1
|
Lei Y, Yu L, Yang Z, Quan K, Qing Z. Biotemplated Platinum Nanozymes: Synthesis, Catalytic Regulation and Biomedical Applications. Chembiochem 2024; 25:e202400548. [PMID: 39166345 DOI: 10.1002/cbic.202400548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/22/2024]
Abstract
Platinum (Pt) nanozymes with multiple intrinsic enzyme-mimicking activities have attracted extensive attention in biomedical fields due to their high catalytic activity, ease of modification, and convenient storage. However, the Pt nanozymes synthesized by the traditional method often suffer from uncontrollable morphology and poor stability under physicochemical conditions, resulting in unsatisfactory catalytic behavior in practical applications. To optimize the catalytic ability, biological templates have been introduced recently, which can guide the deposition of platinum ions on their surface to form specific morphologies and then stabilize the resulting Pt nanozymes. Given the promising potential of biotemplated Pt nanozymes in practical applications, it is essential to conduct a systematic and comprehensive review to summarize their recent research progress. In this review, we first categorize the biological templates and discuss the mechanisms as well as characteristics of each type of biotemplate in directing the growth of Pt nanozyme. Factors that impact the growth of biotemplated Pt nanozymes are then analyzed, followed by summarizing their biomedical applications. Finally, the challenges and opportunities in this field are outlined. This review article aims to provide theoretical guidance for developing Pt nanozymes with robust functionalities in biomedical applications.
Collapse
Affiliation(s)
- Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Lihong Yu
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zeyang Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Ke Quan
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| | - Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, School of Food and Bioengineering, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha, Hunan, 410114, China
| |
Collapse
|
2
|
Xie M, Shimogawa R, Liu Y, Zhang L, Foucher AC, Routh PK, Stach EA, Frenkel AI, Knecht MR. Biomimetic Control over Bimetallic Nanoparticle Structure and Activity via Peptide Capping Ligand Sequence. ACS NANO 2024; 18:3286-3294. [PMID: 38227802 DOI: 10.1021/acsnano.3c10016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The controlled design of bimetallic nanoparticles (BNPs) is a key goal in tailoring their catalytic properties. Recently, biomimetic pathways demonstrated potent control over the distribution of different metals within BNPs, but a direct understanding of the peptide effect on the compositional distribution at the interparticle and intraparticle levels remains lacking. We synthesized two sets of PtAu systems with two peptides and correlated their structure, composition, and distributions with the catalytic activity. Structural and compositional analyses were performed by a combined machine learning-assisted refinement of X-ray absorption spectra and Z-contrast measurements by scanning transmission electron microscopy. The difference in the catalytic activities between nanoparticles synthesized with different peptides was attributed to the details of interparticle distribution of Pt and Au across these markedly heterogeneous systems, comprising Pt-rich, Au-rich, and Au core/Pt shell nanoparticles. The total amount of Pt in the shells of the BNPs was proposed to be the key catalytic activity descriptor. This approach can be extended to other systems of metals and peptides to facilitate the targeted design of catalysts with the desired activity.
Collapse
Affiliation(s)
- Maichong Xie
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Mitsubishi Chemical Corporation, Science & Innovation Center, 1000, Kamoshida-cho, Aoba-ku, Yokohama 227-8502, Japan
| | - Yang Liu
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Prahlad K Routh
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Marc R Knecht
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
- Dr. J.T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami, Miami, Florida 33136, United States
| |
Collapse
|
3
|
Subhash B, Unocic RR, Lie WH, Gallington LC, Wright J, Cheong S, Tilley RD, Bedford NM. Resolving Atomic-Scale Structure and Chemical Coordination in High-Entropy Alloy Electrocatalysts for Structure-Function Relationship Elucidation. ACS NANO 2023; 17:22299-22312. [PMID: 37944052 DOI: 10.1021/acsnano.3c03884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
The recent breakthrough in confining five or more atomic species in nanocatalysts, referred to as high-entropy alloy nanocatalysts (HEAs), has revealed the possibilities of multielemental interactions that can surpass the limitations of binary and ternary electrocatalysts. The wide range of potential surface configurations in HEAs, however, presents a significant challenge in resolving active structural motifs, preventing the establishment of structure-function relationships for rational catalyst design and optimization. We present a methodology for creating sub-5 nm HEAs using an aqueous-based peptide-directed route. Using a combination of pair distribution function and X-ray absorption spectroscopy, HEA structure models are constructed from reverse Monte Carlo modeling of experimental data sets and showcase a clear peptide-induced influence on atomic-structure and chemical miscibility. Coordination analysis of our structure models facilitated the construction of structure-function correlations applied to electrochemical methanol oxidation reactions, revealing the complex interplay between multiple metals that leads to improved catalytic properties. Our results showcase a viable strategy for elucidating structure-function relationships in HEAs, prospectively providing a pathway for future materials design.
Collapse
Affiliation(s)
- Bijil Subhash
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Raymond R Unocic
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - William Hadinata Lie
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Leighanne C Gallington
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Joshua Wright
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Soshan Cheong
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Richard D Tilley
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Basavegowda N, Baek KH. Multimetallic Nanoparticles as Alternative Antimicrobial Agents: Challenges and Perspectives. Molecules 2021; 26:912. [PMID: 33572219 PMCID: PMC7915418 DOI: 10.3390/molecules26040912] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Recently, infectious diseases caused by bacterial pathogens have become a major cause of morbidity and mortality globally due to their resistance to multiple antibiotics. This has triggered initiatives to develop novel, alternative antimicrobial materials, which solve the issue of infection with multidrug-resistant bacteria. Nanotechnology using nanoscale materials, especially multimetallic nanoparticles (NPs), has attracted interest because of the favorable physicochemical properties of these materials, including antibacterial properties and excellent biocompatibility. Multimetallic NPs, particularly those formed by more than two metals, exhibit rich electronic, optical, and magnetic properties. Multimetallic NP properties, including size and shape, zeta potential, and large surface area, facilitate their efficient interaction with bacterial cell membranes, thereby inducing disruption, reactive oxygen species production, protein dysfunction, DNA damage, and killing potentiated by the host's immune system. In this review, we summarize research progress on the synergistic effect of multimetallic NPs as alternative antimicrobial agents for treating severe bacterial infections. We highlight recent promising innovations of multimetallic NPs that help overcome antimicrobial resistance. These include insights into their properties, mode of action, the development of synthetic methods, and combinatorial therapies using bi- and trimetallic NPs with other existing antimicrobial agents.
Collapse
Affiliation(s)
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38451, Korea;
| |
Collapse
|
6
|
Ye D, Zhao L, Bai S, Guo Y, Fang W. New Strategy for High-Performance Integrated Catalysts for Cracking Hydrocarbon Fuels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40078-40090. [PMID: 31517475 DOI: 10.1021/acsami.9b14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, we described the synthesis, characterization, and application of hyperbranched polymer-encapsulated metal nanoparticles (HEMNs) as integrated catalysts for the supercritical cracking of hydrocarbon fuels. The metal precursor was extracted into the organic phase using a hydrocarbon-soluble hyperbranched poly(amidoamine) (CPAMAM) and then reduced in situ by NaBH4 to produce HEMNs with virtually a single-size distribution. The monitoring of the preparation process by UV-vis demonstrated the feasibility of this encapsulation approach, and the successful synthesis of three different types of HEMNs, metal (Pd, Pt, Au)@CPAMAM, reflected the universality of this method. Compared with the existing catalyst octadecylamine-stabilized Pd nanoparticle, Pd@18N, HEMNs were superior in every aspect. The new encapsulation method allowed metal NPs to have a smaller particle size beneficial to their overall specific surface area and a higher proportion of active surface atoms for a better catalytic activity. Moreover, the space-limiting effect of the polymer allowed the three HEMNs to be highly dispersed in decalin and exhibited admirable stability under storage tests for up to 12 months and high-temperature stability tests at 180 °C. During the supercritical cracking of decalin, Pd@CPAMAM possessed a much better catalytic performance than Pd@18N and CPAMAM (which can also be used as a macroinitiator). To obtain the same heat sink of 3.02 MJ/kg, the temperature could be lowered from 725 to 701, 693, and 699 °C for Pd, Pt, and Au HEMNs, respectively. Pt HEMN turned out to be the best due to its excellent catalytic dehydrogenation/cracking performance, with the conversion of decalin increasing from 22.3 to 50.7% and the heat sink rising from 2.18 to 2.62 MJ/kg with the existence of 50 ppm Pt@CPAMAM, at 675 °C. The significant enhancements were ascribed to the synergistic catalysis through the remarkable abilities of nanometals to catalyze dehydrogenation/cracking of fuel, the supercritical stabilization effects from CPAMAM, and the initiation effects of the hyperbranched polymer CPAMAM.
Collapse
Affiliation(s)
- Dengfeng Ye
- Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| | - Lu Zhao
- Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| | - Shuaishuai Bai
- Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| | - Yongsheng Guo
- Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| | - Wenjun Fang
- Department of Chemistry , Zhejiang University , Hangzhou 310058 , China
| |
Collapse
|
7
|
Bell EC, Munro CJ, Slocik JM, Shukla D, Parab AD, Cohn JL, Knecht MR. Biomimetic strategies to produce catalytically reactive CuS nanodisks. NANOSCALE ADVANCES 2019; 1:2857-2865. [PMID: 36133622 PMCID: PMC9418022 DOI: 10.1039/c9na00335e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/11/2019] [Indexed: 06/16/2023]
Abstract
Copper sulfide materials have diverse applications from cancer therapy to environmental remediation due to their narrow bandgap and easily tuned plasmon. The synthesis of these materials often involves toxic reagents and harsh conditions where biomimetic methods may provide opportunities to produce these structures under sustainable conditions. To explore this capability, simple amino acids were exploited as biological ligands for the ambient synthesis of CuS materials. Using an aqueous-based approach, CuS nanodisks were prepared using acid-containing amino acid molecules that stabilize the materials against bulk aggregation. These structures were fully characterized by UV-vis analysis, transmission electron microscopy, dynamic light scattering, atomic force microscopy, selected area electron diffraction, and X-ray diffraction, which confirmed the formation of CuS. The materials possessed a vibrant plasmon band in the near IR region and demonstrated enhanced photocatalytic reactivity for the advanced oxidation of organic dyes in water. These results demonstrate a room temperature synthetic route to optically important materials, which could have important application in catalysis, optics, nanomedicine, etc.
Collapse
Affiliation(s)
- Elise C Bell
- Department of Chemistry, University of Miami 1301 Memorial Drive Coral Gables Florida 33146 USA
| | - Catherine J Munro
- Department of Chemistry, University of Miami 1301 Memorial Drive Coral Gables Florida 33146 USA
| | - Joseph M Slocik
- Air Force Research Laboratory, Wright-Patterson Air Force Base Ohio 45433 USA
| | - Dharmendra Shukla
- Department of Physics, University of Miami 1320 Campo Sano Drive Coral Gables Florida 33146 USA
| | - Atul D Parab
- Department of Chemistry, University of Miami 1301 Memorial Drive Coral Gables Florida 33146 USA
| | - Joshua L Cohn
- Department of Physics, University of Miami 1320 Campo Sano Drive Coral Gables Florida 33146 USA
| | - Marc R Knecht
- Department of Chemistry, University of Miami 1301 Memorial Drive Coral Gables Florida 33146 USA
- Dr. J. T. Macdonald Foundation Biomedical Nanotechnology Institute, University of Miami UM Life Science Technology Building, 1951 NW 7th Ave, Suite 475 Miami Florida 33136 USA
| |
Collapse
|
8
|
Mao CM, Sampath J, Sprenger KG, Drobny G, Pfaendtner J. Molecular Driving Forces in Peptide Adsorption to Metal Oxide Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5911-5920. [PMID: 30955325 DOI: 10.1021/acs.langmuir.8b01392] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular recognition between peptides and metal oxide surfaces is a fundamental process in biomineralization, self-assembly, and biocompatibility. Yet, the underlying driving forces and dominant mechanisms remain unclear, bringing obstacles to understand and control this process. To elucidate the mechanism of peptide/surface recognition, specifically the role of serine phosphorylation, we employed molecular dynamics simulation and metadynamics-enhanced sampling to study five artificial peptides, DDD, DSS, DpSpS, DpSpSGKK, and DpSKGpSK, interacting with two surfaces: rutile TiO2 and quartz SiO2. On both surfaces, we observe that phosphorylation increases the binding energy. However, the interfacial peptide conformation reveals a distinct binding mechanism on each surface. We also study the impact of peptide sequence to binding free energy and interfacial conformation on both surfaces, specifically the impact on the behavior of phosphorylated serine. Finally, the results are discussed in context of prior studies investigating the role of serine phosphorylation in peptide binding to silica.
Collapse
|
9
|
Wu W, Tang Z, Wang K, Liu Z, Li L, Chen S. Peptide templated AuPt alloyed nanoparticles as highly efficient bi-functional electrocatalysts for both oxygen reduction reaction and hydrogen evolution reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.11.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Miao X, Yu H, Gu Z, Yang L, Teng J, Cao Y, Zhao J. Peptide self-assembly assisted signal labeling for an electrochemical assay of protease activity. Anal Bioanal Chem 2017; 409:6723-6730. [PMID: 29026956 DOI: 10.1007/s00216-017-0636-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 09/10/2017] [Accepted: 09/12/2017] [Indexed: 10/18/2022]
Abstract
Peptide self-assembly holds tremendous promise for a range of applications in chemistry and biology. In the work reported here, we explored the potential functions of peptide self-assembly in electrochemical bioanalysis by developing a peptide self-assembly assisted signal labeling strategy for assaying protease activity. The fundamental principle of this assay is that target-protease-catalyzed specific proteolytic cleavage blocks self-assembly between the probe peptide and signal peptide, thus preventing the signal labeling of electroactive silver nanoparticles on the electrode surface, which in turn causes the electrochemical signal to decrease. Using trypsin as an example protease target, the linear range of this assay was found to be 1 ng mL-1 to 100 mg mL-1, and its detection limit was 0.032 ng mL-1, which are better than the corresponding parameters for previously reported assays. Further experiments also highlighted the good selectivity of the assay method and demonstrated its usability when applied to serum samples. Therefore, this report not only introduces a valuable tool for assaying protease activity, but it also promotes the utilization of peptide self-assembly in electrochemical bioanalysis, as this approach has great potential for practical use in the future.
Collapse
Affiliation(s)
- Xiangyang Miao
- Department of Biological and Chemical Engineering, Suzhou Chien-shiung Institute of Technology, Taicang, Jiangsu, 215411, China.,Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Huizhen Yu
- Department of Biological and Chemical Engineering, Suzhou Chien-shiung Institute of Technology, Taicang, Jiangsu, 215411, China
| | - Zhun Gu
- Department of Biological and Chemical Engineering, Suzhou Chien-shiung Institute of Technology, Taicang, Jiangsu, 215411, China
| | - Lili Yang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Jiahuan Teng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
11
|
Walsh TR, Knecht MR. Biointerface Structural Effects on the Properties and Applications of Bioinspired Peptide-Based Nanomaterials. Chem Rev 2017; 117:12641-12704. [DOI: 10.1021/acs.chemrev.7b00139] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tiffany R. Walsh
- Institute
for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Marc R. Knecht
- Department
of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| |
Collapse
|