence: Sara Sobhani,
| | - José Miguel Sansano
- Departamento de Química Orgánica, Facultad de Ciencias, Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica (ISO), Universidad de Alicante, Alicante, Spain
| |
Collapse
|
7
|
Oxyfunctionalization of Benzylic C-H Bonds of Toluene Mediated by Covalently Anchored Co-Schiff Bases. Molecules 2022; 27:molecules27165302. [PMID: 36014538 PMCID: PMC9416660 DOI: 10.3390/molecules27165302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/15/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Oxyfunctionalization of toluene to value-added benzaldehyde, benzyl alcohol and benzoic acid is of great significance. In this work, Co-Schiff bases were immobilized on commercial silica gel by covalent anchoring, and resulting catalysts were used to catalyze the oxidation of toluene in the presence of the cocatalyst N-hydroxyphthalimide (NHPI). The catalysts exhibited excellent textural and structural properties, reliable bonding and a predomination of the cobaltous ions. The catalyst synthesized by diethylamino salicylaldehyde (EASA) possessed a grafting density of 0.14 mmol/g and exhibited a toluene conversion of 37.5%, with predominant selectivities to benzaldehyde, benzyl alcohol and benzoic acid under solvent-free conditions. It is concluded that the effect of ligands on their catalytic performance might be related to their electron-donating or -withdrawing properties.
Collapse
|
8
|
Lin J, Tian W, Zhang H, Duan X, Sun H, Wang H, Fang Y, Huang Y, Wang S. Carbon nitride-based Z-scheme heterojunctions for solar-driven advanced oxidation processes. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128866. [PMID: 35413519 DOI: 10.1016/j.jhazmat.2022.128866] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/25/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Solar-driven advanced oxidation processes (AOPs) via direct photodegradation or indirect photocatalytic activation of typical oxidants, such as hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and peroxydisulfate (PDS), have been deemed to be an efficient technology for wastewater remediation. Artificial Z-scheme structured materials represent a promising class of photocatalysts due to their spatially separated charge carriers and strong redox abilities. Herein, we summarize the development of metal-free graphitic carbon nitride (g-C3N4, CN)-based direct and indirect Z-scheme photocatalysts for solar-driven AOPs in removing organic pollutants from water. In the work, the classification of AOPs, definition and validation of Z-schemes are summarized firstly. The innovative engineering strategies (e.g., morphology and dimensionality control, element doping, defect engineering, cocatalyst loading, and tandem Z-scheme construction) over CN-based direct Z-scheme structure are then examined. Rational design of indirect CN-based Z-scheme systems using different charge mediators, such as solid conductive materials and soluble ion pairs, is further discussed. Through examining the relationship between the Z-scheme structure and activity (charge transfer and separation, light absorption, and reaction kinetics), we aim to provide more insights into the construction strategies and structure modification on CN-based Z-schemes towards improving their catalytic performances in AOPs. Lastly, limitations, challenges, and perspectives on future development in this emerging field are proposed.
Collapse
Affiliation(s)
- Jingkai Lin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Hao Wang
- Center for Future Materials, University of Southern Queensland, Toowoomba 4350, Australia
| | - Yanfen Fang
- College of Biological and Pharmaceutical Sciences, Three Gorges University, Hubei 443002, China
| | - Yingping Huang
- College of Biological and Pharmaceutical Sciences, Three Gorges University, Hubei 443002, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| |
Collapse
|
9
|
Zhu Y, He L, Ni Y, Li G, Li D, Lin W, Wang Q, Li L, Yang H. Recent Progress on Photoelectrochemical Water Splitting of Graphitic Carbon Nitride (g-CN) Electrodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2374. [PMID: 35889598 PMCID: PMC9321715 DOI: 10.3390/nano12142374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023]
Abstract
Graphitic carbon nitride (g-CN), a promising visible-light-responsive semiconductor material, is regarded as a fascinating photocatalyst and heterogeneous catalyst for various reactions due to its non-toxicity, high thermal durability and chemical durability, and "earth-abundant" nature. However, practical applications of g-CN in photoelectrochemical (PEC) and photoelectronic devices are still in the early stages of development due to the difficulties in fabricating high-quality g-CN layers on substrates, wide band gaps, high charge-recombination rates, and low electronic conductivity. Various fabrication and modification strategies of g-CN-based films have been reported. This review summarizes the latest progress related to the growth and modification of high-quality g-CN-based films. Furthermore, (1) the classification of synthetic pathways for the preparation of g-CN films, (2) functionalization of g-CN films at an atomic level (elemental doping) and molecular level (copolymerization), (3) modification of g-CN films with a co-catalyst, and (4) composite films fabricating, will be discussed in detail. Last but not least, this review will conclude with a summary and some invigorating viewpoints on the key challenges and future developments.
Collapse
Affiliation(s)
- Ying Zhu
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Liang He
- No. 5 Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China; (L.H.); (Y.N.)
| | - Yiqiang Ni
- No. 5 Electronics Research Institute of the Ministry of Industry and Information Technology, Guangzhou 510610, China; (L.H.); (Y.N.)
| | - Genzhuang Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Dongshuai Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Wang Lin
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| | - Qiliang Wang
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
- Yibin Research Institute, Jilin University, Yibin 644000, China
| | - Liuan Li
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
- Yibin Research Institute, Jilin University, Yibin 644000, China
| | - Haibin Yang
- State Key Laboratory of Superhard Material, College of Physics, Jilin University, Changchun 130012, China; (Y.Z.); (G.L.); (D.L.); (W.L.); (H.Y.)
| |
Collapse
|
10
|
Li Q, Wang Q. Photo(electro)catalyst of Flower-Like Cobalt Oxide Co-Doped g-C 3N 4: Degradation of Methylene Blue under Visible Light Illumination. MATERIALS 2022; 15:ma15124104. [PMID: 35744163 PMCID: PMC9227451 DOI: 10.3390/ma15124104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 01/14/2023]
Abstract
This work reported on the solid state synthesis of the flower-like Co(OH)2/g-C3N4 nanocomposite, using a modified hydrothermal method, for the degradation of MB, an organic pollutant. These nanomaterials were characterized for structure, surface morphology and composition using XRD, SEM and XPS, respectively. The photocatalytic activities of the as-prepared materials loaded on FTO glass substrates were evaluated for their degradation of methylene blue (MB) under visible irradiation and constant voltage. The promoting effect of Fw-Co(OH)2 on g-C3N4 was investigated under the influence of introduced various Co(OH)2 amounts. The fabricated composite catalyst showed significantly improved catalytic performance compared to pristine g-C3N4. Degradation by 25% Fw-Co(OH)2/g-C3N4 can achieve about a 100% ratio within 180 min under visible light in a three-electrode system. Moreover, Fw-Co(OH)2/g-C3N4 was easily regenerated and reused, and still possessed good degradation ability. These results suggest that Fw-Co(OH)2/g-C3N4 could be promising for application as a low-cost and high-efficiency catalyst for wastewater treatment and organic pollutant degradation.
Collapse
Affiliation(s)
- Qiuhua Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China;
- Correspondence: ; Tel.: +18-60-024-8303
| |
Collapse
|
11
|
Guo Q, Song H, Sun M, Yuan X, Su Y, Lv Y. Co 3O 4 modified polymeric carbon nitride for external light-free chlorine activating degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128193. [PMID: 35086034 DOI: 10.1016/j.jhazmat.2021.128193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Advanced oxidation processes (AOPs) activated by chlorine have emerged as a green and efficient strategy for water treatment and have attracted widespread attention. However, most of them require continuous UV radiation during the degradation reaction, which increases the cost and is not conducive to practical application, in some ways. Hererin we proposed an external light-free chlorine activation methodology for the removal of organic pollutants with the assistance of the intrinsic chemiluminescence (CL) in the system. A very interesting phenomenon, 20-fold enhanced CL of Co3O4 nanoparticles modified polymeric carbon nitride (PCN/Co3O4) was observed in the presence of hypochlorous acid (HClO), compared with the pristine PCN nanosheets. Without ultraviolet (UV), even any other light-emitting devices, the strong intrinsic CL in the PCN/Co3O4-HClO system was found to be conducive to chlorine activation degradation of organic pollutants. The inner connection between the CL of the PCN/Co3O4-HClO system and the chlorine-based AOPs was further explored.
Collapse
Affiliation(s)
- Qi Guo
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Hongjie Song
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Mingxia Sun
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Xiaohan Yuan
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yingying Su
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
12
|
Randall JD, Eyckens DJ, Sarlin E, Palola S, Andersson GG, Yin Y, Stojcevski F, Henderson LC. Mixed Surface Chemistry on Carbon Fibers to Promote Adhesion in Epoxy and PMMA Polymers. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- James D. Randall
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Essi Sarlin
- Engineering Materials Science, Tampere University, P.O. Box 589, 33014 Tampere, Finland
| | - Sarianna Palola
- Engineering Materials Science, Tampere University, P.O. Box 589, 33014 Tampere, Finland
| | | | | | - Filip Stojcevski
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Luke C. Henderson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
13
|
Li X, Hu Q, Yang H, Ma T, Chai X, He C. Bimetallic two-dimensional materials for electrocatalytic oxygen evolution. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Meng F, Wang J, Tian W, Zhang H, Liu S, Tan X, Wang S. Graphitic carbon nitride nanosheets via acid pretreatments for promoted photocatalysis toward degradation of organic pollutants. J Colloid Interface Sci 2021; 608:1334-1347. [PMID: 34739993 DOI: 10.1016/j.jcis.2021.10.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Acid treatment serves as an effective engineering strategy to modify the structure of graphitic carbon nitride (g-C3N4) for enhanced metal-free photocatalysis, while their lacks a comprehensive understanding about the impacts of different acid species and acid treatment approaches on the intrinsic structure and properties of g-C3N4 and structure-activity relationships are ambiguous. Employing inorganic/organic acids including hydrochloric acid (HCl), nitric acid (HNO3), acetic acid (HAc), sulphuric acid (H2SO4), or oxalic acid (H2C2O4) as treatment acids, herein, we compare the impacts of different acid pretreatment approaches on the structure and properties of g-C3N4. Due to different acid-melamine interaction modes and the activation roles of various acids, the obtained g-C3N4 samples exhibit varied structures, physiochemical properties and photocatalytic activities. Compared with bulk graphitic carbon nitride (BCN), g-C3N4 prepared by acid pretreatment show enhanced photocatalytic performance on bisphenol A (BPA) degradation. The photocatalytic degradation rates of BPA by g-C3N4 prepared by HNO3, HAc, H2SO4, H2C2O4, or HCl pretreatment are about 2.2, 2.7, 2.8, 3.2 and 3.8 folds faster than that by BCN. HCl pretreatment proves to be the optimal approach, with the derived g-C3N4 (HTCN) showing more intact heptazine structural units, and increased specific surface area, which promote the exposure of more active sites, accelerate charge transfer, and give rise to a notable improvement in photocatalysis, eventually. Mechanistic investigations through quenching experiments and electron paramagnetic resonance (EPR) characterization unveil that superoxide ion radical (O2-) and photo-induced holes (h+) worked principally in the photodegradation reaction. This work provides new insights for the rational selection of acid types and treatment methods to synthesize metal-free carbon nitrides with improved activity for photocatalytic applications.
Collapse
Affiliation(s)
- Fanpeng Meng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaomin Liu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoyao Tan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, Department of Chemical Engineering, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
15
|
Pan Z, Zhao M, Zhuzhang H, Zhang G, Anpo M, Wang X. Gradient Zn-Doped Poly Heptazine Imides Integrated with a van der Waals Homojunction Boosting Visible Light-Driven Water Oxidation Activities. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03687] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhiming Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Meng Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Hangyu Zhuzhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Masakazu Anpo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
16
|
Liu Y, Li X, He H, Yang S, Jia G, Liu S. CoP imbedded g-C 3N 4 heterojunctions for highly efficient photo, electro and photoelectrochemical water splitting. J Colloid Interface Sci 2021; 599:23-33. [PMID: 33933794 DOI: 10.1016/j.jcis.2021.04.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 01/13/2023]
Abstract
Nanorod-like CoP nanoparticles were fabricated from different precursors of Co(OH)2 and Co3O4 by gas-solid reaction, then further embedded into g-C3N4 nanosheets to form intimate heterojunctions via the (011) crystal planes of CoP nanoparticles. The heterojunction hybrid obtained from Co(OH)2 exhibits superior activity in photo, electro and photoelectrochemical water splitting processes. In photocatalytic water half-splitting for hydrogen evolution reaction, the as-obtained 0.5% CoP-CN achieved a rate at 959.4 μmol·h-1·g-1 and 59.1 μmol·h-1·g-1 when irradiated by simulated sunlight and visible light respectively, almost 3.1 times and 15.8 times that of pristine g-C3N4, For photocatalytic water full-splitting, a stoichiometric evolution of H2 (14.7 μmol·h-1·g-1) and O2 (7.6 μmol·h-1·g-1) was observed on 3%Pt-0.5% CoP-CN composite. The onset potential for electrochemical HER process was drastically reduced after deposition with 0.5% CoP. Meanwhile, a higher photocurrent response and larger anodic photocurrent was detected over 0.5% CoP-CN photoanode during the photoelectrochemical water splitting process, relative to pristine g-C3N4 and its analogues. The comprehensive enhancements for catalytic activity of 0.5% CoP-CN could be attributed to its reduced over-potentials, more negative photo-reductive potentials, boosted interfacial charge transfer efficiency, as well as a much higher solar to hydrogen efficiency. The contrastive redox roles of CoP in both photocatalytic water half-splitting and full-splitting processes have been fully explored and revealed. This design on covalent organic framework of highly efficient CoP-based heterojunctions holds great promise for direct water splitting applications in utilizing solar energy.
Collapse
Affiliation(s)
- Yazi Liu
- School of the Environment, Nanjing Normal University, Nanjing 210046, PR China; Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia
| | - Xiaojie Li
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Huan He
- School of the Environment, Nanjing Normal University, Nanjing 210046, PR China.
| | - Shaogui Yang
- School of the Environment, Nanjing Normal University, Nanjing 210046, PR China
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA 6845, Australia.
| | - Shaomin Liu
- Department of Chemical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia; College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
17
|
Lai JY, Zhang WD, Yu YX. Building sp carbon-bridged g-C3N4-based electron donor-π-acceptor unit for efficient photocatalytic water splitting. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Li H, Hao X, Gong H, Jin Z, Zhao T. Efficient hydrogen production at a rationally designed MoSe 2@Co 3O 4 p-n heterojunction. J Colloid Interface Sci 2021; 586:84-94. [PMID: 33162036 DOI: 10.1016/j.jcis.2020.10.072] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 01/18/2023]
Abstract
During the past several years, transition metal compounds have shown high activity in the field of photocatalysis. Therefore, the MoSe2@Co3O4 with excellent photocatalytic properties through simple hydrothermal and physical mixing methods was prepared. This composite material was composed of n-type semiconductor MoSe2 and p-type semiconductor Co3O4. After optimizing the loading of Co3O4, the optimal hydrogen production can reached 7029.2 μmol g-1h-1, which was 2.34 times that of single MoSe2. In addition, some characterization methods were used to explore the hydrogen production performance of the composite catalyst under EY sensitized conditions. Among them, the UV-vis diffuse reflectance spectra suggests that MoSe2@Co3O4 exhibits stronger visible light absorption performance than the single material. Fluorescence performance and photoelectrochemical characterization experiments further prove that, the special structure formed by MoSe2 and Co3O4 and the existence of p-n heterojunction effectively accelerate the separation and transfer of carriers meanwhile inhibit the recombination probability of electron-hole pairs. Combined with other characterizations such as XRD, XPS, SEM and BET, the possible hydrogen production mechanism was proposed.
Collapse
Affiliation(s)
- Hongying Li
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Xuqiang Hao
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Haiming Gong
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China; Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Tiansheng Zhao
- Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
19
|
NiO Decorated Ti/TiO2 Nanotube Arrays (TiO2NT)/TiO2/g-C3N4 Step-Scheme Heterostructure Thin Film Photocatalyst with Enhanced Photocatalytic Activity for Water Splitting. Catal Letters 2021. [DOI: 10.1007/s10562-021-03545-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Zhang Y, Qu J, Ding F, Kong Y, Su X, Xu X. Facile synthesis of layered Co(OH) 2 deposited g-C 3N 4 for activating peroxymonosulfate to degrade organic pollutants. NEW J CHEM 2021. [DOI: 10.1039/d1nj02445k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Layered Co(OH)2 deposited g-C3N4 is found to be highly active in the activation of peroxymonosulfate (PMS) for pollutant removal.
Collapse
Affiliation(s)
- Yingxue Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Jianyu Qu
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Fangjun Ding
- Shandong Agricultural University Fertilizer Sci & Tec Co., Ltd, 271600 Taian, Shandong, People's Republic of China
| | - Yujiao Kong
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Xiurong Su
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
| | - Xingliang Xu
- College of Chemistry and Material Science, Shandong Agricultural University, 271018 Taian, Shandong, People's Republic of China
- Foshan (Southern China) Institute for New Materials, Foshan 528200, Guangdong, China
| |
Collapse
|
21
|
Oestreicher V, Dolle C, Hunt D, Fickert M, Abellán G. Room temperature synthesis of two-dimensional multilayer magnets based on α-CoII layered hydroxides. NANO MATERIALS SCIENCE 2020. [DOI: 10.1016/j.nanoms.2020.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Kanazawa T, Yamaguchi R, Uchiyama T, Lu D, Nozawa S, Uchimoto Y, Maeda K. Structure‐Activity Relationship in a Cobalt Aluminate Nanoparticle Cocatalyst with a Graphitic Carbon Nitride Photocatalyst for Visible‐Light Water Oxidation. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tomoki Kanazawa
- Department of Chemistry Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
- Japan Society for the Promotion of Science Kojimachi Business Center Building 5-3-1 Kojimachi, Chiyoda-ku Tokyo 102-0083 Japan
| | - Ryusei Yamaguchi
- Graduate School of Human and Environmental Studies Kyoto University Yoshida-nihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Tomoki Uchiyama
- Graduate School of Human and Environmental Studies Kyoto University Yoshida-nihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Daling Lu
- Suzukakedai Materials Analysis Division, Technical Department Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science High Energy Accelerator Research Organization 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | - Yoshiharu Uchimoto
- Graduate School of Human and Environmental Studies Kyoto University Yoshida-nihonmatsu-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Kazuhiko Maeda
- Department of Chemistry Tokyo Institute of Technology 2-12-1-NE-2 Ookayama, Meguro-ku Tokyo 152-8550 Japan
| |
Collapse
|
23
|
Tian W, Sun H, Duan X, Zhang H, Ren Y, Wang S. Biomass-derived functional porous carbons for adsorption and catalytic degradation of binary micropollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121881. [PMID: 31852591 DOI: 10.1016/j.jhazmat.2019.121881] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/04/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The biomass, bottlebrush flower, is exploited for the preparation of functionalized porous carbons by one-pot thermal activation using NaHCO3 and dicyandiamide. An intensified cross-linking effect among the precursors boosts pore (especially mesopore) formation in the pyrolysis process, producing N-doped porous carbons (NPCs) with a large specific surface area (SSA, up to 2025 m2 g-1). The biomass-derived carbon samples turn out to be highly effective in adsorption, and catalytic activation of peroxymonosulfate for degradation of aqueous phenol and p-hydroxybenzoic acid (HBA) in single and binary systems. The effects of N content, porous structure, and trace Ni species on the adsorptive and catalytic behavior of carbon are investigated. It is found that the porous structure plays a more critical role in adsorption than surface N functionality, while the contributions of various reactive species for phenol and HBA degradation are different.
Collapse
Affiliation(s)
- Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hongqi Sun
- School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
| | - Xiaoguang Duan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Yongxiang Ren
- Key Laboratory of Northwestern Water Resource and Environment Ecology of Ministry of Education, Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
24
|
Zhang H, Tian W, Duan X, Sun H, Shen Y, Shao G, Wang S. Functional carbon nitride materials for water oxidation: from heteroatom doping to interface engineering. NANOSCALE 2020; 12:6937-6952. [PMID: 32196063 DOI: 10.1039/d0nr00652a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymeric carbon nitrides (PCNs) are promising photocatalysts and electrocatalysts for water oxidation, as they are environmentally benign materials with an adjustable structure and facilely synthesized from inexpensive and abundant starting materials. In this minireview, we examine the state-of-the-art strategies for tailoring PCNs for efficient photocatalytic, electrocatalytic, and photoelectrochemical water oxidation, including heteroatom doping and interface engineering from band structure alignment (e.g., by coupling inorganic or organic semiconductors) to hybridization with nanoscale cocatalysts (e.g., nanosheets, nanoarrays, nanoparticles, and quantum dots) and sub-nanoscale cocatalysts (e.g., metallic molecular clusters and single-atom catalysts). Through establishing the structure-activity correlations, we aim to present a clear roadmap for providing insights into the design strategies, structure modification, and the improved catalytic performances of PCN-based materials in different catalytic water oxidation processes. For future guidance, we also propose some outlooks on the perspective and challenges of PCNs towards a better application in catalytic water oxidation.
Collapse
Affiliation(s)
- Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia.
| | | | | | | | | | | | | |
Collapse
|
25
|
Devi HR, Nandan R, Nanda KK. Mechanistic Investigation into Efficient Water Oxidation by Co-Ni-Based Hybrid Oxide-Hydroxide Flowers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13888-13895. [PMID: 32119513 DOI: 10.1021/acsami.9b22956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxides are envisioned as promising catalysts to facilitate water oxidation, and the benign presence of hydroxide moieties can further enhance the catalyst performance. However, the nature of synergy between oxides and hydroxides remains elusive. In this study, we have designed a one-pot solution growth technique for the synthesis of flower-shaped N-doped-C-enveloped NiCo2O4/NixCo(1-x)(OH)y catalysts with varying oxide and hydroxide contents and investigated their water oxidation behavior. The correlation between performance-determining parameters involved in water oxidation, such as the onset potential and overpotential with oxide and/or hydroxide content, oxidation states (oxides), and elemental composition (Co/Ni content), and the possible ways to achieve their optimal values are discussed in detail. Our observations conclude that the onset potential and overpotential are minimal for the hybrid oxide-hydroxide bimetallic system compared with pristine hydroxide or oxide. The optimal hybrid catalyst shows excellent current density, low Tafel slope (82 mV/dec), and low onset potential (281 mV at 2 mA/cm2) and overpotential (348 mV at 10 mA/cm2), besides enduring operational stability in alkaline medium. The low Tafel slope suggests the preferable kinetics for water oxidation, and the poisoning study reveals the direct involvement of metal as active sites. The overall study unveils the synergy in the Co-Ni-based binary transition-metal oxide-hydroxide hybrid, which makes it a potential candidate for water oxidation catalysts, and hence, it is expected that the hybrid will find applications in energy conversion devices, such as electrolyzers.
Collapse
Affiliation(s)
- Hemam Rachna Devi
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Ravi Nandan
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Karuna Kar Nanda
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Munir A, Ul Haq T, Hussain I, Qurashi A, Ullah U, Iqbal MJ, Hussain I. Ultrasmall Co@Co(OH) 2 Nanoclusters Embedded in N-Enriched Mesoporous Carbon Networks as Efficient Electrocatalysts for Water Oxidation. CHEMSUSCHEM 2019; 12:5117-5125. [PMID: 31647181 DOI: 10.1002/cssc.201902505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/16/2019] [Indexed: 05/12/2023]
Abstract
Metal nanoclusters (NCs, size ≤2 nm) are emerging materials in catalysis owing to their unique catalytic and electronic properties such as high surface/volume ratio, high redox potential, plethora of surface active sites, and dynamic behavior on a suitable support during catalysis. Herein, in situ growth of ultrasmall and robust Co@β-Co(OH)2 NCs (≈2 nm) hosted in a honeycomb-like 3D N-enriched carbon network was developed for water-oxidation catalysis with extremely small onset potential (1.44 V). Overpotentials of 220 and 270 mV were required to achieve a current density of 10 mA cm-2 and 100 mA cm-2 , respectively, in alkaline medium (1 m KOH). More promisingly, at η10 =240 mV, the prolonged oxygen evolution process (>130 h) with faradaic efficiency >95 % at a reaction rate of 22 s-1 at 1.46 V further substantiated the key role of the ultrasmall supported NCs, which outperformed the benchmark electrocatalysts (RuO2 /IrO2 ) and NCs reported so far. It is anticipated that the high redox potential of NCs with regeneratable active sites and their concerted synergistic effects with the N-enriched porous/flexible carbon network are inherently worth considering to enhance the mass/charge transport owing to the nanoscale interfacial collaboration across the electrode/electrolyte boundary, thereby efficiently energizing the sluggish/challenging oxygen evolution process.
Collapse
Affiliation(s)
- Akhtar Munir
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Tanveer Ul Haq
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Iqtidar Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Ahsanulhaq Qurashi
- Department of Chemistry, Khalifa University (KU),Main Campus, Abu Dhabi, 127788, United Arab Emirates
| | - Ubaid Ullah
- Department of Electrical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| | - Muhammad Javed Iqbal
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, Lahore, 54792, Pakistan
| |
Collapse
|
27
|
Fan X, Wang T, Gao B, Xie X, Zhang S, Meng X, Gong H, Guo Y, Huang X, He J. Layered double hydroxides decorated graphic carbon nitride film as efficient photoanodes for photoelectrochemical water splitting. Catal Today 2019. [DOI: 10.1016/j.cattod.2019.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Sun X, Sun X, Zhou S, Luo G, Liu R, Li S, Li A, Zhu X. Designed Construction of Hierarchical CuCo
2
S
4
@Co(OH)
2
Core‐Shell Nanoarrays as Electrode Materials for High‐Performance Supercapacitors. ChemistrySelect 2019. [DOI: 10.1002/slct.201803976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xueying Sun
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Xiulun Sun
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Sicheng Zhou
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Guang Luo
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Rongmei Liu
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Siqi Li
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Anran Li
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| | - Xiandong Zhu
- School of Biological and Chemical EngineeringAnhui Polytechnic University Wuhu Anhui 241000 P. R. China
| |
Collapse
|
29
|
Balasubramanian P, Annalakshmi M, Chen SM, Chen TW. Sonochemical synthesis of molybdenum oxide (MoO 3) microspheres anchored graphitic carbon nitride (g-C 3N 4) ultrathin sheets for enhanced electrochemical sensing of Furazolidone. ULTRASONICS SONOCHEMISTRY 2019; 50:96-104. [PMID: 30197063 DOI: 10.1016/j.ultsonch.2018.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/22/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Present strategy introduce the sonochemical synthesis of molybdenum oxide (MoO3) microspheres anchored graphitic carbon nitride (g-C3N4) ultrathin sheets as a novel electrocatalyst for the detection of Furazolidone (FU). TEM results revealed that MoO3 are microspheres with an average size of 2 µM and the g-C3N4 seems like ultrathin sheets. Owing to their peculiar morphological structure, g-C3N4/MoO3 composite modified electrode provided an enriched electroactive surface area (0.3788 cm2) and higher heterogeneous electron transfer kinetics (K°eff = 4.91×10-2 cm s-1) than the other controlled electrodes. It is obviously observed from the voltammetric studies that the proposed sensor based on g-C3N4/MoO3 composite can significantly improve the electrocatalytic efficiency towards the sensing of FU. Due to the excellent synergic effect of g-C3N4/MoO3 composite, can detect the ultra-level FU with a limit of detection of 1.4 nM and a broad dynamic range of 0.01-228 µM, which surpassed the many previously reported FU sensors. Hence, the proposed sensor was successfully applied to sensing the FU in human blood serum, urine and pharmaceutical samples, gained an agreeable recoveries.
Collapse
Affiliation(s)
- Paramasivam Balasubramanian
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Muthaiah Annalakshmi
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC; Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Zhongxiao East Road, Taipei 106, Taiwan, ROC
| |
Collapse
|
30
|
Park SW, Shin HJ, Kim DW. S,N co-doped reduced graphene oxide sheets with cobalt hydroxide nanocrystals for highly active and stable bifunctional oxygen catalysts. Inorg Chem Front 2019. [DOI: 10.1039/c9qi01108k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co(OH)2 anchored on S,N co-doped rGO as a highly active and stable bifunctional oxygen catalyst was developed via an efficient strategy and its catalytic activity was comparable to that of the benchmarked noble metal-based oxygen catalysts.
Collapse
Affiliation(s)
- Sung-Woo Park
- School of Civil
- Environmental and Architectural Engineering
- Korea University
- Seoul 136-713
- South Korea
| | - Hyun Jung Shin
- School of Civil
- Environmental and Architectural Engineering
- Korea University
- Seoul 136-713
- South Korea
| | - Dong-Wan Kim
- School of Civil
- Environmental and Architectural Engineering
- Korea University
- Seoul 136-713
- South Korea
| |
Collapse
|
31
|
Tashkhourian J, Nami-Ana SF, Shamsipur M. A new bifunctional nanostructure based on Two-Dimensional nanolayered of Co(OH)2 exfoliated graphitic carbon nitride as a high performance enzyme-less glucose sensor: Impedimetric and amperometric detection. Anal Chim Acta 2018; 1034:63-73. [DOI: 10.1016/j.aca.2018.06.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/09/2018] [Accepted: 06/15/2018] [Indexed: 10/28/2022]
|
32
|
Li J, Pan Z, Zhou K. Enhanced photocatalytic oxygen evolution activity by formation of Ir@IrO x(OH) y core-shell heterostructure. NANOTECHNOLOGY 2018; 29:405705. [PMID: 30015623 DOI: 10.1088/1361-6528/aad3f4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Developing efficient catalysts to accelerate the rate of oxygen evolution reaction (OER) is critical for photocatalytic water-splitting. In this work, metallic Ir, IrOx(OH)y, and core-shell Ir@IrOx(OH)y were synthesized and employed as OER catalysts for photocatalytic water oxidation. It was found that the Ir@IrOx(OH)y core-shell heterostructure catalyst showed the best photocatalytic performance among these three catalysts, with the oxygen evolution rate as high as 59.63 mmol g-1 h-1. Detailed investigations revealed that the excellent photocatalytic activity of Ir@IrOx(OH)y could be attributed to both the outstanding intrinsic activity of IrOx(OH)y shell and the efficient electron transfer between the photosensitizer and catalyst.
Collapse
Affiliation(s)
- Junnan Li
- School of Chemical Sciences, National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | | | | |
Collapse
|
33
|
Han Y, Liang Z, Dang H, Dong X. Extremely high photocatalytic H 2 evolution of novel Co 3 O 4 /Cd 0.9 Zn 0.1 S p–n heterojunction photocatalyst under visible light irradiation. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Sahoo DP, Nayak S, Reddy KH, Martha S, Parida K. Fabrication of a Co(OH) 2/ZnCr LDH "p-n" Heterojunction Photocatalyst with Enhanced Separation of Charge Carriers for Efficient Visible-Light-Driven H 2 and O 2 Evolution. Inorg Chem 2018. [PMID: 29528221 DOI: 10.1021/acs.inorgchem.7b03213] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Photocatalytic generation of H2 and O2 by water splitting remains a great challenge for clean and sustainable energy. Taking into the consideration promising heterojunction photocatalysts, analogous energy issues have been mitigated to a meaningful extent. Herein, we have architectured a highly efficient bifunctional heterojunction material, i.e., p-type Co(OH)2 platelets with an n-type ZnCr layered double hydroxide (LDH) by an ultrasonication method. Primarily, the Mott-Schottky measurements confirmed the n- and p-type semiconductive properties of LDH and CH material, respectively, with the construction of a p-n heterojunction. The high resolution transmission electron microscopy results suggest that surface modification of ZnCr LDH by Co(OH)2 hexagonal platelets could form a fabulous p-n interfacial region that significantly decreases the energy barrier for O2 and H2 production by effectively separating and transporting photoinduced charge carriers, leading to enhanced photoreactivity. A deep investigation into the mechanism shows that a 30 wt % Co(OH)2-modified ZnCr LDH sample liberates maximum H2 and O2 production in 2 h, i.e., 1115 and 560 μmol, with apparent conversion efficiencies of H2 and O2 evolution of 13.12% and 6.25%, respectively. Remarkable photocatalytic activity with energetic charge pair transfer capability was illustrated by electrochemical impedance spectroscopy, linear sweep voltammetry, and photoluminescence spectra. The present study clearly suggests that low-cost Co(OH)2 platelets are the most crucial semiconductors to provide a new p-n heterojunction photocatalyst for photocatalytic H2 and O2 production on the platform of ZnCr LDH.
Collapse
Affiliation(s)
- Dipti Prava Sahoo
- Centre for Nanoscience and Technology , Siksha 'O' Anusandhan (Deemed to be) University , Bhubaneswar 751030 , India
| | - Susanginee Nayak
- Centre for Nanoscience and Technology , Siksha 'O' Anusandhan (Deemed to be) University , Bhubaneswar 751030 , India
| | - K Hemalata Reddy
- Centre for Nanoscience and Technology , Siksha 'O' Anusandhan (Deemed to be) University , Bhubaneswar 751030 , India
| | - Satyabadi Martha
- Centre for Nanoscience and Technology , Siksha 'O' Anusandhan (Deemed to be) University , Bhubaneswar 751030 , India
| | - Kulamani Parida
- Centre for Nanoscience and Technology , Siksha 'O' Anusandhan (Deemed to be) University , Bhubaneswar 751030 , India
| |
Collapse
|
35
|
Fukuzumi S, Lee Y, Nam W. Solar‐Driven Production of Hydrogen Peroxide from Water and Dioxygen. Chemistry 2018; 24:5016-5031. [DOI: 10.1002/chem.201704512] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
- Graduate School of Science and Engineering Meijo University, Nagoya Aichi 468-8502 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 Korea
| |
Collapse
|
36
|
Du C, Wang J, Liu X, Yang J, Cao K, Wen Y, Chen R, Shan B. Ultrathin CoO x-modified hematite with low onset potential for solar water oxidation. Phys Chem Chem Phys 2018; 19:14178-14184. [PMID: 28530305 DOI: 10.1039/c7cp01588g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoelectrochemical water splitting holds great potential for solar energy conversion and storage with zero greenhouse gas emission. Integration of a suitable co-catalyst with an absorber material enables the realization of highly efficient photocleavage of water. Herein, nanostructured hematite film was coated with an ultrathin and conformal CoOx overlayer through atomic layer deposition (ALD). The best performing hybrid hematite with a 2-3 nm ALD CoOx overlayer yielded a remarkable turn on potential of 0.6 VRHE for the water oxidation reaction. Moreover, material analyses revealed that the surface amorphous CoOx/Co(OH)2 component exhibited good optical transparency and hydrophilic properties, which were beneficial for the formation of an ideal hematite/electrolyte interface. In addition to the presence of the CoOx overlayer, a negative shift of flat band potential (VFB) as well as suppression of surface recombination helped to significantly promote the charge separation and collection properties, contributing to the overall solar conversion efficiency. As a result, the external quantum efficiency (IPCE) obtained on hematite increases by 66% at 1.23 VRHE.
Collapse
Affiliation(s)
- Chun Du
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Pervaiz E, Syam Azhar Virk M, Bingxue Z, Yin C, Yang M. Nitrogen doped RGO-Co 3O 4 nanograin cookies: highly porous and robust catalyst for removing nitrophenol from waste water. NANOTECHNOLOGY 2017; 28:385703. [PMID: 28749374 DOI: 10.1088/1361-6528/aa8297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The fabrication of nanograins with a uniform morphology wrapped with reduced graphene oxide (RGO) in a designed manner is critical for obtaining a large surface, high porosity and efficient catalytic ability at mild conditions. Hybrid structures of metal oxides decorated on two-dimensional (2D) RGO lacked an interface and channels between the individual grains and RGO. The present work focuses on the synthesis of RGO-wrapped Co3O4 nanograin architecture in micron-sized polyhedrons and the ability to reduce aromatic nitro compounds. Doping N in the designed microstructure polyhedrons resulted in very large surface area (1085.6 m2 g-1) and pore density (0.47 m3 g-1) microcages. Binding energies from x-ray photoelectron spectroscopy (XPS) and Raman intensities confirmed the presence of doped N and RGO-wrapped around Co3O4 nanograins. However, the morphology and microstructure was supported by FESEM and HRTEM images revealing the fabrication of high integrity RGO-Co3O4 microstructure hybrids composed of a 10 nm grain size with narrower grain size distribution. Ammonia treatment produced interconnected channels and dumbbell pores that facilitated ion exchange between the catalyst surface and the liquid medium at the grain boundary interfaces, and offered less mass transport resistance providing fast adsorption of reactants and desorption of the product causing surface renewal. Prepared N-RGO-Co3O4 shows the largest percentage reduction (96%) of p-nitrophenol (p-NP) at room temperature as compared to pure Co3O4 and RGO-Co3O4 nanograin microstructures over 10 min. Fabricated architectures can be applied effectively for fast and facile treatment of industrial waste streams with complex organic molecules.
Collapse
Affiliation(s)
- Erum Pervaiz
- Solid State Functional Materials Research Lab, Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Ningbo 315201, People's Republic of China. Department of Chemical Engineering, School of Chemical & Materials Engineering (SCME), National University of Sciences & Technology (NUST), H-12 Islamabad, 44000 Pakistan
| | | | | | | | | |
Collapse
|
38
|
Promotion of the excited electron transfer over Ni- and Co -sulfide co-doped g-C 3N 4 photocatalyst (g-C 3N 4/Ni xCo 1-xS 2) for hydrogen Production under visible light irradiation. Sci Rep 2017; 7:7710. [PMID: 28794521 PMCID: PMC5550426 DOI: 10.1038/s41598-017-08163-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
A Ni- and Co- sulfide co-doped g-C3N4 photocatalyst (g-C3N4/NixCo1-xS2) was prepared by hydrothermal method and this photocatalyst, namely, g-C3N4/NixCo1-xS2 shown excellent photocatalytic properties due to the special structure of Ni-Co-S with boundary different exposure to active site of transition metal-metal (Ni-Co) active planes. With the introduction of Co atoms, the H2 production amount reached the maximum about 400.81 μmol under continuous visible light irradiation for 4 hours based on the efficiently charge separation and greatly improved electron transfer resulted from the presence of sufficient active exposure at the boundary. The serial studies shown that the existence of Ni-Co-S structure over g-C3N4 active surface is the key factor of activity affections by means of several characterizations such as SEM, XRD, XPS diffuse reflectance etc. and the results of which were in good agreement with each other. A possible reaction mechanism over eosin Y-sensitized g-C3N4/NixCo1-xS2 photocatalyst under visible light irradiation was proposed.
Collapse
|
39
|
Mao Z, Chen J, Yang Y, Wang D, Bie L, Fahlman BD. Novel g-C 3N 4/CoO Nanocomposites with Significantly Enhanced Visible-Light Photocatalytic Activity for H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12427-12435. [PMID: 28328193 DOI: 10.1021/acsami.7b00370] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Novel g-C3N4/CoO nanocomposite application for photocatalytic H2 evolution were designed and fabricated for the first time in this work. The structure and morphology of g-C3N4/CoO were investigated by a wide range of characterization methods. The obtained g-C3N4/CoO composites exhibited more-efficient utilization of solar energy than pure g-C3N4 did, resulting in higher photocatalytic activity for H2 evolution. The optimum photoactivity in H2 evolution under visible-light irradiation for g-C3N4/CoO composites with a CoO mass content of 0.5 wt % (651.3 μmol h-1 g-1) was up to 3 times as high as that of pure g-C3N4 (220.16 μmol h-1 g-1). The remarkably increased photocatalytic performance of g-C3N4/CoO composites was mainly attributed to the synergistic effect of the junction or interface formed between g-C3N4 and CoO.
Collapse
Affiliation(s)
| | | | | | | | | | - Bradley D Fahlman
- Department of Chemistry & Biochemistry and Science of Advanced Materials Program, Central Michigan University , Mount Pleasant, Michigan 48859, United States
| |
Collapse
|