1
|
Feng R, Miao Q, Zhang X, Cui P, Wang C, Feng Y, Gan L, Fu J, Wang S, Dai Z, Hu L, Luo Y, Sun W, Zhang X, Xiao J, Wu J, Zhou B, Zou M, He D, Zhou X, Han X. Single-atom sites on perovskite chips for record-high sensitivity and quantification in SERS. SCIENCE CHINA MATERIALS 2022; 65:1601-1614. [PMID: 35281622 PMCID: PMC8902489 DOI: 10.1007/s40843-022-1968-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
UNLABELLED Surface enhanced Raman scattering (SERS) is a rapid and nondestructive technique that is capable of detecting and identifying chemical or biological compounds. Sensitive SERS quantification is vital for practical applications, particularly for portable detection of biomolecules such as amino acids and nucleotides. However, few approaches can achieve sensitive and quantitative Raman detection of these most fundamental components in biology. Herein, a noble-metal-free single-atom site on a chip strategy was applied to modify single tungsten atom oxide on a lead halide perovskite, which provides sensitive SERS quantification for various analytes, including rhodamine, tyrosine and cytosine. The single-atom site on a chip can enable quantitative linear SERS responses of rhodamine (10-6-1 mmol L-1), tyrosine (0.06-1 mmol L-1) and cytosine (0.2-45 mmol L-1), respectively, which all achieve record-high enhancement factors among plasmonic-free semiconductors. The experimental test and theoretical simulation both reveal that the enhanced mechanism can be ascribed to the controllable single-atom site, which can not only trap photoinduced electrons from the perovskite substrate but also enhance the highly efficient and quantitative charge transfer to analytes. Furthermore, the label-free strategy of single-atom sites on a chip can be applied in a portable Raman platform to obtain a sensitivity similar to that on a benchtop instrument, which can be readily extended to various biomolecules for low-cost, widely demanded and more precise point-of-care testing or in-vitro detection. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available for this article at 10.1007/s40843-022-1968-5 and is accessible for authorized users.
Collapse
Affiliation(s)
- Ran Feng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
| | - Qing Miao
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044 China
| | - Xiang Zhang
- College of Physics and Center for Quantum Materials and Devices, Analytical and Testing Center, Chongqing University, Chongqing, 401331 China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 China
| | - Cong Wang
- Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
| | - Yibo Feng
- Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
| | - Liyong Gan
- College of Physics and Center for Quantum Materials and Devices, Analytical and Testing Center, Chongqing University, Chongqing, 401331 China
| | - Jiaxing Fu
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Shibo Wang
- College of Materials science and Engineering, Huaqiao University, Xiamen, 361021 China
| | - Ziyi Dai
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078 China
| | - Liming Hu
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Oncology, Beijing University of Technology, Beijing, 100124 China
| | - Yunjing Luo
- Faculty of Environment and Life, Beijing Key Laboratory of Environmental and Oncology, Beijing University of Technology, Beijing, 100124 China
| | - Weihai Sun
- College of Materials science and Engineering, Huaqiao University, Xiamen, 361021 China
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044 China
| | - Jiawen Xiao
- Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
| | - Jinbo Wu
- Materials Genome Institute, Shanghai University, Shanghai, 200444 China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078 China
| | - Mingqiang Zou
- Chinese Academy of Inspection and Quarantine (CAIQ), Beijing, 100123 China
| | - Dawei He
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044 China
| | - Xiaoyuan Zhou
- College of Physics and Center for Quantum Materials and Devices, Analytical and Testing Center, Chongqing University, Chongqing, 401331 China
| | - Xiaodong Han
- Beijing Key Laboratory of Microstructure and Properties of Solids, Institute of Microstructure and Property of Advanced Materials, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124 China
| |
Collapse
|
2
|
Bao M, Chen Q, Xu Z, Jensen EC, Liu C, Waitkus JT, Yuan X, He Q, Qin P, Du K. Challenges and Opportunities for Clustered Regularly Interspaced Short Palindromic Repeats Based Molecular Biosensing. ACS Sens 2021; 6:2497-2522. [PMID: 34143608 DOI: 10.1021/acssensors.1c00530] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Clustered regularly interspaced short palindromic repeats, CRISPR, has recently emerged as a powerful molecular biosensing tool for nucleic acids and other biomarkers due to its unique properties such as collateral cleavage nature, room temperature reaction conditions, and high target-recognition specificity. Numerous platforms have been developed to leverage the CRISPR assay for ultrasensitive biosensing applications. However, to be considered as a new gold standard, several key challenges for CRISPR molecular biosensing must be addressed. In this paper, we briefly review the history of biosensors, followed by the current status of nucleic acid-based detection methods. We then discuss the current challenges pertaining to CRISPR-based nucleic acid detection, followed by the recent breakthroughs addressing these challenges. We focus upon future advancements required to enable rapid, simple, sensitive, specific, multiplexed, amplification-free, and shelf-stable CRISPR-based molecular biosensors.
Collapse
Affiliation(s)
- Mengdi Bao
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Qun Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Zhiheng Xu
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Erik C. Jensen
- HJ Science & Technology Inc., San Leandro, California 94710, United States
| | - Changyue Liu
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Jacob T. Waitkus
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
| | - Xi Yuan
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Qian He
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province 518055, China
| | - Ke Du
- Department of Mechanical Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, New York 14623, United States
- School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York 14623, United States
| |
Collapse
|
3
|
Abstract
Chemometrics play a critical role in biosensors-based detection, analysis, and diagnosis. Nowadays, as a branch of artificial intelligence (AI), machine learning (ML) have achieved impressive advances. However, novel advanced ML methods, especially deep learning, which is famous for image analysis, facial recognition, and speech recognition, has remained relatively elusive to the biosensor community. Herein, how ML can be beneficial to biosensors is systematically discussed. The advantages and drawbacks of most popular ML algorithms are summarized on the basis of sensing data analysis. Specially, deep learning methods such as convolutional neural network (CNN) and recurrent neural network (RNN) are emphasized. Diverse ML-assisted electrochemical biosensors, wearable electronics, SERS and other spectra-based biosensors, fluorescence biosensors and colorimetric biosensors are comprehensively discussed. Furthermore, biosensor networks and multibiosensor data fusion are introduced. This review will nicely bridge ML with biosensors, and greatly expand chemometrics for detection, analysis, and diagnosis.
Collapse
Affiliation(s)
- Feiyun Cui
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| | - Yun Yue
- Department of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ziming Zhang
- Department of Electrical & Computer Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - H. Susan Zhou
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts 01609, United States
| |
Collapse
|
4
|
Dou Q, Zhang Z, Wang Y, Wang S, Hu D, Zhao Z, Liu H, Dai Q. Ultrasensitive Poly(boric acid) Hydrogel-Coated Quartz Crystal Microbalance Sensor by Using UV Pressing-Assisted Polymerization for Saliva Glucose Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:34190-34197. [PMID: 32574039 DOI: 10.1021/acsami.0c08229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quartz crystal microbalance (QCM) has attracted extensive attention in the field of biological analysis and detection because of its high sensitivity, fast response, real-time measurement, good operability, and low-cost production. However, to detect the trace amounts of small molecules, such as low-concentration saliva glucose under physiological conditions, is still a major challenge. Herein, the surface of a QCM chip was coated with a poly(boric acid)-based hydrogel using UV pressing-assisted polymerization to obtain a simple device for glucose detection. The designed QCM sensor shows a record-low detection limit of glucose (3 mg/L at pH 7.5), which is ∼30 times lower than that of sensors fabricated by conventional surface initiation-spin coating. The outperformance of the poly(boric acid) hydrogel-coated QCM sensor is probably due to the uniform and compact microstructure, as well as the presence of sufficient glucose-binding sites resulting from the hydrogel coating generated by UV pressing-assisted polymerization. This method provides an important solution to detect the trace amounts of small organic molecules or ions and has the potential to push forward the practical applications of QCM sensors.
Collapse
Affiliation(s)
- Qian Dou
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zifeng Zhang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yanxiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China
| | - Shiwen Wang
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Debo Hu
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhipeng Zhao
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Hongliang Liu
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qing Dai
- Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Center of Materials School and Optoelectronics, University of Chinese Academy of Scienses, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Jackman JA, Cho NJ, Nishikawa M, Yoshikawa G, Mori T, Shrestha LK, Ariga K. Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chem Asian J 2018; 13:3366-3377. [PMID: 29959818 DOI: 10.1002/asia.201800935] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Indexed: 12/28/2022]
Abstract
In this Focus Review, nanoarchitectonic approaches for mechanical-action-based chemical and biological sensors are briefly discussed. In particular, recent examples of piezoelectric devices, such as quartz crystal microbalances (QCM and QCM-D) and a membrane-type surface stress sensor (MSS), are introduced. Sensors need well-designed nanostructured sensing materials for the sensitive and selective detection of specific targets. Nanoarchitectonic approaches for sensing materials, such as mesoporous materials, 2D materials, fullerene assemblies, supported lipid bilayers, and layer-by-layer assemblies, are highlighted. Based on these sensing approaches, examples of bioanalytical applications are presented for toxic gas detection, cell membrane interactions, label-free biomolecular assays, anticancer drug evaluation, complement activation-related multiprotein membrane attack complexes, and daily biodiagnosis, which are partially supported by data analysis, such as machine learning and principal component analysis.
Collapse
Affiliation(s)
- Joshua A Jackman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
- Department of Medicine, Stanford University, Stanford, California, 94305, USA
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Michihiro Nishikawa
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Genki Yoshikawa
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Center for Functional Sensor & Actuator (CFSN), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Materials Science and Engineering, Graduate School of Pure and Applied Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan
| | - Taizo Mori
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Lok Kumar Shrestha
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Katsuhiko Ariga
- WPI Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| |
Collapse
|
6
|
Chen M, Li HL, Cong H, Yan Y, Li KL, Li MQ, Tao Z. Synthesis of benzo[6]urils and their selective interactions with bipyridines. NEW J CHEM 2017. [DOI: 10.1039/c7nj02786a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Benzo[6]urils bearing hydroxymethyl or methyl groups have been synthesized with a facile method, and their supramolecular interactions with bipyridine guests have been investigated.
Collapse
Affiliation(s)
- Man Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Hai-Ling Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Hang Cong
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Yan Yan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Kai-Li Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Ming-Qiong Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|