1
|
Zhao CL, Gao R, Niu Y, Cai B, Zhu Y. Exploring the diffusion of DNA strands into nanoporous structures for establishing a universal electrochemical biosensor. Chem Sci 2024:d4sc05833j. [PMID: 39790983 PMCID: PMC11707798 DOI: 10.1039/d4sc05833j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
The development of universal electrochemical sensing platforms with high sensitivity and specificity is of great significance for advancing practical disease diagnostic methods and devices. Exploring the structural properties of electrode materials and their interaction with biomolecules is essential to developing novel and distinctive analytical approaches. Here, we innovatively investigated the effect of DNA length and configuration on DNA molecule transfer into the nanostructure of a nanoporous gold (NPG) electrode. The NPG electrode can not only distinguish and quantify short DNA strands but can also prevent the diffusion of long DNA, thereby minimizing or eliminating background interference. Leveraging these findings, we developed a universal DNA-based NPG electrochemical biosensing platform for the detection of different types of biomolecules. As a proof-of-concept, this sensing platform was integrated with nuclease-assisted target-recycling recognition and amplification reactions to achieve sensitive and specific detection of single-stranded DNA, microRNA-21, and carcino-embryonic antigen, with detection limits of 4.09, 27.4, and 0.28 fM, respectively. The demonstrated universality, sensitivity, specificity, and capability for analyzing complex samples ensure a comprehensive and robust detection approach for nucleic acid-based molecular diagnosis.
Collapse
Affiliation(s)
- Cong-Lin Zhao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Runlei Gao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Yinzheng Niu
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
| | - Bin Cai
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
- Shenzhen Research Institute of Shandong University Shenzhen 518000 China
| | - Ye Zhu
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 China
- Shenzhen Research Institute of Shandong University Shenzhen 518000 China
| |
Collapse
|
2
|
Sun M, Song R, Fang Y, Xu J, Yang Z, Zhang H. DNA-Based Complexes and Composites: A Review of Fabrication Methods, Properties, and Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51899-51915. [PMID: 39314016 DOI: 10.1021/acsami.4c13357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Deoxyribonucleic acid (DNA), a macromolecule that stores genetic information in organisms, has recently been gradually developed into a building block for new materials due to its stable chemical structure and excellent biocompatibility. The efficient preparation and functional integration of various molecular complexes and composite materials based on nucleic acid skeletons have been successfully achieved. These versatile materials possess excellent physical and chemical properties inherent to certain inorganic or organic molecules but are endowed with specific physiological functions by nucleic acids, demonstrating unique advantages and potential applications in materials science, nanotechnology, and biomedical engineering in recent years. However, issues such as the production cost, biological stability, and potential immunogenicity of DNA have presented some unprecedented challenges to the application of these materials in the field. This review summarizes the cutting-edge manufacturing techniques and unique properties of DNA-based complexes and composites and discusses the trends, challenges, and opportunities for the future development of nucleic acid-based materials.
Collapse
Affiliation(s)
- Mengqiu Sun
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rui Song
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Yangwu Fang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Jiuzhou Xu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhaoqi Yang
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
3
|
Zhao J, Han M, Ma A, Jiang F, Chen R, Dong Y, Wang X, Ruan S, Chen Y. A machine vision-assisted Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella in food without convoluted DNA extraction and amplification procedures. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133648. [PMID: 38306835 DOI: 10.1016/j.jhazmat.2024.133648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/17/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
The precise identification viable pathogens hold paramount significance in the prevention of foodborne diseases outbreaks. In this study, we integrated machine vision and learning with single microsphere to develop a phage and Clostridium butyricum Argonaute (CbAgo)-mediated fluorescence biosensor for detecting viable Salmonella typhimurium (S. typhimurium) without convoluted DNA extraction and amplification procedures. Phage and lysis buffer was utilized to capture and lyse viable S. typhimurium, respectively. Subsequently, CbAgo can cleave the bacterial DNA to obtain target DNA that guides a newly targeted cleavage of fluorescent probes. After that, the resulting fluorescent signal accumulates on the streptavidin-modified single microsphere. The overall detection process is then analyzed and interpreted by machine vision and learning algorithms, achieving highly sensitive detection of S. typhimurium with a limit of detection at 40.5 CFU/mL and a linear range of 50-107 CFU/mL. Furthermore, the proposed biosensor demonstrates standard recovery rates and coefficients of variation at 93.22% - 106.02% and 1.47% - 12.75%, respectively. This biosensor exhibits exceptional sensitivity and selectivity, presenting a promising method for the rapid and effective detection of foodborne pathogens. ENVIRONMENTAL IMPLICATION: Bacterial pathogens exist widely in the environment and seriously threaten the safety of human life. In this study, we developed a phage and Clostridium butyricum Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella typhimurium in environmental water and food samples. Compared with other Salmonella detection methods, this method does not need complex DNA extraction and amplification steps, which reduces the use of chemical reagents and experimental consumables in classic DNA extraction kit methods.
Collapse
Affiliation(s)
- Junpeng Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Minjie Han
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Aimin Ma
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Feng Jiang
- Key Laboratory of Detection Technology of Focus Chemical Hazards in Animal-derived Food for State Market Regulation, Wuhan 430075, Hubei, China
| | - Rui Chen
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Yongzhen Dong
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xufeng Wang
- College of Food Science and Technology, Huazhong Agricultural University, Shizishan Street, Hongshan District, Wuhan 430070, Hubei, China
| | - Shilong Ruan
- Daye Public Inspection and Test Center, Daye 435100, Hubei, China
| | - Yiping Chen
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
4
|
Adams MC, Milam VT. Uncovering Molecular Quencher Effects on FRET Phenomena in Microsphere-Immobilized Probe Systems. Anal Chem 2023; 95:13796-13803. [PMID: 37651319 PMCID: PMC10515108 DOI: 10.1021/acs.analchem.3c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/10/2023] [Indexed: 09/02/2023]
Abstract
Double-stranded (ds) oligonucleotide probes composed of quencher-dye sequence pairs outperform analogous single-stranded (ss) probes due to their superior target sequence specificity without any prerequisite target labeling. Optimizing sequence combinations for dsprobe design requires promoting a fast, accurate response to a specific target sequence while minimizing spontaneous dsprobe dissociation events. Here, flow cytometry is used to rapidly interrogate the stability and selective responsiveness of 20 candidate LNA and DNA dsprobes to a 24 base-long segment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA and ∼243 degenerate RNA sequences serving as model variants. Importantly, in contrast to quantifying binding events of dye-labeled targets via flow cytometry, the current work employs the Förster resonance energy transfer (FRET)-based detection of unlabeled RNA targets. One DNA dsprobe with a 15-base-long hybridization partner containing a central abasic site emerged as very stable yet responsive only to the SARS-CoV-2 RNA segment. Separate displacement experiments, however, indicated that ∼12% of these quencher-capped hybridization partners remain bound, even in the presence of an excess SARS-CoV-2 RNA target. To examine their quenching range, additional titration studies varied the ratios and spatial placement of nonquencher and quencher-capped hybridization partners in the dsprobes. These titration studies indicate that these residual, bound quencher-capped partners, even at low percentages, act as nodes, enabling both static quenching effects within each residual dsprobe as well as longer-range quenching effects on neighboring FAM moieties. Overall, these studies provide insight into practical implications for rapid dsprobe screening and target detection by combining flow cytometry with FRET-based detection.
Collapse
Affiliation(s)
- Mary Catherine Adams
- School
of Materials Science and Engineering, Parker H. Petit Institute for Bioengineering, Bioscience Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245 United States
| | - Valeria T. Milam
- School
of Materials Science and Engineering, Parker H. Petit Institute for Bioengineering, Bioscience Georgia Institute of Technology, 771 Ferst Drive NW, Atlanta, Georgia 30332-0245 United States
| |
Collapse
|
5
|
Shi L, Tang Q, Yang B, Liu W, Li B, Yang C, Jin Y. Portable and Label-Free Sensor Array for Discriminating Multiple Analytes via a Handheld Gas Pressure Meter. Anal Chem 2022; 94:14453-14459. [PMID: 36194124 DOI: 10.1021/acs.analchem.2c03497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cross-reactive sensor arrays are useful for discriminating multiple analytes in a complex sample. Herein, a portable and label-free gas pressure sensor array was proposed for multiplex analysis via a handheld gas pressure meter. It is based on the interaction diversity of analytes with catalase-like nanomaterials, including Pt nanoparticles (PtNP), Co3O4 nanosheets (Co3O4NS), and Pt-Co alloy nanosheets (PtCoNS), respectively. Thus, the diverse influence of analytes on the catalase-like activity could be output as the difference in the gas pressure. By using principal component analysis, eight proteins were well distinguished by the gas pressure sensor array at the 10 nM level within 12 min. Moreover, different concentrations of proteins and mixtures of proteins could likewise be discriminated. More importantly, the effective discrimination of proteins in human serum and discrimination of five kinds of cells further confirmed the potential of the gas pressure sensor array. Therefore, it provides a portable, cheap, sensitive, and label-free gas pressure sensor array, which is totally different from the reported sensor arrays and holds great potential for portable and cheap discrimination of multiple analytes.
Collapse
Affiliation(s)
- Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bing Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Collaborative Innovation Center of Chemistry for Energy Materials, Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
6
|
Cytotoxicity, antifungal, antioxidant, antibacterial and photodegradation potential of silver nanoparticles mediated via Medicago sativa extract. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
7
|
Prieto-Costas LA, Milton L, Quiñones-Jurgensen CM, Rivera JM. Screening and Quantification of the Encapsulation of Dyes in Supramolecular Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12681-12689. [PMID: 34665963 PMCID: PMC9886066 DOI: 10.1021/acs.langmuir.1c02065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The encapsulation of therapeutic agents, such as drugs and vaccines, into colloidal particles offers an attractive strategy to enhance their efficacy. Previously, we reported the development of guanosine-based supramolecular colloidal particles suitable for encapsulating a broad array of guests ranging from small molecule drugs, like doxorubicin, to proteins, like GFP. Many biomedical applications of such particles require a precise determination of the amount of encapsulated therapeutic agents. Despite many studies describing the development of particle-based delivery systems, a general method for the precise and quick quantification of the encapsulated payload is still lacking. Here, we report a method based on flow cytometry measurements for complexes made from guanosine-based particles and a variety of commercially available fluorescent dyes. This method allows us to determine the apparent affinities of such dyes for two variants of these particles, which in turn provides insightful structure-affinity relationships. In contrast to the current methods, such as those that rely on fluorescence microscopy based on measurements of absorption/fluorescence of dissolved particles or on the supernatant of the solution, the reported method is suitable for high-throughput screening and more reproducible results. The protocol described here should be applicable to a wide variety of colloidal particles being developed around the world. Our group is currently expanding the scope to quantify the encapsulation of other molecules of biomedical interest, such as proteins and nucleic acids.
Collapse
Affiliation(s)
- Luis A Prieto-Costas
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Logan Milton
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - Carla M Quiñones-Jurgensen
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| | - José M Rivera
- Department of Chemistry and Molecular Sciences Research Center, University of Puerto Rico at Río Piedras, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
8
|
Liao J, Zhou J, Song Y, Liu B, Lu J, Jin D. Optical Fingerprint Classification of Single Upconversion Nanoparticles by Deep Learning. J Phys Chem Lett 2021; 12:10242-10248. [PMID: 34647739 DOI: 10.1021/acs.jpclett.1c02923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Highly controlled synthesis of upconversion nanoparticles (UCNPs) can be achieved in the heterogeneous design, so that a library of optical properties can be arbitrarily produced by depositing multiple lanthanide ions. Such a control offers the potential in creating nanoscale barcodes carrying high-capacity information. With the increasing creation of optical information, it poses more challenges in decoding them in an accurate, high-throughput, and speedy fashion. Here, we reported that the deep-learning approach can recognize the complexity of the optical fingerprints from different UCNPs. Under a wide-field microscope, the lifetime profiles of hundreds of single nanoparticles can be collected at once, which offers a sufficient amount of data to develop deep-learning algorithms. We demonstrated that high accuracies of over 90% can be achieved in classifying 14 kinds of UCNPs. This work suggests new opportunities in handling the diverse properties of nanoscale optical barcodes toward the establishment of vast luminescent information carriers.
Collapse
Affiliation(s)
- Jiayan Liao
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Yiliao Song
- Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Baolei Liu
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Jie Lu
- Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, NSW 2007, Australia
- UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Peng W, Huang Y, Zhao Q, Lian G, Chen M, Piao J, Gong X, Chang J. A fluorescent signal “removal” sensor via duplex-specific nuclease-aided cleavage for miRNA detection in flow cytometry. Colloids Surf B Biointerfaces 2020; 185:110570. [DOI: 10.1016/j.colsurfb.2019.110570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/19/2019] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
|
10
|
Dinter F, Burdukiewicz M, Schierack P, Lehmann W, Nestler J, Dame G, Rödiger S. Simultaneous detection and quantification of DNA and protein biomarkers in spectrum of cardiovascular diseases in a microfluidic microbead chip. Anal Bioanal Chem 2019; 411:7725-7735. [PMID: 31760445 PMCID: PMC6881413 DOI: 10.1007/s00216-019-02199-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 12/19/2022]
Abstract
The rapid and simultaneous detection of DNA and protein biomarkers is necessary to detect the outbreak of a disease or to monitor a disease. For example, cardiovascular diseases are a major cause of adult mortality worldwide. We have developed a rapidly adaptable platform to assess biomarkers using a microfluidic technology. Our model mimics autoantibodies against three proteins, C-reactive protein (CRP), brain natriuretic peptide (BNP), and low-density lipoprotein (LDL). Cell-free mitochondrial DNA (cfmDNA) and DNA controls are detected via fluorescence probes. The biomarkers are covalently bound on the surface of size- (11–15 μm) and dual-color encoded microbeads and immobilized as planar layer in a microfluidic chip flow cell. Binding events of target molecules were analyzed by fluorescence measurements with a fully automatized fluorescence microscope (end-point and real-time) developed in house. The model system was optimized for buffers and immobilization strategies of the microbeads to enable the simultaneous detection of protein and DNA biomarkers. All prime target molecules (anti-CRP, anti-BNP, anti-LDL, cfmDNA) and the controls were successfully detected both in independent reactions and simultaneously. In addition, the biomarkers could also be detected in spiked human serum in a similar way as in the optimized buffer system. The detection limit specified by the manufacturer is reduced by at least a factor of five for each biomarker as a result of the antibody detection and kinetic experiments indicate that nearly 50 % of the fluorescence intensity is achieved within 7 min. For rapid data inspection, we have developed the open source software digilogger, which can be applied for data evaluation and visualization. Graphical abstract ![]()
Collapse
Affiliation(s)
- Franziska Dinter
- Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Michał Burdukiewicz
- Faculty of Mathematics and Informations Science, Warsaw University of Technology, plac Politechniki 1, 00-661, Warsaw, Poland
| | - Peter Schierack
- Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany
| | | | - Jörg Nestler
- BiFlow Systems GmbH, Technologie-Campus 1, 09126, Chemnitz, Germany
| | - Gregory Dame
- Institute of Microbiology and Virology-Brandenburg Medical School Theodor Fontane, Universitätsplatz 1, 01968, Senftenberg, Germany
| | - Stefan Rödiger
- Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, 01968, Senftenberg, Germany. .,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany.
| |
Collapse
|
11
|
Quan W, Xudong W, Min X, Lou X, Fan X. One-dimensional and two-dimensional nanomaterials for the detection of multiple biomolecules. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Li J, Kong C, Liu Q, Chen Z. Colorimetric ultrasensitive detection of DNA based on the intensity of gold nanoparticles with dark-field microscopy. Analyst 2019; 143:4051-4056. [PMID: 30059077 DOI: 10.1039/c8an00825f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We present an ultrasensitive colorimetric nucleic acid assay based on the intensity of gold nanoparticles (Au NPs) using dark field microscopy. In the absence of target DNA, two hairpin-like DNA strands with protruding single-stranded DNA (ssDNA) can be absorbed onto the Au NP surface via non-covalent interactions between the exposed nitrogen bases of ssDNA and Au NPs, which inhibits Au NPs from aggregating in a high concentration of salt media, while in the presence of target DNA, two hairpin DNA strands hybridize with target DNA to form double-stranded DNA (dsDNA). After hybridization chain reaction (HCR) amplification, rigid dsDNA polymers are formed, which results in serious Au NP aggregation in the salt environment. By measuring the intensity change of yellow and red dots on a dark-field image, the concentration of target DNA can be accurately quantified with a limit of detection (LOD) of 66 fM.
Collapse
Affiliation(s)
- Jingjing Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, P. R. China.
| | | | | | | |
Collapse
|
13
|
Wurm M, Ilhan S, Jandt U, Zeng AP. Direct and highly sensitive measurement of fluorescent molecules in bulk solutions using flow cytometry. Anal Biochem 2019; 570:32-42. [PMID: 30710511 DOI: 10.1016/j.ab.2019.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 12/24/2018] [Accepted: 01/14/2019] [Indexed: 11/25/2022]
Abstract
Utilizing flow cytometry to monitor progress of bulk biochemical reactions and concentration of chemical species normally relies on the utilization of cells carrying intrinsic fluorescence or modified beads. We present a method for a simple measurement of the fluorescent marker molecule fluorescein and GFPuv in bulk solutions with high sensitivity using a CytoFLEX flow cytometer and without the need for modified beads. Polystyrene beads were used to trigger measurements based on their high scatter signal, to detect the fluorescence signal from two different fluorophores present in the sample solution. We report sensitivities of 33 pg/mL for fluorescein and 50 ng/mL for GFPuv. This method is comparable in sensitivity to a typical spectrometric fluorescence assay tested with fluorescein, and approximately ten times more sensitive for the measurement of GFPuv. PEG was added to the sample at a low concentration of 0.001% (w/v) to block unspecific GFPuv binding to the beads. The method was further applied to measure the GFPuv concentration in crude cell lysate samples used for cell free protein expression. An advantage of this method over spectrometric assays is the ability to differentiate signal subpopulations in the sample based on their individual fluorescence intensities.
Collapse
Affiliation(s)
- Matthias Wurm
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| | - Sibel Ilhan
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| | - Uwe Jandt
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany.
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| |
Collapse
|
14
|
Choi Y, Schmidt C, Tinnefeld P, Bald I, Rödiger S. A new reporter design based on DNA origami nanostructures for quantification of short oligonucleotides using microbeads. Sci Rep 2019; 9:4769. [PMID: 30886341 PMCID: PMC6423227 DOI: 10.1038/s41598-019-41136-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 02/28/2019] [Indexed: 01/05/2023] Open
Abstract
The DNA origami technique has great potential for the development of brighter and more sensitive reporters for fluorescence based detection schemes such as a microbead-based assay in diagnostic applications. The nanostructures can be programmed to include multiple dye molecules to enhance the measured signal as well as multiple probe strands to increase the binding strength of the target oligonucleotide to these nanostructures. Here we present a proof-of-concept study to quantify short oligonucleotides by developing a novel DNA origami based reporter system, combined with planar microbead assays. Analysis of the assays using the VideoScan digital imaging platform showed DNA origami to be a more suitable reporter candidate for quantification of the target oligonucleotides at lower concentrations than a conventional reporter that consists of one dye molecule attached to a single stranded DNA. Efforts have been made to conduct multiplexed analysis of different targets as well as to enhance fluorescence signals obtained from the reporters. We therefore believe that the quantification of short oligonucleotides that exist in low copy numbers is achieved in a better way with the DNA origami nanostructures as reporters.
Collapse
Affiliation(s)
- Youngeun Choi
- University of Potsdam, Department of Chemistry, Physical Chemistry, 14476, Potsdam, Germany.,BAM Federal Institute for Materials Research and Testing, 12489, Berlin, Germany
| | - Carsten Schmidt
- Brandenbrug University of Technology Cottbus-Senftenberg, Institute of Biotechnology, 01968, Senftenberg, Germany
| | - Philip Tinnefeld
- Department Chemie and Center for NanoScience, Ludwig-Maximilians-Universitaet Muenchen, Butenandtstr, 5-13 Haus E, 81377, Muenchen, Germany
| | - Ilko Bald
- University of Potsdam, Department of Chemistry, Physical Chemistry, 14476, Potsdam, Germany. .,BAM Federal Institute for Materials Research and Testing, 12489, Berlin, Germany.
| | - Stefan Rödiger
- Brandenbrug University of Technology Cottbus-Senftenberg, Institute of Biotechnology, 01968, Senftenberg, Germany.
| |
Collapse
|
15
|
Singh C, Kumar J, Kumar P, Chauhan BS, Tiwari KN, Mishra SK, Srikrishna S, Saini R, Nath G, Singh J. Green synthesis of silver nanoparticles using aqueous leaf extract of Premna integrifolia (L.) rich in polyphenols and evaluation of their antioxidant, antibacterial and cytotoxic activity. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1577699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Chandrashekhar Singh
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jitendra Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Brijesh Singh Chauhan
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - S. Srikrishna
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajesh Saini
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Gopal Nath
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jasmeet Singh
- Faculty of Ayurveda, Department of Dravyagun, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
16
|
Qu X, Bian F, Guo Q, Ge Q, Sun Q, Huang X. Ligation-Rolling Circle Amplification on Quantum Dot-Encoded Microbeads for Detection of Multiplex G-Quadruplex-Forming Sequences. Anal Chem 2018; 90:12051-12058. [DOI: 10.1021/acs.analchem.8b02820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaojun Qu
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingsheng Guo
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qingjiang Sun
- State Key Laboratory of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xuebin Huang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
17
|
Liu Y, Li J, Hu D, Lam JHM, Sun D, Pang SW, Lam RHW. Microfluidic implementation of functional cytometric microbeads for improved multiplexed cytokine quantification. BIOMICROFLUIDICS 2018; 12:044112. [PMID: 30147817 PMCID: PMC6086689 DOI: 10.1063/1.5044449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 05/09/2023]
Abstract
Functional microbeads have been widely applied in molecular identification and other biochemical applications in the past decade, owing to the compatibility with flow cytometry and the commercially available microbeads for a wide range of molecular identification. Nevertheless, there is still a technical hurdle caused by the significant sample volume required (∼50 μl), limited molecular detection limit (∼20 pg/ml), complicated liquid/microbead handling procedures, and the long reaction time (>2 h). In this work, we optimize the operation of an automated microbead-based microfluidic device for the reagent mixing and the dynamic cytokine detection. In particular, we adopt fluorescence microscopy for quantification of multiple microbeads in each microchamber instead of flow cytometry for a lower detection limit. The operation parameters are then configured for improved measurement performance. As demonstrated, we consider the cytokine secretion of human macrophage-differentiating lymphocytes stimulated by lipopolysaccharides. We examine requirements on the mixing duration, minimal sample volume, and the image analysis scheme for the smaller biosample volume (<5 μl), the lower cytokine detection limit (∼5 pg/ml), and shorter process time (∼30 min). Importantly, this microfluidic strategy can be further extended in the molecular profiling using other functional microbeads for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Ya Liu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jiyu Li
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Dinglong Hu
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Josh H. M. Lam
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | | | | | - Raymond H. W. Lam
- Author to whom correspondence should be addressed: . Tel.: +852-3442-8577. Fax: +852-3442-0172
| |
Collapse
|
18
|
Zhao Q, Piao J, Peng W, Wang Y, Zhang B, Gong X, Chang J. Simple and Sensitive Quantification of MicroRNAs via PS@Au Microspheres-Based DNA Probes and DSN-Assisted Signal Amplification Platform. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3324-3332. [PMID: 29300448 DOI: 10.1021/acsami.7b16733] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Identifying the microRNA (miRNA) expression level can provide critical information for early diagnosis of cancers or monitoring the cancer therapeutic efficacy. This paper focused on a kind of gold-nanoparticle-coated polystyrene microbeads (PS@Au microspheres)-based DNA probe as miRNA capture and duplex-specific nuclease (DSN) signal amplification platform based on an RGB value readout for detection of miRNAs. In virtue of the outstanding selectivity and simple experimental operation, 5'-fluorochrome-labeled molecular beacons (MBs) were immobilized on PS@Au microspheres via their 3'-thiol, in the wake of the fluorescence quenching by nanoparticle surface energy transfer (NSET). Target miRNAs were captured by the PS@Au microspheres-based DNA probe through DNA/RNA hybridization. DSN enzyme subsequently selectively cleaved the DNA to recycle the target miRNA and release of fluorophores, thereby triggering the signal amplification with more free fluorophores. The RGB value measurement enabled a detection limit of 50 fM, almost 4 orders of magnitude lower than PS@Au microspheres-based DNA probe detection without DSN. Meanwhile, by different encoding of dyes, miRNA-21 and miRNA-10b were simultaneously detected in the same sample. Considering the ability for quantitation, high sensitivity, and convenient merits, the PS@Au microspheres-based DNA probe and DSN signal amplification platform supplied valuable information for early diagnosis of cancers.
Collapse
Affiliation(s)
- Qian Zhao
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Jiafang Piao
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Weipan Peng
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Yang Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Bo Zhang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin) , Tianjin 300072, China
| |
Collapse
|
19
|
Shen L, Bing T, Liu X, Wang J, Wang L, Zhang N, Shangguan D. Flow Cytometric Bead Sandwich Assay Based on a Split Aptamer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2312-2318. [PMID: 29276885 DOI: 10.1021/acsami.7b16192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A few aptamers still bind their targets after being split into two moieties. Split aptamers have shown great potential in the development of aptameric sensors. However, only a few split aptamers have been generated because of lack of knowledge on the binding structure of their parent aptamers. Here, we report the design of a new split aptamer and a flow cytometric bead sandwich assay using a split aptamer instead of double antibodies. Through DMS footprinting and mutation assay, we figured out the target-binding moiety and the structure-stabilizing moiety of the l-selectin aptamer, Sgc-3b. By separating the duplex strand in the structure-stabilizing moiety, we obtained a split aptamer that bound l-selectin. After optimization of one part of the split sequence to eliminate the nonspecific binding of the split sequence pair, we developed a split-aptamer-based cytometric bead assay (SACBA) for the detection of soluble l-selectin. SACBA showed good sensitivity and selectivity to l-selectin and was successfully applied for the detection of spiked l-selectin in the human serum. The strategies for generating split aptamers and designing the split-aptamer-based sandwich assay are simple and efficient and show good practicability in aptamer engineering.
Collapse
Affiliation(s)
- Luyao Shen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Tao Bing
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xiangjun Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Junyan Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Linlin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Nan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Dihua Shangguan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|