1
|
Guan Y, Shen Z, Gu X, Wu D, Wang S, Li Z, Yan S, Zou Z. Effective Improvement of Thermodynamics and Kinetics of BiVO 4 Photoanode via CuI for Photoelectrochemical Water Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39561331 DOI: 10.1021/acs.langmuir.4c03658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The preparation of durable and efficient photoanodes for photoelectrochemical water oxidation is of great importance in promoting the development of green hydrogen production and artificial photosynthesis. Here, n-type BiVO4 was combined with p-type CuI to construct a CuI/BiVO4 (CIB-1) p-n heterojunction photoanode. The composite photoanode effectively overcame the drawbacks of BiVO4, such as low separation and injection efficiency of photogenerated electron-hole pairs. As a result, the CIB-1 had the highest photocurrent density of 1.98 mA cm-2, which was 2.5 times higher than pure BiVO4 with 0.79 mA cm-2 at 1.23 V (vs RHE) under AM 1.5G light irradiation. The CIB-1 had a lower Tafel slope of 23.2 mV decade-1 compared to 47.9 mV decade-1 for BiVO4, so the water oxidation kinetics was remarkably advanced over CuI/BiVO4. Based on DFT calculations, the OER overpotential of 0.480 V for CuI/BiVO4 was significantly lower than that of 1.546 V for BiVO4 due to the lower free energy from OH- to oxygen over CuI/BiVO4 compared to BiVO4.
Collapse
Affiliation(s)
- Yuan Guan
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Zheng Shen
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xinyi Gu
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Dayu Wu
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Shaomang Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, PR China
| | - Zhongyu Li
- Jiangsu Province Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, PR China
| |
Collapse
|
2
|
Wang S, Wu H, Wang J, Guan Y, Li Z, Yan S, He H. Synthesis of H 2O 2 to Self-Catalyzed Generation of •OH over ZnO/CuI/Cu Foam Electrode for the Self-Fenton Cleaning of Wastewater. Inorg Chem 2024; 63:15061-15071. [PMID: 39091042 DOI: 10.1021/acs.inorgchem.4c02056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
A novel ZnO/CuI/Cu foam electrode was constructed, which demonstrated excellent photoelectrocatalytic activity for the self-Fenton degradation of tetracycline in water. The H2O2 yield was 405.0 μmol L-1 over ZnO/CuI/Cu foam (CIZ-3) under light irradiation (100 mW cm-2) for 5 h at -1.23 V (vs NHE), which was 1.7 times higher than that of ZnO/Cu foam and 1.6 times higher than that of CuI/Cu foam, respectively. The 99.0% of tetracycline was degraded by CIZ-3 due to its efficient yield of H2O2 to self-catalyzed generation of •OH. The results of the open-circuit potential between CuI and ZnO displayed that the electrons from the conduction band of CuI flowed to ZnO and the holes from the valence band of ZnO migrated to CuI. As a result, the photogenerated electron-hole pairs of ZnO/CuI were efficiently separated, which greatly promoted the photoelectrocatalytic activity of ZnO/CuI/foam. The toxicity of the aqueous tetracycline solution was significantly reduced by observing the growth of Escherichia coli in the treated wastewater.
Collapse
Affiliation(s)
- Shaomang Wang
- School of Urban Construction, Changzhou University, Changzhou 213164, P. R. China
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Haokang Wu
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Jie Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Yuan Guan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
3
|
Mo C, Zhou L, Zheng J, Liang B, Huang H, Huang G, Liang J, Li S, Junaid M, Wang J, Huang K. Efficient photodegradation of antibiotics by g-C 3N 4 and 3D flower-like Bi 2WO 6 perovskite structure: Insights into the preparation, evaluation, and potential mechanism. CHEMOSPHERE 2024; 359:142286. [PMID: 38729439 DOI: 10.1016/j.chemosphere.2024.142286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Antibiotics are emerging organic pollutants that have attracted huge attention owing to their abundant use and associated ecological threats. The aim of this study is to develop and use photocatalysts to degrade antibiotics, including tetracycline (TC), ciprofloxacin (CIP), and amoxicillin (AMOX). Therefore, a novel Z-scheme heterojunction composite of g-C3N4 (gCN) and 3D flower-like Bi2WO6 (BW) perovskite structure was designed and developed, namely Bi2WO6/g-C3N4 (BW/gCN), which can degrade low-concentration of antibiotics in aquatic environments under visible light. According to the Density Functional Theory (DFT) calculation and the characterization results of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FITR), Scanning electron microscopy - energy spectroscopy (SEM-EDS) and X-ray photoelectron spectroscopy (XPS), this heterojunction was formed in the recombination process. Furthermore, the results of 15 wt%-BW/gCN photocatalytic experiments showed that the photodegradation rates (Rp) of TC, CIP, and AMOX were 92.4%, 90.1% and 82.3%, respectively, with good stability in three-cycle photocatalytic experiments. Finally, the quenching experiment of free radicals showed that the holes (h+) and superoxide radicals (·O2-) play a more important role than the hydroxyl radicals (·OH) in photocatalysis. In addition, a possible antibiotic degradation pathway was hypothesized on the basis of High performance liquid chromatography (HPLC) analysis. In general, we have developed an effective catalyst for photocatalytic degradation of antibiotic pollutants and analyzed its photocatalytic degradation mechanism, which provides new ideas for follow-up research and expands its application in the field of antibiotic composite pollution prevention and control.
Collapse
Affiliation(s)
- Chao Mo
- School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China; National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China
| | - Jiahui Zheng
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Bin Liang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Hualin Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Gang Huang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Jing Liang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China.
| | - Shiheng Li
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China
| | - Muhammad Junaid
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jun Wang
- National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kai Huang
- School of Chemistry and Chemical Engineering, Guangxi University, 530004, Nanning, PR China; National Key Laboratory of Non-Food Biomass Energy Technology, Guangxi Key Laboratory of Bio-Refinery, Institute of Eco-Environmental Research, Guangxi Academy of Sciences, 98 Daling Road, 530007, Nanning, PR China.
| |
Collapse
|
4
|
Wang M, Langer M, Altieri R, Crisci M, Osella S, Gatti T. Two-Dimensional Layered Heterojunctions for Photoelectrocatalysis. ACS NANO 2024; 18:9245-9284. [PMID: 38502101 DOI: 10.1021/acsnano.3c12274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Two-dimensional (2D) layered nanomaterial heterostructures, arising from the combination of 2D materials with other low-dimensional species, feature a large surface area to volume ratio, which provides a high density of active sites for catalytic applications and for (photo)electrocatalysis (PEC). Meanwhile, their electronic band structure and high electrical conductivity enable efficient charge transfer (CT) between the active material and the substrate, which is essential for catalytic activity. In recent years, researchers have demonstrated the potential of a range of 2D material interfaces, such as graphene, graphitic carbon nitride (g-C3N4), metal chalcogenides (MCs), and MXenes, for (photo)electrocatalytic applications. For instance, MCs such as MoS2 and WS2 have shown excellent catalytic activity for hydrogen evolution, while graphene and MXenes have been used for the reduction of carbon dioxide to higher value chemicals. However, despite their great potential, there are still major challenges that need to be addressed to fully realize the potential of 2D materials for PEC. For example, their stability under harsh reaction conditions, as well as their scalability for large-scale production are important factors to be considered. Generating heterojunctions (HJs) by combining 2D layered structures with other nanomaterials is a promising method to improve the photoelectrocatalytic properties of the former. In this review, we inspect thoroughly the recent literature, to demonstrate the significant potential that arises from utilizing 2D layered heterostructures in PEC processes across a broad spectrum of applications, from energy conversion and storage to environmental remediation. With the ongoing research and development, it is likely that the potential of these materials will be fully expressed in the near future.
Collapse
Affiliation(s)
- Mengjiao Wang
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Michal Langer
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Warsaw, 02097, Poland
| | - Roberto Altieri
- Institute of Physical Chemistry and Center for Materials Research (LaMa), Justus Liebig University, Giessen, 35392, Germany
| | - Matteo Crisci
- Institute of Physical Chemistry and Center for Materials Research (LaMa), Justus Liebig University, Giessen, 35392, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Warsaw, 02097, Poland
| | - Teresa Gatti
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| |
Collapse
|
5
|
Deng HM, Cheng ML, Yuan YL, Yuan R, Chai YQ. Long-Wavelength Illumination-Induced Photocurrent Enhancement of a ZnPc Photocathodic Material for Bioanalytical Applications. Anal Chem 2023; 95:16625-16630. [PMID: 37908115 DOI: 10.1021/acs.analchem.3c02971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Herein, a novel photocathodic nanocomposite poly{4,8-bis[5-(2-ethylhexyl)-thiophen-2-yl] benzo[1,2-b:4,5-b']dithiophene-2,6-diyl-alt-3-fluoro-2-[(2-ethylhexyl)-carbonyl]thieno[3,4-b]thiophene-4,6-diyl}/phthalocyanine zinc (PTB7-Th/ZnPc) with high photoelectric conversion efficiency under long-wavelength illumination was prepared to construct an ultrasensitive biosensor for the detection of microRNA-21 (miRNA-21), accompanied by a prominent anti-interference capability toward reductive substances. Impressively, the new heterojunction PTB7-Th/ZnPc nanocomposite could not only generate a strong cathodic photocurrent to improve the detection sensitivity under long-wavelength illumination (660 nm) but also effectively avoid the high damage of biological activity caused by short-wavelength light stimulation. Accordingly, by coupling with rolling circle amplification (RCA)-triggered DNA amplification to form functional biquencher nanospheres, a PEC biosensor was fabricated to realize the ultrasensitive analysis of miRNA-21 in the concentration range of 0.1 fM to 10 nM with a detection limit as low as 32 aM. This strategy provided a novel long-wavelength illumination-induced photocurrent enhancement photoactive material for a sensitive and low-damage anti-interference bioassay and early clinical disease diagnosis.
Collapse
Affiliation(s)
- Han-Mei Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Mei-Ling Cheng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Li Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
6
|
Construction of Direct Z-Scheme SnS 2 Quantum Dots/Conjugated Polyimide with Superior Photocarrier Separation for Enhanced Photocatalytic Performances. Polymers (Basel) 2022; 14:polym14245483. [PMID: 36559850 PMCID: PMC9782883 DOI: 10.3390/polym14245483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In this study, a novel direct Z-scheme SnS2 quantum dots/sulfur-doped polyimide (SQDs/SPI) photocatalyst was firstly fabricated by an in situ crystallization growth of SnS2 quantum dots on sulfur-doped polyimide through a facile hydrothermal method. The photocatalytic hydrogen production activity of 5SQDs/SPI samples reached 3526 μmoL g-1 in the coexistence of triethanolamine and methanol used as hole sacrificial agents, which is about 13 times higher than that of SPI under the same conditions and 42 times higher than that of SPI only as a hole sacrificial agent. The improvement can be related to the direct Z-scheme charge transfer in the tight interface between SQDs and SPI, which promoted rapid separation and significantly prolonged the lifetime of photoexcited carriers. The Z-scheme charge transfer mechanism was proposed. This discovery comes up with a new strategy for the development of an efficient, environmentally friendly, and sustainable sulfide quantum dots/polymer non-noble metal photocatalyst.
Collapse
|
7
|
The interface design of (0D/2D/1D) AgI/BiOI/C3N5 dual Z-scheme heterostructures with efficient visible-light-driven photocatalytic activity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
8
|
Castillo-Cabrera GX, Espinoza-Montero PJ, Alulema-Pullupaxi P, Mora JR, Villacís-García MH. Bismuth Oxyhalide-Based Materials (BiOX: X = Cl, Br, I) and Their Application in Photoelectrocatalytic Degradation of Organic Pollutants in Water: A Review. Front Chem 2022; 10:900622. [PMID: 35898970 PMCID: PMC9309798 DOI: 10.3389/fchem.2022.900622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 11/24/2022] Open
Abstract
An important target of photoelectrocatalysis (PEC) technology is the development of semiconductor-based photoelectrodes capable of absorbing solar energy (visible light) and promoting oxidation and reduction reactions. Bismuth oxyhalide-based materials BiOX (X = Cl, Br, and I) meet these requirements. Their crystalline structure, optical and electronic properties, and photocatalytic activity under visible light mean that these materials can be coupled to other semiconductors to develop novel heterostructures for photoelectrochemical degradation systems. This review provides a general overview of controlled BiOX powder synthesis methods, and discusses the optical and structural features of BiOX-based materials, focusing on heterojunction photoanodes. In addition, it summarizes the most recent applications in this field, particularly photoelectrochemical performance, experimental conditions and degradation efficiencies reported for some organic pollutants (e.g., pharmaceuticals, organic dyes, phenolic derivatives, etc.). Finally, as this review seeks to serve as a guide for the characteristics and various properties of these interesting semiconductors, it discusses future PEC-related challenges to explore.
Collapse
Affiliation(s)
- G. Xavier Castillo-Cabrera
- Escuela de Ciencias Químicas, Pontificia Universidad Católica Del Ecuador, Quito, Ecuador
- Facultad de Ciencias Químicas, Universidad Central Del Ecuador, Quito, Ecuador
| | | | | | | | | |
Collapse
|
9
|
Wang S, An W, Guan Y, Zheng Z, Hu Z, Wang H, Li Z. Type-Ⅰ hetero-junction of BiOI-BiO2-x anchored on Ni foam accelerating charge separation and transfer for efficiently purifying hazardous wastewater. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
10
|
Chen Y, Sun X, Huang Y, Guo D, Zheng L, Liu Y, Li S. Hierarchical Bi0.5Fe0.5VO4/honeycomb ceramic plate synergize plasma induce multi-catalysis by constructing a plasma-catalyst system for organic pollutant degradation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Deng HM, Xiao MJ, Chai YQ, Yuan R, Yuan YL. P3HT-PbS nanocomposites with mimicking enzyme as bi-enhancer for ultrasensitive photocathodic biosensor. Biosens Bioelectron 2022; 197:113806. [PMID: 34808591 DOI: 10.1016/j.bios.2021.113806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/02/2022]
Abstract
Photocathodic biosensor has great capability in anti-interference from reductive substances, however, the low signal intensity of photoactive species with inferior detection sensitivity restricts its wide application. In this work, the P3HT-PbS nanocomposites were synthesized as signal tags, by integrating with target-trigger generated hemin/G-quadruplex nanotail as bi-enhancer to significantly apmplify the photocurrent, an ultrasensitive photocathodic biosensor was proposed for detection of β2-microglobulin (β2-MG). Impressively, P3HT with cathode signal is an attractive polymer consisted of substantial thiophene groups with high absorption coefficient and mobility of photo-generated holes, which could anchor with the PbS dots as sensitizer, providing a high charge mobility and strong photosensitivity. More importantly, target-trigger generated hemin/G-quadruplexes could accept the electron from illuminated photoactive species through the conversion of Fe(III)/Fe(II) in hemin, effectively reducing charge recombination rate as well as accelerating the generation of electron acceptor O2 in the assistant of H2O2. Moreover, hemin/G-quadruplexes inherited the HRP mimicking catalytic capability that further improved the produce of plentiful O2. As a result, PEC cathode signal was significantly enhanced for sensitive analysis of β2-MG protein with a good detection range of 0.1 pg/mL to 100 ng/mL. It would provide a path for establishing PEC platform with excellent anti-interference ability and extend the application of photoelectrochemical (PEC) biosensor in bioanalysis and early disease diagnosis.
Collapse
Affiliation(s)
- Han-Mei Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Ming-Jun Xiao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Li Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
12
|
Zhang S, Wang C, Wu T, Fan D, Hu L, Wang H, Wei Q, Wu D. A sandwiched photoelectrochemical biosensing platform for detecting Cytokeratin-19 fragments based on Ag 2S-sensitized BiOI/Bi 2S 3 heterostructure amplified by sulfur and nitrogen co-doped carbon quantum dots. Biosens Bioelectron 2022; 196:113703. [PMID: 34656853 DOI: 10.1016/j.bios.2021.113703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/09/2021] [Indexed: 01/20/2023]
Abstract
A sandwiched photoelectrochemical (PEC) immunosensor based on BiOI/Bi2S3/Ag2S was designed for the quantitative detection of cytokeratin-19 fragments (CYFRA21-1) in serum. In this work, due to the intervention of the narrow band gap Bi2S3, the absorption of the light source by the BiOI/Bi2S3 heterostructure has been significantly enhanced. Meanwhile, the matched band structure of BiOI, Bi2S3 and Ag2S promoted the rapid transfer of electrons between the conduction bands and effectively inhibited the recombination of electron-hole pairs, thus enhanced the photoelectric signals. Sulfur and nitrogen co-doped carbon quantum dots (S,N-CQDs) with up-conversion luminescence properties provided more light energy for the base materials. On the other hand, S,N-CQDs were combined with Ab2 through polydopamine (PDA), as secondary antibody labels, further enhanced the sensitivity of the sensor. Herein, the linear range of the sensor was from 0.001 to 100 ng mL-1 and the detection limit was 1.72 pg mL-1. In addition, the sensor provides a feasible way for the detection of tumor markers due to its excellent selectivity, repeatability and good stability.
Collapse
Affiliation(s)
- Shitao Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Chao Wang
- Department of Rehabilitation, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Tingting Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Lihua Hu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Huan Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| |
Collapse
|
13
|
Su P, Liu H, Jin Z. Hierarchical Co 3(PO 4) 2/CuI/g-C nH 2n-2 S-Scheme Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Inorg Chem 2021; 60:19402-19413. [PMID: 34875834 DOI: 10.1021/acs.inorgchem.1c03223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Graphdiyne (GD), a new type of carbon allotrope formed by sp and sp2 hybrid carbon atoms, has attracted wide attention due to its high π-conjugation degree, special band structure, and uniformly distributed pores. In traditional synthesis methods, hexaethylbenzene was coupled on the substrate catalytic material (copper foil or foamed copper) to generate graphdiyne. In this work, CuI was used as the substrate catalytic material, and the CuI-GD composite was synthesized by cross-coupling in the pyridine solution of hexaethylbenzene. For the first time, Co3(PO4)2 was modified by the CuI-GD composite material to prepare a Co3(PO4)2/CuI-GD S-scheme heterojunction catalyst, which avoided the complicated process of removing the substrate catalytic material. Under the action of the internal electric field, electrons are induced to move quickly and directionally, and the powerful photogenerated electrons in the conduction band (CB) of GD and the holes in the valence band (VB) of CuI are retained to participate in the photocatalytic reaction. These advantages were combined with the high-energy acetylene bond in GD, which accelerated the catalytic reaction of the Co3(PO4)2/CuI-GD heterostructure. Electrochemical and fluorescence analysis showed that Co3(PO4)2/CuI-GD has faster electron and hole separation efficiency, lower hydrogen evolution overpotential, and higher carrier utilization. Therefore, Co3(PO4)2/CuI-GD exhibited good hydrogen evolution activity. This work shows that GD has broad prospects in designing high-performance photocatalyst systems.
Collapse
Affiliation(s)
- Peng Su
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Hai Liu
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| |
Collapse
|
14
|
Kanti Bera K, Chakraborty M, Kanti Bera S, Mandal M, Chatterjee S, Kumar Bhattacharya S. Synthesis of Different Pt‐ZnO Binary Composites for Synergistic Photo‐Electrocatalytic Oxidation of Methanol in Alkali. ChemistrySelect 2021. [DOI: 10.1002/slct.202100562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kamal Kanti Bera
- Physical Chemistry Section Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Malay Chakraborty
- Physical Chemistry Section Department of Chemistry, Jadavpur University Kolkata 700032 India
| | - Shyamal Kanti Bera
- School of Chemical Science National Institute of Science Education and Research (NISER) Bhubaneswar 752050 India
| | - Manas Mandal
- Physical Chemistry Section Department of Chemistry, Jadavpur University Kolkata 700032 India
- Department of Chemistry Sree Chaitanya College, Habra, North 24 Parganas West Bengal 743268 India
| | - Sujit Chatterjee
- Physical Chemistry Section Department of Chemistry, Jadavpur University Kolkata 700032 India
| | | |
Collapse
|
15
|
Yan T, Liu H, Jin Z. Graphdiyne Based Ternary GD-CuI-NiTiO 3 S-Scheme Heterjunction Photocatalyst for Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24896-24906. [PMID: 34019381 DOI: 10.1021/acsami.1c04874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As the demand of fossil fuels continues to expand, hydrogen energy is considered a promising alternative energy. In this work, the NiTiO3-CuI-GD ternary system was successfully constructed based on morphology modulation and energy band structure design. First, the one-pot method was used to cleverly embed the cubes CuI in the stacked graphdiyne (GD) to prepare the hybrid CuI-GD, and CuI-GD was anchored on the surface of NiTiO3 by simple physical stirring. The unique spatial arrangement of the composite catalyst was utilized to improve the hydrogen production activity under light. Second, to combine various characterization tools and energy band structures, we proposed an step-scheme (S-scheme) heterojunction photocatalytic reaction mechanism, among them, the tubular NiTiO3 formed by the self-assembled of nanoparticles provided sufficient sites for the anchoring of CuI-GD, and the thin layer GD acted as an electron acceptor to capture a large number of electrons with the help of the conjugated carbon network; cubes CuI could consume holes in the reaction system; the loading of CuI-GD greatly improved the oxidation and reduction ability of the whole catalytic system. The S-scheme heterojunction accelerated the transfer of carriers and improved the separation efficiency. The experiment provides a new insight into the construction of an efficient and eco-friendly multicatalytic system.
Collapse
Affiliation(s)
- Teng Yan
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Hua Liu
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, P. R. China
| |
Collapse
|
16
|
Photo-responsive metal/semiconductor hybrid nanostructure: A promising electrocatalyst for solar light enhanced fuel cell reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Vinoth S, Rajaitha PM, Pandikumar A. Modulating photoelectrochemical water splitting performance by constructing a type-II heterojunction between g-C3N4 and BiOI. NEW J CHEM 2021. [DOI: 10.1039/d0nj05384h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
g-C3N4/BiOI type-II heterojunction prepared by ultrasonically aided hydrothermal method exhibits high stability during PEC water splitting for up to 6000 s at 1.23 V vs. RHE.
Collapse
Affiliation(s)
- S. Vinoth
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute
- Karaikudi – 630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad – 201002
| | - P. Mary Rajaitha
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute
- Karaikudi – 630003
- India
| | - A. Pandikumar
- Electro Organic and Materials Electrochemistry Division, CSIR-Central Electrochemical Research Institute
- Karaikudi – 630003
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad – 201002
| |
Collapse
|
18
|
Ma X, Wang Z, Yang H, Zhang Y, Zhang Z, Lin H, Long J, Wang X, Lin Q. Enhanced bacterial disinfection by CuI–BiOI/rGO hydrogel under visible light irradiation. RSC Adv 2021; 11:20446-20456. [PMID: 35479900 PMCID: PMC9034002 DOI: 10.1039/d1ra02966e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/23/2021] [Indexed: 12/15/2022] Open
Abstract
Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity. In this work, CuI–BiOI/rGO hydrogel with excellent photocatalytic antibacterial activity was prepared and its activity against Escherichia coli and Staphylococcus aureus was evaluated. The result indicates that CuI–BiOI/rGO hydrogel exhibits superior sterilization performance and higher stability than CuI–BiOI and BiOI/rGO, and could completely kill Escherichia coli and Staphylococcus aureus within 40 min. However, only a small amount of Escherichia coli and Staphylococcus aureus can be inactivated by CuI–BiOI and BiOI/rGO hydrogels. Graphene hydrogel plays a significant part in enhancing the disinfection activity of CuI–BiOI/rGO hydrogel. Furthermore, the synergistic effect between CuI of p-type semiconductors, as a hole transport layer, and graphene hydrogel greatly increases the separation and transfer efficiency of photogenerated electron holes excited by BiOI, and further improves the disinfection activity of CuI–BiOI/rGO hydrogel. Compared with traditional layered graphene, graphene hydrogels have been used to construct highly efficient visible light-excited photocatalysts due to their particular three-dimensional network structure and efficient electron transport capacity.![]()
Collapse
Affiliation(s)
- Xi Ma
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Ziwei Wang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Haoguo Yang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Yiqiu Zhang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Zizhong Zhang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Huaxiang Lin
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Jinlin Long
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Xuxu Wang
- College of Chemistry of Fuzhou University
- State Key Laboratory of Photocatalysis on Energy and Environment
- Fuzhou University
- Fuzhou
- China
| | - Qun Lin
- Department of Anesthesia
- The First Affiliated Hospital
- Fujian Medical University
- Fuzhou
- China
| |
Collapse
|
19
|
Sun M, He ZL, Yuan C, Wang X, Zhai C, Zhu M. Heterostructures Based on g-C3N4/CuI as a Photoactivated Support for Pt Nanoparticles toward Efficient Photoelectrocatalytic Methanol Oxidation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mingjuan Sun
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Zhi-Long He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Chen Yuan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Xuandong Wang
- School of Environment, Jinan University, Guangzhou 510632, P. R. China
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P.R. China
| | - Mingshan Zhu
- School of Environment, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
20
|
Bai X, Du Y, Xue W, Hu X, Fan J, Li J, Liu E. Enhancement of the photocatalytic synchronous removal of Cr(vi) and RhB over RP-modified flower-like SnS 2. NANOSCALE ADVANCES 2020; 2:4220-4228. [PMID: 36132779 PMCID: PMC9418700 DOI: 10.1039/d0na00489h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/28/2020] [Indexed: 06/13/2023]
Abstract
Although photocatalysis is frequently employed to remove various pollutants in water, it still suffers from low efficiency due to the rapid recombination of photogenerated electrons and holes. In this study, a red phosphorus/tin disulfide (RP/SnS2) composite photocatalyst is fabricated by loading nano-sized RP on flower-like SnS2 films with a facile hydrothermal method. It is noteworthy that the 2D heterojunction formed between SnS2 and RP provided channels for the rapid transfer of photon-generated carriers and their effective separation. Furthermore, the separated electrons can react with absorbed O2 for the generation of superoxide radicals (˙O2 -), thereby impacting the photocatalytic degradation oxidation reaction. The application of photocatalytic synchronous removal of Cr(vi) and RhB over RP/SnS2 was implemented first. Compared with pristine SnS2, the photocatalytic degradation activity of Cr(vi) and RhB over the RP/SnS2 composite was significantly enhanced and the kinetic rate constant reached 8.2, which is 10.8 times that of pristine SnS2. Moreover, the hybrid photocatalysts exhibited prominent reusability and stability. Therefore, a photocatalytic degradation mechanism and pathway of carriers are proposed in the study. Furthermore, it is considered that the present study is a promising method in the treatment of wastewater by photocatalysis.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemical Engineering, Northwest University Xi'an 710069 P. R. China
- Chemistry and Material Science College, Northwest University Xi'an 710127 P. R. China
| | - Yanyan Du
- School of Chemical Engineering, Northwest University Xi'an 710069 P. R. China
| | - Wenhua Xue
- School of Chemical Engineering, Northwest University Xi'an 710069 P. R. China
| | - Xiaoyun Hu
- School of Physics, Northwest University Xi'an 710069 P. R. China
| | - Jun Fan
- School of Chemical Engineering, Northwest University Xi'an 710069 P. R. China
| | - Jianli Li
- Chemistry and Material Science College, Northwest University Xi'an 710127 P. R. China
| | - Enzhou Liu
- School of Chemical Engineering, Northwest University Xi'an 710069 P. R. China
| |
Collapse
|
21
|
Gao H, Zhai C, Fu N, Du Y, Yu K, Zhu M. Synthesis of Pt nanoparticles supported on a novel 2D bismuth tungstate/lanthanum titanate heterojunction for photoelectrocatalytic oxidation of methanol. J Colloid Interface Sci 2020; 561:338-347. [DOI: 10.1016/j.jcis.2019.10.114] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/18/2023]
|
22
|
Three dimensional Pt island-on-Au architectures coupled with graphite carbon nitride nanosheets for effective photo-accelerated methanol electro-oxidation. J Colloid Interface Sci 2020; 558:38-46. [DOI: 10.1016/j.jcis.2019.09.085] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022]
|
23
|
Zhang H, He J, Zhai C, Zhu M. 2D Bi2WO6/MoS2 as a new photo-activated carrier for boosting electrocatalytic methanol oxidation with visible light illumination. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.07.021] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Adsorption of phosphate and photodegradation of cationic dyes with BiOI in phosphate-cationic dye binary system. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.04.079] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Jia J, Xue P, Hu X, Wang Y, Liu E, Fan J. Electron-transfer cascade from CdSe@ZnSe core-shell quantum dot accelerates photoelectrochemical H2 evolution on TiO2 nanotube arrays. J Catal 2019. [DOI: 10.1016/j.jcat.2019.05.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Bai J, Li Y, Wei P, Liu J, Chen W, Liu L. Enhancement of Photocatalytic Activity of Bi 2 O 3 -BiOI Composite Nanosheets through Vacancy Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900020. [PMID: 31018044 DOI: 10.1002/smll.201900020] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/16/2019] [Indexed: 06/09/2023]
Abstract
Vacancy engineering is an effective strategy to enhance solar-driven photocatalytic performance of semiconductors. It is highly desirable to improve the photocatalytic performance of composite nanomaterials by the introduction of vacancies, but the role of vacancies and the heterostructure in the photocatalytic process is elusive to the composite nanomaterials. Herein, the introduction of I vacancies can significantly enhance the photocatalytic activity of Bi2 O3 -BiOI composite nanosheets in a synergistic manner. The excellent photocatalytic performance of the Bi2 O3 -BiOI composites is attributed to the combination of Bi2 O3 and BiOI and the existence of I vacancies in Bi2 O3 -BiOI composites. Specifically, density functional theory calculation shows that the existence of I vacancies would create a new electric states vacancy band below the conduction band of BiOI and thus can reduce the bandgap of BiOI nanosheets. This greatly facilitates the scavenging of the photogenerated electron on the surface of BiOI by Bi2 O3 , therefore, enhancing the overall photocatalytic activity of the composites. The enhanced photocatalytic efficiency is demonstrated by the degradation of tetracycline (TC), which reaches 96% after 180 min and by the high total organic carbon (TOC) removal (89% after 10 h visible light irradiation). This study provides a novel approach for the design of high-performance composite catalysts.
Collapse
Affiliation(s)
- Jinwu Bai
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Yun Li
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Pengkun Wei
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Jiandang Liu
- State Key Laboratory of Particle Detection and Electronics, University of Science & Technology of China (USTC), Hefei, Anhui, 230026, P. R. China
| | - Wei Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| | - Lu Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
27
|
Hu J, Yu C, Zhai C, Hu S, Wang Y, Fu N, Zeng L, Zhu M. 2D/1D heterostructure of g-C3N4 nanosheets/CdS nanowires as effective photo-activated support for photoelectrocatalytic oxidation of methanol. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Hu J, Zhai C, Yu C, Zeng L, Liu ZQ, Zhu M. Visible light-enhanced electrocatalytic alcohol oxidation based on two dimensional Pt-BiOBr nanocomposite. J Colloid Interface Sci 2018; 524:195-203. [DOI: 10.1016/j.jcis.2018.03.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 02/01/2023]
|
29
|
Liu A, Zhu Y, Li K, Chu D, Huang J, Li X, Zhang C, Yang P, Du Y. A high performance p-type nickel oxide/cuprous oxide nanocomposite with heterojunction as the photocathodic catalyst for water splitting to produce hydrogen. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
An efficient photo-assisted BiOBr nanoplates support for electrocatalyst for methanol oxidation. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Xu H, Song P, Fernandez C, Wang J, Zhu M, Shiraishi Y, Du Y. Sophisticated Construction of Binary PdPb Alloy Nanocubes as Robust Electrocatalysts toward Ethylene Glycol and Glycerol Oxidation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:12659-12665. [PMID: 29589908 DOI: 10.1021/acsami.8b00532] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The design of nanocatalysts by controlling pore size and particle characteristics is crucial to enhance the selectivity and activity of the catalysts. Thus, we have successfully demonstrated the synthesis of binary PdPb alloy nanocubes (PdPb NCs) by controlling pore size and particle characteristics. In addition, the as-obtained binary PdPb NCs exhibited superior electrocatalytic activity of 4.06 A mg-1 and 16.8 mA cm-2 toward ethylene glycol oxidation reaction and 2.22 A mg-1 and 9.2 mA cm-2 toward glycerol oxidation reaction when compared to the commercial Pd/C. These astonishing characteristics are attributed to the attractive nanocube structures as well as the large number of exposed active areas. Furthermore, the bifunctional effects originated from Pd and Pb interactions help to display high endurance with less activity decay after 500 cycles, showing a great potential in fuel cell applications.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences Robert Gordon University , Aberdeen AB10 7GJ , U.K
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Mingshan Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment , Jinan University , Guangzhou 510632 , P. R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| |
Collapse
|
32
|
Zhang K, Xu H, Yan B, Wang J, Du Y, Liu Q. Superior ethylene glycol oxidation electrocatalysis enabled by hollow PdNi nanospheres. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
33
|
Xu H, Song P, Wang J, Gao F, Zhang Y, Guo J, Du Y, Di J. Visible-Light-Improved Catalytic Performance for Methanol Oxidation Based on Plasmonic PtAu Dendrites. ChemElectroChem 2018. [DOI: 10.1002/celc.201701345] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Jun Guo
- Testing and Analysis Center; Soochow University; Jiangsu 215123 P.R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Junwei Di
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| |
Collapse
|
34
|
Plasmon enhanced electrocatalytic oxidation of ethanol and organic contaminants on gold/copper iodide composites under visible light irradiation. J Colloid Interface Sci 2018; 511:110-118. [DOI: 10.1016/j.jcis.2017.09.103] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/24/2017] [Accepted: 09/28/2017] [Indexed: 11/20/2022]
|
35
|
Hu J, Zhai C, Zeng L, Du Y, Zhu M. Enhanced electrocatalytic ethanol oxidation reaction in alkaline media over Pt on a 2D BiVO4-modified electrode under visible light irradiation. Catal Sci Technol 2018. [DOI: 10.1039/c8cy00864g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D BiVO4 is extended to be a visible-light-responsive support for opening a new application of electrocatalytic ethanol oxidation reaction (EOR).
Collapse
Affiliation(s)
- Jiayue Hu
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P.R. China
| | - Chunyang Zhai
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P.R. China
| | - Lixi Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health
- School of Environment
- Jinan University
- Guangzhou 510632
- P.R. China
| | - Yukou Du
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
- P. R. China
| | - Mingshan Zhu
- School of Materials Science and Chemical Engineering
- Ningbo University
- Ningbo 315211
- P.R. China
- Guangdong Key Laboratory of Environmental Pollution and Health
| |
Collapse
|
36
|
You Z, Wu C, Shen Q, Yu Y, Chen H, Su Y, Wang H, Wu C, Zhang F, Yang H. A novel efficient g-C3N4@BiOI p–n heterojunction photocatalyst constructed through the assembly of g-C3N4 nanoparticles. Dalton Trans 2018; 47:7353-7361. [DOI: 10.1039/c8dt01322e] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel g-C3N4@BiOI p–n surficial dispersive heterojunction photocatalyst was constructed by simply loading g-C3N4 nanoparticles on flower-like BiOI nanosheets.
Collapse
|
37
|
Photo-assisted electrocatalytic methanol oxidation based on an efficient 1D-TiO 2 nanorods arrays support electrode. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Zhang Y, Li Y, Sun W, Yuan C, Wang B, Zhang W, Song XM. Fe 2O 3/BiOI-Based Photoanode with n-p Heterogeneous Structure for Photoelectric Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12065-12071. [PMID: 28961007 DOI: 10.1021/acs.langmuir.7b02969] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a promising photoanode material of Fe2O3/BiOI for efficient photoelectric conversion in solar cells, which was fabricated with BiOI attached to a one-dimensional Fe2O3 nanorod array. The two semiconductors of p-type BiOI and n-type Fe2O3 formed a heterogeneous structure for efficient charge separation. The highest open circuit voltage and short circuit current of the solar cell can reach 0.41 V and 4.89 mA/cm2, respectively. This study opens an available field to develop low-cost and environmentally friendly photoelectric materials for solar cells.
Collapse
Affiliation(s)
- Yu Zhang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University , Shenyang 110036, China
| | - Ying Li
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University , Shenyang 110036, China
| | - Weining Sun
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University , Shenyang 110036, China
| | - Chunxue Yuan
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University , Shenyang 110036, China
| | - Baoxin Wang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University , Shenyang 110036, China
| | - Wei Zhang
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University , Shenyang 110036, China
| | - Xi-Ming Song
- Liaoning Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University , Shenyang 110036, China
| |
Collapse
|
39
|
|
40
|
Liu Y, She X, Zhang X, Liang C, Wu J, Yu P, Nakanishi Y, Xie B, Xu H, Ajayan P, Yang W. Metallic 1T-TiS2 nanodots anchored on a 2D graphitic C3N4 nanosheet nanostructure with high electron transfer capability for enhanced photocatalytic performance. RSC Adv 2017. [DOI: 10.1039/c7ra10826e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The introduction of metallic TiS2 nanodots in 2D-C3N4 nanosheets improved the photocatalytic activity due to the suppression of e–h recombination.
Collapse
|
41
|
Xia L, Ma C, Wang J, Wu S, Liu Y, Zhang Q, Song P. A new strategy for effective distance regulation of the surface plasmon assisted coupling reaction of p-nitrothiophenol to p,p′-dimercaptoazobenzene. Chem Commun (Camb) 2017; 53:9582-9585. [DOI: 10.1039/c7cc04780k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Plasmon assisted reactions on a metal surface occur through a different mechanism compared to traditional reaction conditions.
Collapse
Affiliation(s)
- Lixin Xia
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Caiqing Ma
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Jing Wang
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Shiwei Wu
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Yu Liu
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Qian Zhang
- College of Chemistry
- Liaoning University
- Shenyang 110036
- China
| | - Peng Song
- College of Physical
- Liaoning University
- Shenyang 110036
- China
| |
Collapse
|