1
|
Mu R, Yang L, Wang X, Yang B, Li J, Wang A, Zhang G, Sun C, Wu Y, Yu B, Li B. Mechanically Stable and Biocompatible Polymer Brush Coated Dental Materials with Lubricious and Antifouling Properties. Macromol Biosci 2024; 24:e2400194. [PMID: 39073313 DOI: 10.1002/mabi.202400194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Surface modification plays a crucial role in enhancing the functionality of implanted interventional medical devices, offering added advantages to patients, particularly in terms of lubrication and prevention of undesired adsorption of biomolecules and microorganisms, such as proteins and bacteria, on the material surfaces. Utilizing polymer brushes for surface modification is currently a promising approach to maintaining the inherent properties of materials while introducing new functionalities to surfaces. Here, surface-initiated atom transfer radical polymerization (SI-ATRP) technology to effectively graft anionic, cationic, and neutral polymer brushes from a mixed silane initiating layer is employed. The presence of a polymer brush layer significantly enhances the lubrication performance of the substrates and ensures a consistently low coefficient of friction over thousands of friction cycles in aqueous environments. The antimicrobial efficacy of polymer brushes is evaluated against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli). It is observed that polym er brushes grafted to diverse substrate surfaces displays notable antibacterial properties, effectively inhibiting bacterial attachment. Furthermore, the polymer brush layer shows favorable biocompatibility and anti-inflammatory characteristics, which shows potential applications in dental materials, and other fields such as catheters and food packaging.
Collapse
Affiliation(s)
- Rong Mu
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Ling Yang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Xinyue Wang
- School of Stomatology, Lanzhou University, Lanzhou, 730000, China
| | - Binrui Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Aijun Wang
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Guorui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Chufeng Sun
- School of Chemical Engineering, Northwest Minzu University, Lanzhou, 730000, China
| | - Yang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264000, China
| |
Collapse
|
2
|
Xu H, Duan S, Hu Y, Ding X, Xu FJ. Rapid Regulation of Cardiomyocytes Adhesion on Substrates with Varied Modulus via Mechanical Cues. Biomacromolecules 2023; 24:5847-5858. [PMID: 37956199 DOI: 10.1021/acs.biomac.3c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In-depth understanding of the mechanisms underlying the adhesion of myocardial cells holds significant importance for the development of effective therapeutic biomaterials aimed at repairing damaged or pathological myocardial tissues. Herein, we present evidence that myocardial cells (H9C2) exhibit integrin-based mechanosensing during the initial stage of adhesion (within the first 2 h), enabling them to recognize and respond to variations in substrate stiffnesses. Moreover, the bioinformatics analysis of RNA transcriptome sequencing (RNA-seq) reveals that the gene expressions associated with initial stage focal adhesion (Ctgf, Cyr61, Amotl2, Prickle1, Serpine1, Akap12, Hbegf, and Nedd9) are up-regulated on substrates with elevated Young's modulus. The fluorescent immunostaining results also suggest that increased substrate stiffness enhances the expression of Y397-phosphorylated focal adhesion kinase (FAK Y397), talin, and vinculin and the assembly of F-actin in H9C2 cells, thereby facilitating the adhesion of myocardial cells on the substrate. Next, we utilize fluidic force microscopy (FluidFM)-based single-cell force spectroscopy (SCFS) to quantitatively evaluate the impact of substrate stiffness on the cell adhesion force and adhesion work, thus providing novel insights into the biomechanical regulation of initial cell adhesion. Our findings demonstrate that the maximum adhesion forces of myocardial cells exhibit a rise from 23.6 to 248.0 nN when exposed to substrates with different moduli. It is worth noting that once the αvβ3 integrins are blocked, the disparities in the adhesion forces of myocardial cells on these substrates become negligible. These results exhibit remarkable sensitivity of myocardial cells to mechanical cues of the substrate, highlighting the role of αvβ3 integrin as a biomechanical sensor for the regulation of cell adhesion. Overall, this work offers a prospective approach for the regulation of cell adhesion via integrin mechanosensing with potential practical applications in the areas of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Haifeng Xu
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing 100029, P. R. China
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
3
|
Hu Y, Yu S, Ma N, Kong J, Zhang X. Rose bengal-mediated photoinduced atom transfer radical polymerization for high sensitivity detection of target DNA. Talanta 2023; 254:124104. [PMID: 36521324 DOI: 10.1016/j.talanta.2022.124104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022]
Abstract
Convenient and sensitive detection of biomolecules is of utmost importance in the field of early disease screening. In this study, a Rose Bengal-Mediated photoinduced atom transfer radical polymerization (photoATRP) method was used to achieve highly sensitive detection of target DNA (tDNA). The tDNA was specifically recognized using PNA with terminal modified sulfhydryl groups, and the initiator α-bromophenylacetic acid (BPAA) was attached to the electrode surface via a phosphate-Zr4+-carboxylate acid structure. Under the excitation of blue light, rose bengal (RB) acts as a photocatalyst, β-nicotinamide adenine dinucleotide (NADH) as an electron donor, and ferrocenylmethyl methacrylate (FMMA) as a monomer to activate the photoATRP reaction and generate a large number of electroactive polymer chains on the electrode surface. Under optimal conditions, the method can be used for the quantitative analysis of tDNA in the concentration range of 1-105 fM (R2 = 0.994) with a limit of detection (LOD) of 0.115 fM. This metal-free mediated photoATRP biosensor, with low cost and environmental friendliness, has great potential in the field of highly sensitive biomolecule detection.
Collapse
Affiliation(s)
- Yaodong Hu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Shuaibing Yu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Nan Ma
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
4
|
Yan S, Wang L, Fan H, Li X, You H, You R, Zhang Q, Xu W, Zhang Y. Biomimetic Natural Silk Nanofibrous Microspheres for Multifunctional Biomedical Applications. ACS NANO 2022; 16:15115-15123. [PMID: 36001029 DOI: 10.1021/acsnano.2c06331] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Silk nanofibrils (SNFs) extracted from natural silkworm silk represent a class of high-potential protein nanofiber material with unexplored biomedical applications. In this study, a SNF-assembled microsphere with extracellular matrix (ECM)-mimicking architecture and high specific surface area was developed. The SNFs were exfoliated from silkworm silks through an all-aqueous process and used as the building blocks for constructing the microspheres. Inspired by the structure and bioactive composition of ECM, hyaluronic acid (HA) was used as a bio-glue to regulate SNF assembly. With the assistance of HA, the SNF microspheres with stable fluffy nanofibrous structures were synthesized through electrospray. The biomimetic structure and nature derived composition endow the microspheres with excellent biocompatibility and enhanced osteogenic differentiation-inducing ability to mesenchymal stem cells. As proof of versatility, the SNF microspheres were further functionalized with other molecules and nanomaterials. Taking the advantages of the excellent blood compatibility and modifiability from the molecular level to the nanoscale of SNF microspheres, we demonstrated their versatile applications in protease detection and blood purification. On the basis of these results, we foresee that this natural silk-based nanofibrous microsphere may serve as a superior biomedical material for tissue engineering, early disease diagnosis, and therapeutic devices.
Collapse
Affiliation(s)
- Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Hongdou Fan
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiufang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Haining You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Miki K, Imaizumi N, Nogita K, Oe M, Mu H, Huo W, Ohe K. Aluminum naphthalocyanine conjugate as an MMP-2-activatable photoacoustic probe for in vivo tumor imaging. Methods Enzymol 2021; 657:89-109. [PMID: 34353500 DOI: 10.1016/bs.mie.2021.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2), which is one of MMPs family, is known as an extracellular gelatinase controlling cancer cell adhesion, growth, and metastasis. Because of the great interest in MMP-2 activity, the detailed protocols for evaluating MMP-2-responsive contrast agents, especially photoacoustic probes for in vivo use, are helpful for researchers in the field. We here describe the detailed synthetic procedure of MMP-2-activatable photoacoustic probe AlNc-pep-PEG consisting of aluminum naphthalocyanine, MMP-2-responsive peptide sequence, and poly(ethylene glycol), which has recently been developed in our research group. The detailed measurement protocol of photoacoustic signal intensity in vitro and in vivo by using in-house built photoacoustic signal measurement system and photoacoustic imaging apparatus are also summarized.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| | - Naoto Imaizumi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kohei Nogita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Miki K, Imaizumi N, Nogita K, Oe M, Mu H, Huo W, Harada H, Ohe K. MMP-2-Activatable Photoacoustic Tumor Imaging Probes Based on Al- and Si-Naphthalocyanines. Bioconjug Chem 2021; 32:1773-1781. [PMID: 34167292 DOI: 10.1021/acs.bioconjchem.1c00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzyme-activatable photoacoustic probes are powerful contrast agents to visualize diseases in which a specific enzyme is overexpressed. In this study, aluminum and silicon naphthalocyanines (AlNc and SiNc, respectively) conjugated with matrix metalloprotease-2 (MMP-2)-responsive PLGLAG peptide sequence and poly(ethylene glycol) (PEG) as an axial ligand were designed and synthesized. AlNc-peptide-PEG conjugates AlNc-pep-PEG formed dimeric species interacting with each other through face-to-face H-aggregation in water, while SiNc-based conjugates SiNc-pep-PEG hardly interacted with each other because of the two bulky hydrophilic axial ligands. Both conjugates formed spherical nanometer-sized self-assemblies in water, generating photoacoustic waves under near-infrared photoirradiation. The treatment of MNc-peptide-PEG conjugates (M = Al, Si) with MMP-2 smoothly induced the cleavage of the PLGLAG sequence to release the hydrophilic PEG moiety, resulting in the aggregation of MNcs. By comparing the PA signal intensity changes at 680 and 760 nm, the photoacoustic signal intensity ratios were shown to be enhanced by 3-5 times after incubation with MMP-2. We demonstrated that MNc-peptide-PEG conjugates (M = Al, Si) could work as activatable photoacoustic probes in the in vitro experiment of MMP-2-overexpressed cell line HT-1080 as well as the in vivo photoacoustic imaging of HT-1080-bearing mice.
Collapse
Affiliation(s)
- Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoto Imaizumi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kohei Nogita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Yamaguchi H, Miyazaki M. Laccase aggregates via poly-lysine-supported immobilization onto PEGA resin, with efficient activity and high operational stability and can be used to degrade endocrine-disrupting chemicals. Catal Sci Technol 2021. [DOI: 10.1039/d0cy01413c] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Laccase was for the first time immobilized as enzyme aggregates onto PEGA resin using the technique of poly-lysine-supported cross-linking. Immobilized laccase showed efficient enzymatic activity with high operational stability and good reusability.
Collapse
Affiliation(s)
- Hiroshi Yamaguchi
- Liberal Art Education Center
- Tokai University
- Kumamoto
- Japan
- Graduate School of Agriculture
| | - Masaya Miyazaki
- Center for Plasma Nano-interface Engineering
- Kyushu University
- Fukuoka 819-0395
- Japan
| |
Collapse
|
8
|
Zhang Y, Chen X, Yuan S, Wang L, Guan X. Joint Entropy-Assisted Graphene Oxide-Based Multiplexing Biosensing Platform for Simultaneous Detection of Multiple Proteases. Anal Chem 2020; 92:15042-15049. [PMID: 33118812 DOI: 10.1021/acs.analchem.0c03007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Due to the limited clinical utility of individual biomarkers, there is growing recognition of the need for combining multiple biomarkers as a panel to improve the accuracy and efficacy of disease diagnosis and prognosis. The conventional method to detect multiple analyte species is to construct a sensor array, which consists of an array of individual selective probes for different species. In this work, by using cancer biomarker matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs) as model analytes and functionalized nanographene oxide (nGO) as a sensing element, we developed a multiplexing fluorescence sensor in a nonarray format for simultaneous measurement of the activities of multiple proteases. The constructed nGO-based biosensor was rapid, sensitive, and selective and was also utilized for the successful profiling of ADAMs/MMPs in simulated serum samples. Furthermore, we showed that joint entropy and programming could be utilized to guide experiment design, especially in terms of the selection of a subset of proteases from the entire MMPs/ADAMs family as an appropriate biomarker panel. Our developed nGO-based multiplex sensing platform should find useful application in early cancer detection and diagnosis.
Collapse
Affiliation(s)
- Youwen Zhang
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Xiaohan Chen
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Shaoqing Yuan
- Amazon, 2121 Seventh Avenue, Seattle, Washington 98121, United States
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.,Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, Illinois 60616, United States
| |
Collapse
|
9
|
Ma L, Luo P, He Y, Zhang L, Fan Y, Jiang Z. Ultra-Stable Silica Nanoparticles as Nano-Plugging Additive for Shale Exploitation in Harsh Environments. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1683. [PMID: 31775285 PMCID: PMC6955846 DOI: 10.3390/nano9121683] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 12/24/2022]
Abstract
Owing to the harsh downhole environments, poor dispersion of silica at high salinity and high temperature can severely restrict its application as the nano-plugging agent in shale gas exploitation. The objective of this study is to improve salt tolerance and thermal stability of silica. Herein, silica was successfully functionalized with an anionic polymer (p SPMA) by SI-ATRP (surface-initiated atom transfer radical polymerization), named SiO2-g-SPMA. The grafted pSPMA brushes on silica provided sufficient electrostatic repulsion and steric repulsion for stabilizing silica in a harsh environment. The modified silica (SiO2-g-SPMA) had excellent colloidal stability at salinities up to 5.43 M NaCl (saturated brine) and standard API brine (8 wt% NaCl + 2 wt% CaCl2) for 30 days at room temperature. Simultaneously, the SiO2-g-SPMA was stable at 170 °C for 24 h as well as stable in weakly alkali environment. Furthermore, the plugging performance of SiO2-g-SPMA in water-based drilling fluids for low permeate reservoir reached to 78.25% when adding a small amount of 0.5 wt% SiO2-g-SPMA, which effectively hindered the water invasion into formation and protected the reservoir.
Collapse
Affiliation(s)
- Lan Ma
- School of Science, Xihua University, Jinzhou Road, Chengdu 610039, Sichuan, China;
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, Sichuan, China; (P.L.); (L.Z.)
| | - Pingya Luo
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, Sichuan, China; (P.L.); (L.Z.)
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, Sichuan, China;
| | - Yi He
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, Sichuan, China; (P.L.); (L.Z.)
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, Sichuan, China;
| | - Liyun Zhang
- State Key Lab of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, Sichuan, China; (P.L.); (L.Z.)
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, Sichuan, China;
| | - Yi Fan
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, Chengdu 610500, Sichuan, China;
- Chengdu Graphene Application Institute of Industrial Technology, Leshan Road, Chengdu 610500, Sichuan, China
| | - Zhenju Jiang
- School of Science, Xihua University, Jinzhou Road, Chengdu 610039, Sichuan, China;
| |
Collapse
|
10
|
Lian J, Xu H, Duan S, Ding X, Hu Y, Zhao N, Ding X, Xu FJ. Tunable Adhesion of Different Cell Types Modulated by Thermoresponsive Polymer Brush Thickness. Biomacromolecules 2019; 21:732-742. [DOI: 10.1021/acs.biomac.9b01437] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jiamin Lian
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Haifeng Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| |
Collapse
|
11
|
Zhang XY, Zhao YQ, Zhang Y, Wang A, Ding X, Li Y, Duan S, Ding X, Xu FJ. Antimicrobial Peptide-Conjugated Hierarchical Antifouling Polymer Brushes for Functionalized Catheter Surfaces. Biomacromolecules 2019; 20:4171-4179. [DOI: 10.1021/acs.biomac.9b01060] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xin-Yang Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yidan Zhang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Li
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
12
|
Jiang L, Ye L. Nanoparticle-supported temperature responsive polymer brushes for affinity separation of histidine-tagged recombinant proteins. Acta Biomater 2019; 94:447-458. [PMID: 31055124 DOI: 10.1016/j.actbio.2019.04.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 01/14/2023]
Abstract
We developed a modular approach for the preparation of nanoparticle-supported polymer brushes carrying repeating iminodiacetate units for affinity separation of histidine-tagged recombinant proteins. The nanoparticle-supported polymer brushes were prepared via the combination of surface-initiated atom transfer radical polymerization with Cu(I)-catalyzed azide-alkyne cycloaddition reaction. The nanocomposite materials were characterized to determine the particle size, morphology, organic content, densities of polymer chains and the affinity ligand. Protein binding assay illustrated that the iminodiacetate-rich polymer brushes enable to selectively bind histidine-tagged recombinant proteins in the presence of abundant interfering proteins. More importantly, the protein binding capacity can be tuned by adjusting the environmental temperature. STATEMENT OF SIGNIFICANCE: The nanoparticle core-polymer brush structure enables selective binding of histidine-tagged recombinant proteins via multiple metal-coordination interactions. The soft and flexible structure of the polymer brushes was found beneficial for lowering the steric hindrance in protein binding. Taking advantage of the conformational changes of the polymer brushes at different temperatures, it is possible to modulate the protein binding on the nanocomposite by adjusting the environmental temperature. In general, the iminodiacetate-rich core-brush nano adsorbents are attractive for purifying histidine-tagged recombinant proteins practically. The synthetic approach reported here may be expanded to develop other advanced functional materials for applications in various biomedical fields ranging from biosensors to drug delivery.
Collapse
Affiliation(s)
- Lingdong Jiang
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden.
| |
Collapse
|
13
|
Meng Y, Song Y, Guo C, Cui B, Ji H, Ma Z. Tailoring the dimensionality of carbon nanostructures as highly electrochemical supports for detection of carcinoembryonic antigens. RSC Adv 2019; 9:13431-13443. [PMID: 35519587 PMCID: PMC9063882 DOI: 10.1039/c9ra01847f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022] Open
Abstract
Partially- and fully-unzipped nitrogen-doped carbon nanotubes (NCNTs) were prepared by unzipping pristine NCNTs and three carbon nanostructures were applied to support Au nanoparticles (AuNPs) to form nanocomposites (Au/NCNTs, Au/PU-NCNTs, and Au/FU-NCNTs). The electrochemical behavior and the electrocatalytic activities of the nanocomposite-modified electrodes were examined. The oxygen functional groups, doped N content, and AuNP loaded concentrations are dependent on the unzipping-degree and then affect the electrochemical response and electrocatalytic performance of the electrodes. Besides, the three nanocomposites were also used for the immobilization of carcinoembryonic antigen (CEA) aptamer strands and applied for the detection of CEA. The Au/FU-NCNTs possess the optimal electrocatalytic activity and biosensing performance for the biomolecules and CEA, which is attributed to the maximum loaded AuNPs, the largest specific surface areas and the most active sites. The Au/FU-NCNT-based electrochemical aptasensor exhibits high sensitivity with a low detection limit of 6.84 pg mL-1 within a broad linear range of CEA concentration from 0.01 to 10 ng mL-1. All of these results indicate that the Au/FU-NCNTs may be a potential support for construction of aptasensors with high electrochemical effect and can be employed in the fields of biosensing or biomedical diagnosis.
Collapse
Affiliation(s)
- Yubo Meng
- College of Mechanical Engineering, Henan University of Engineering No. 1, Xianghe Road, Longhu Town Zhengzhou Henan 451191 P. R. China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry No. 136, Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Chuanpan Guo
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry No. 136, Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Bingbing Cui
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry No. 136, Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Hongfei Ji
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry No. 136, Science Avenue Zhengzhou Henan 450001 P. R. China
| | - Zongzheng Ma
- College of Mechanical Engineering, Henan University of Engineering No. 1, Xianghe Road, Longhu Town Zhengzhou Henan 451191 P. R. China
| |
Collapse
|
14
|
Tong W, Xiong Y, Duan S, Ding X, Xu FJ. Phthalocyanine functionalized poly(glycidyl methacrylate) nano-assemblies for photodynamic inactivation of bacteria. Biomater Sci 2019; 7:1905-1918. [DOI: 10.1039/c8bm01483c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-assembled PGED-Pc nanoparticles are able to inactivate bacteria via the generation of reactive oxygen species in aqueous solution, while a facile immobilization strategy sheds light on the engineering of self-sterilizing surfaces to combat bacterial infections.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
| | - Yanhua Xiong
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology)
| |
Collapse
|
15
|
Badoux M, Billing M, Klok HA. Polymer brush interfaces for protein biosensing prepared by surface-initiated controlled radical polymerization. Polym Chem 2019. [DOI: 10.1039/c9py00163h] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article discusses protein-binding polymer brushes and the various strategies that can be used to immobilize proteins on these films.
Collapse
Affiliation(s)
- Michael Badoux
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimique
- Laboratoire des Polymères
- École Polytechnique Fédérale de Lausanne (EPFL)
- Bâtiment MXD
- CH-1015 Lausanne
| | - Mark Billing
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimique
- Laboratoire des Polymères
- École Polytechnique Fédérale de Lausanne (EPFL)
- Bâtiment MXD
- CH-1015 Lausanne
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimique
- Laboratoire des Polymères
- École Polytechnique Fédérale de Lausanne (EPFL)
- Bâtiment MXD
- CH-1015 Lausanne
| |
Collapse
|
16
|
Wang D, Ding W, Zhou K, Guo S, Zhang Q, Haddleton DM. Coating Titania Nanoparticles with Epoxy-Containing Catechol Polymers via Cu(0)-Living Radical Polymerization as Intelligent Enzyme Carriers. Biomacromolecules 2018; 19:2979-2990. [DOI: 10.1021/acs.biomac.8b00544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Donghao Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Wenyi Ding
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Kaiyue Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Shutong Guo
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qiang Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
- Institute of Polymer Ecomaterials, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - David M. Haddleton
- Department of Chemistry, University of Warwick, CV4 7AL, Coventry, United Kingdom
| |
Collapse
|
17
|
Chen P, Liu X, Goyal G, Tran NT, Shing Ho JC, Wang Y, Aili D, Liedberg B. Nanoplasmonic Sensing from the Human Vision Perspective. Anal Chem 2018. [DOI: 10.1021/acs.analchem.8b00597] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Peng Chen
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Xiaohu Liu
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Garima Goyal
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
| | - Nhung Thi Tran
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - James Chin Shing Ho
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Yi Wang
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry and Biology, Linköping University, SE-58183 Linköping, Sweden
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798
| |
Collapse
|
18
|
Wu X, Ding X, Xu FJ. Series of In Situ Photoinduced Polymer Graftings for Sensitive Detection of Protein Biomarkers via Cascade Amplification of Liquid Crystal Signals. Biomacromolecules 2018; 19:1959-1965. [PMID: 29401373 DOI: 10.1021/acs.biomac.7b01774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Developing of new polymeric materials for the sensitive and rapid detection of trace protein biomarkers has attracted increasing attention in biomedical fields. Herein, series of in situ photoinduced polymer graftings were developed for sensitive detection of protein biomarkers by using featured cascade amplification of liquid crystal (LC) signals. The limit-of-detection (LOD) for native bovine serum albumin (BSA) molecules is around 10 μg/mL in a LC biosensor before signal amplification. Upon the cascade amplification using surface-grafted polymers, poly[poly(ethylene glycol) methacrylate] grafting ( s-P(PEGMA)) exhibits superior amplification ability (104-fold lower than native BSA) than the other two graftings of poly(2-hydroxyethyl methacrylate) ( s-PHEMA) and poly(methacrylic acid) ( s-PMAA; 102-fold lower than native BSA). The contact angles of water and LC on the s-P(PEGMA) grafting show significant difference in comparison with s-PHEMA and s-PMAA graftings ( p < 0.05), implying interfacial energies of the grafted polymers may dictate the orientational transition of LCs. The clinical urine samples collected from the patients with proteinuria were also used to confirm the feasibility of the polymer-amplified LC sensors for practical protein assays. The present work reveals that in situ photoinduced polymer grafting is one promising method to amplify the signals of LC biosensors for the rapid and sensitive detection of trace protein biomarkers.
Collapse
Affiliation(s)
- Xi Wu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) , Ministry of Education , Beijing , 100029 China
| | - Xiaokang Ding
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) , Ministry of Education , Beijing , 100029 China
| | - Fu-Jian Xu
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) , Ministry of Education , Beijing , 100029 China
| |
Collapse
|
19
|
Luo B, Zhou X, Jiang P, Yi Q, Lan F, Wu Y. PAMA–Arg brush-functionalized magnetic composite nanospheres for highly effective enrichment of phosphorylated biomolecules. J Mater Chem B 2018; 6:3969-3978. [DOI: 10.1039/c8tb00705e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A novel polymer brush-functionalized magnetic composite nanosphere was successfully prepared, exhibiting large enrichment capacity, extremely high detection sensitivity, and high enrichment recovery in phosphorylated biomolecule enrichment.
Collapse
Affiliation(s)
- Bin Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiaoxi Zhou
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Peipei Jiang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Qiangying Yi
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Fang Lan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yao Wu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
20
|
Guo C, Su F, Song Y, Hu B, Wang M, He L, Peng D, Zhang Z. Aptamer-Templated Silver Nanoclusters Embedded in Zirconium Metal-Organic Framework for Bifunctional Electrochemical and SPR Aptasensors toward Carcinoembryonic Antigen. ACS APPLIED MATERIALS & INTERFACES 2017; 9:41188-41199. [PMID: 29112366 DOI: 10.1021/acsami.7b14952] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study reported a novel biosensor based on the nanocomposite of zirconium metal-organic framework (Zr-MOF, UiO-66) embedded with silver nanoclusters (Ag NCs) using the carcinoembryonic antigen (CEA)-targeted aptamer as template (AgNCs@Apt@UiO-66). The synthesized AgNCs@Apt@UiO-66 nanocomposite not only possesses good biocompatibility, active electrochemical performance, and strong bioaffinity, but also can be dispersed to form two-dimensional nanocomposite with nanoscale thickness. As such, the use of the AgNCs@CEA-aptamer enables AgNC@Apt@UiO-66 with sensitive and selective detection capacity of trace CEA, further concurrently being exploited as scaffold for surface plasmon resonance spectroscopy (SPR) and electrochemical biosensors. The results showed that the proposed electrochemical AgNC@Apt@UiO-66-based aptasensor exhibits high sensitivity with a low detection limit (LOD) of 8.88 and 4.93 pg·mL-1 deduced from electrochemical impedance spectroscopy and differential pulse voltammetry, respectively, within a broad linear range of the CEA concentration (0.01-10 ng·mL-1). Meanwhile, the developed SPR biosensor exhibited a slightly high LOD of 0.3 ng·mL-1 within the CEA concentration of 1.0-250 ng·mL-1. Both the electrochemical and SPR aptasensors displayed high selectivity, good reproducibility, stability, acceptable regenerability, and applicability in real human serum samples. These results proved that the proposed aptamer-targeted Zr-MOF nanocomposite can be utilized in multiple-functionally biosensing, further promoting the potential application of Zr-MOF-related nanomaterials in clinical diagnosis.
Collapse
Affiliation(s)
- Chuanpan Guo
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry , Zhengzhou 450001, P. R. China
| | - Fangfang Su
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry , Zhengzhou 450001, P. R. China
| | - Yingpan Song
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry , Zhengzhou 450001, P. R. China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry , Zhengzhou 450001, P. R. China
| | - Minghua Wang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry , Zhengzhou 450001, P. R. China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry , Zhengzhou 450001, P. R. China
| | - Donglai Peng
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry , Zhengzhou 450001, P. R. China
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry , Zhengzhou 450001, P. R. China
| |
Collapse
|
21
|
Wu Y, Nizam MN, Ding X, Xu FJ. Rational Design of Peptide-Functionalized Poly(Methacrylic Acid) Brushes for On-Chip Detection of Protease Biomarkers. ACS Biomater Sci Eng 2017; 4:2018-2025. [DOI: 10.1021/acsbiomaterials.7b00584] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yeping Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Naeem Nizam
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology) Ministry of Education, Beijing 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|