1
|
Wang Q, Han J, Wei M, Miao H, Zhang M, Wu B, Chen Y, Zheng Y, Xu H, Gale RP, Yin B. Multi-Walled Carbon Nanotubes Accelerate Leukaemia Development in a Mouse Model. TOXICS 2024; 12:646. [PMID: 39330574 PMCID: PMC11435454 DOI: 10.3390/toxics12090646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024]
Abstract
Inflammation is associated with an increased risk of developing various cancers in both animals and humans, primarily solid tumors but also myeloproliferative neoplasms (MPNs), myelodysplastic syndromes (MDS), and acute myeloid leukemia (AML). Multi-walled carbon nanotubes (MWCNTs), a type of carbon nanotubes (CNTs) increasingly used in medical research and other fields, are leading to a rising human exposure. Our study demonstrated that exposing mice to MWCNTs accelerated the progression of spontaneous MOL4070LTR virus-induced leukemia. Additionally, similar exposures elevated pro-inflammatory cytokines such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α and induced reactive oxygen species (ROS) in a murine macrophage cell line. These effects were significantly reduced in immunodeficient mice and when mice were treated with methoxypolyethylene glycol amine (PEG)-modified MWCNTs. These findings underscore the necessity of evaluating the safety of MWCNTs, particularly for those with hematologic cancers.
Collapse
Affiliation(s)
- Qingqing Wang
- Clinical Medical Research Center, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China;
| | - Jingdan Han
- Clinical Medical Research Center, Jiangnan University Medical Center, Wuxi 214002, China; (J.H.); (M.W.)
| | - Mujia Wei
- Clinical Medical Research Center, Jiangnan University Medical Center, Wuxi 214002, China; (J.H.); (M.W.)
| | - Huikai Miao
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Min Zhang
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Biao Wu
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Yao Chen
- Department of Laboratory Medicine, Jiangnan University Medical Center, Wuxi 214002, China; (H.M.); (M.Z.); (B.W.); (Y.C.)
| | - Yanwen Zheng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China;
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China;
| | - Robert Peter Gale
- Haematology Research Centre, Department of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK;
| | - Bin Yin
- Clinical Medical Research Center, The Affiliated Wuxi No. 2 People’s Hospital of Nanjing Medical University, Wuxi 214002, China;
- Clinical Medical Research Center, Jiangnan University Medical Center, Wuxi 214002, China; (J.H.); (M.W.)
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital, Soochow University, Suzhou 215123, China;
| |
Collapse
|
2
|
Svadlakova T, Holmannova D, Kolackova M, Malkova A, Krejsek J, Fiala Z. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. Int J Mol Sci 2022; 23:ijms23168889. [PMID: 36012161 PMCID: PMC9408998 DOI: 10.3390/ijms23168889] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
In the field of science, technology and medicine, carbon-based nanomaterials and nanoparticles (CNMs) are becoming attractive nanomaterials that are increasingly used. However, it is important to acknowledge the risk of nanotoxicity that comes with the widespread use of CNMs. CNMs can enter the body via inhalation, ingestion, intravenously or by any other route, spread through the bloodstream and penetrate tissues where (in both compartments) they interact with components of the immune system. Like invading pathogens, CNMs can be recognized by large numbers of receptors that are present on the surface of innate immune cells, notably monocytes and macrophages. Depending on the physicochemical properties of CNMs, i.e., shape, size, or adsorbed contamination, phagocytes try to engulf and process CNMs, which might induce pro/anti-inflammatory response or lead to modulation and disruption of basic immune activity. This review focuses on existing data on the immunotoxic potential of CNMs, particularly in professional phagocytes, as they play a central role in processing and eliminating foreign particles. The results of immunotoxic studies are also described in the context of the entry routes, impacts of contamination and means of possible elimination. Mechanisms of proinflammatory effect depending on endocytosis and intracellular distribution of CNMs are highlighted as well.
Collapse
Affiliation(s)
- Tereza Svadlakova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Correspondence:
| | - Drahomira Holmannova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Martina Kolackova
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Andrea Malkova
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| | - Jan Krejsek
- Department of Clinical Immunology and Allergology, University Hospital Hradec Kralove and Faculty of Medicine in Hradec Kralove, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Zdenek Fiala
- Department of Preventive Medicine, Faculty of Medicine in Hradec Kralove, Charles University, 50003 Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Mangini M, Verde A, Boraschi D, Puntes VF, Italiani P, De Luca AC. Interaction of nanoparticles with endotoxin Importance in nanosafety testing and exploitation for endotoxin binding. Nanotoxicology 2021; 15:558-576. [PMID: 33784953 DOI: 10.1080/17435390.2021.1898690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interaction between engineered nanoparticles and the bacterial lipopolysaccharide, or endotoxin, is an event that warrants attention. Endotoxin is one of the most potent stimulators of inflammation and immune reactions in human beings, and is a very common contaminant in research labs. In nanotoxicology and nanomedicine, the presence of endotoxin on the nanoparticle surface affects their biological properties leading to misinterpretation of results. This review discusses the importance of detecting the endotoxin contamination on nanoparticles, focusing on the current method of endotoxin detection and their suitability for nanoparticulate materials. Conversely, the capacity of nanoparticles to bind endotoxin can be enhanced by functionalization with endotoxin-capturing molecules, opening the way to the development of novel endotoxin detection assays.
Collapse
Affiliation(s)
- Maria Mangini
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Alessandro Verde
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| | - Diana Boraschi
- Laboratory of Innate Immunity, Inflammation and Immuno-nanosafety, IBBC-CNR, Napoli, Italy
| | - Victor F Puntes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), Barcelona, Spain.,Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Paola Italiani
- Laboratory of Innate Immunity, Inflammation and Immuno-nanosafety, IBBC-CNR, Napoli, Italy
| | - Anna Chiara De Luca
- Laboratory of Biophotonics and Advanced Microscopy, Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Napoli, Italy
| |
Collapse
|
4
|
The formation of supramolecular carbon nanofiber via amidation reaction on the surface of amino single walled carbon nanotubes for selective adsorption organic pollutants. J Colloid Interface Sci 2019; 542:112-122. [DOI: 10.1016/j.jcis.2019.01.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
|
5
|
Garbovskiy Y. Biological Contamination of Nanoparticles and Its Manifestation in Optical Absorbance Measurements. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yuriy Garbovskiy
- UCCS BioFrontiers Center
and Department of Physics, University of Colorado Colorado Springs, Colorado Springs, Colorado 80918, United States
| |
Collapse
|
6
|
Mukherjee SP, Bottini M, Fadeel B. Graphene and the Immune System: A Romance of Many Dimensions. Front Immunol 2017; 8:673. [PMID: 28659915 PMCID: PMC5468375 DOI: 10.3389/fimmu.2017.00673] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/24/2017] [Indexed: 11/18/2022] Open
Abstract
Graphene-based materials (GBMs) are emerging as attractive materials for biomedical applications. Understanding how these materials are perceived by and interact with the immune system is of fundamental importance. Phagocytosis is a major mechanism deployed by the immune system to remove pathogens, particles, and cellular debris. Here, we discuss recent studies on the interactions of GBMs with different phagocytic cells, including macrophages, neutrophils, and dendritic cells. The importance of assessing GBMs for endotoxin contamination is discussed as this may skew results. We also explore the role of the bio-corona for interactions of GBMs with immune cells. Finally, we highlight recent evidence for direct plasma membrane interactions of GBMs.
Collapse
Affiliation(s)
- Sourav P Mukherjee
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Massimo Bottini
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy.,Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Bengt Fadeel
- Nanosafety and Nanomedicine Laboratory, Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|