1
|
Xu D, Li X, Zheng T, Zhao R, Zhang P, Li K, Li Z, Zheng L, Zuo X. The performance of an atomically dispersed oxygen reduction catalyst prepared by γ-CD-MOF integration with FePc. NANOSCALE ADVANCES 2022; 4:2171-2179. [PMID: 36133450 PMCID: PMC9419513 DOI: 10.1039/d2na00095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/25/2022] [Indexed: 06/16/2023]
Abstract
Here, a series of Fe/N/C catalysts with different proportions and pyrolysis temperatures are prepared by co-pyrolysis of melamine with a γ-cyclodextrin metal-organic framework (γ-CD-MOF) containing iron(ii) phthalocyanine (FePc). Due to the restriction effect of the host and guest at the molecular level, γ-CD-MOF can effectively avoid the π-π stacking of FePc and restrain the agglomeration of Fe atoms during pyrolysis. The phases and structures of the catalysts are characterized, which proves that the obtained catalyst has a three-dimensional porous and internal cavity structure with abundant surface area (1055.317 m2 g-1) and Fe is atomically dispersed in nitrogen-doped carbon. The onset potential (0.988 V vs. RHE) and half-wave potential (0.846 V vs. RHE) of FePc@CD/M (1 : 20)-1000 are superior to those of a commercial 20% Pt/C catalyst. FePc@CD/M (1 : 20)-1000 also exhibits an approximately four-electron (3.84) transfer process, good stability and excellent methanol tolerance.
Collapse
Affiliation(s)
- Dawei Xu
- Department of Chemistry, Capital Normal University Beijing 100048 China +86-10-68903040 +86-10-68903086
| | - Xuhui Li
- Department of Chemistry, Capital Normal University Beijing 100048 China +86-10-68903040 +86-10-68903086
| | - Tingting Zheng
- Department of Chemistry, Capital Normal University Beijing 100048 China +86-10-68903040 +86-10-68903086
| | - Ruixue Zhao
- Department of Chemistry, Capital Normal University Beijing 100048 China +86-10-68903040 +86-10-68903086
| | - Pengyu Zhang
- Department of Chemistry, Capital Normal University Beijing 100048 China +86-10-68903040 +86-10-68903086
| | - Kai Li
- Department of Chemistry, Capital Normal University Beijing 100048 China +86-10-68903040 +86-10-68903086
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University Beijing 100048 China +86-10-68903040 +86-10-68903086
| | - Lirong Zheng
- Department Beijing Synchrotron Radiation, Facility Institute of High Energy Physics China
| | - Xia Zuo
- Department of Chemistry, Capital Normal University Beijing 100048 China +86-10-68903040 +86-10-68903086
| |
Collapse
|
2
|
Fang Z, Wang LC, Wang Y, Sikorski E, Tan S, Li-Oakey KD, Li L, Yablonsky G, Dixon DA, Fushimi R. Pt-Assisted Carbon Remediation of Mo 2C Materials for CO Disproportionation. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zongtang Fang
- Biological and Chemical Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| | - Lu-Cun Wang
- Biological and Chemical Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| | - Yixiao Wang
- Biological and Chemical Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| | - Ember Sikorski
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
| | - Shuai Tan
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Katie Dongmei Li-Oakey
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
- Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Lan Li
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Center for Advanced Energy Studies, Idaho Falls, Idaho 83401, United States
| | - Gregory Yablonsky
- Department of Energy, Environment and Chemical Engineering, Washington University in Saint Louis, Saint Louis, Missouri 63103, United States
| | - David A. Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0336, United States
| | - Rebecca Fushimi
- Biological and Chemical Science and Technology, Idaho National Laboratory, Idaho Falls, Idaho 83401, United States
| |
Collapse
|
3
|
Zhong JP, Hou C, Li L, Waqas M, Fan YJ, Shen XC, Chen W, Wan LY, Liao HG, Sun SG. A novel strategy for synthesizing Fe, N, and S tridoped graphene-supported Pt nanodendrites toward highly efficient methanol oxidation. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Garg A, Gonçalves DS, Liu Y, Wang Z, Wang L, Yoo JS, Kolpak A, Rioux RM, Zanchet D, Román-Leshkov Y. Impact of Transition Metal Carbide and Nitride Supports on the Electronic Structure of Thin Platinum Overlayers. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01272] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniela Zanchet
- Institute of Chemistry, University of Campinas, Campinas, SP 13083-970, Brazil
| | | |
Collapse
|
5
|
Demirtas M, Ustunel H, Toffoli D. Effect of Platinum, Gold, and Potassium Additives on the Surface Chemistry of CdI 2-Antitype Mo 2C. ACS OMEGA 2017; 2:7976-7984. [PMID: 31457348 PMCID: PMC6645302 DOI: 10.1021/acsomega.7b01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/03/2017] [Indexed: 06/10/2023]
Abstract
Transition metal carbides are versatile materials for diverse industrial applications including catalysis, where their relatively low cost is very attractive. In this work, we present a rather extensive density functional theory study on the energetics of adsorption of a selection of atomic and molecular species on two Mo terminations of the CdI2 antitype phase of Mo2C. Moreover, the coadsorption of CO in the presence of preadsorbed metal atoms and its dissociative adsorption in the absence and presence of preadsorbed Pt and K were investigated. By using CO as a probe to understand the structural/electronic effects of the preadsorption of the metal atoms on the Mo2C(001) surface, we showed that K further enhances CO adsorption/activation on the surface, in contrast to the precious metals considered. Moreover, it was observed that the presence of both Pt and K stabilizes the transition state for the C-O bond dissociation, lowering the activation barrier for the dissociation of the C-O bond by about 0.3 and 0.4 eV, respectively.
Collapse
Affiliation(s)
- Merve Demirtas
- Department
of Physics, Middle East Technical University, Dumlupinar Bulvari 1, 06800 Ankara, Turkey
| | - Hande Ustunel
- Department
of Physics, Middle East Technical University, Dumlupinar Bulvari 1, 06800 Ankara, Turkey
| | - Daniele Toffoli
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Università
degli Studi di Trieste, Via L. Giorgieri 1, I-34127 Trieste, Italy
| |
Collapse
|
6
|
|