1
|
Rahimi E, Imani A, Kim D, Rahimi M, Fedrizzi L, Mol A, Asselin E, Pané S, Lekka M. Physicochemical Changes of Apoferritin Protein during Biodegradation of Magnetic Metal Oxide Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53299-53310. [PMID: 39288080 PMCID: PMC11450718 DOI: 10.1021/acsami.4c12269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
The biodegradation of therapeutic magnetic-oxide nanoparticles (MONPs) in the human body raises concerns about their lifespan, functionality, and health risks. Interactions between apoferritin proteins and MONPs in the spleen, liver, and inflammatory macrophages significantly accelerate nanoparticle degradation, releasing metal ions taken up by apoferritin. This can alter the protein's biological structure and properties, potentially causing health hazards. This study examines changes in apoferritin's shape, electrical surface potential (ESP), and protein-core composition after incubation with cobalt-ferrite (CoFe2O4) oxide nanoparticles. Using atomic force microscopy (AFM) and scanning Kelvin probe force microscopy (SKPFM), we observed changes in the topography and ESP distribution in apoferritin nanofilms over time. After 48 h, the characteristic apoferritin hole (∼1.35 nm) vanished, and the protein's height increased from ∼3.5 to ∼7.5 nm due to hole filling. This resulted in a significant ESP increase on the filled-apoferritin surface, attributed to the formation of a heterogeneous chemical composition and crystal structure (γ-Fe2O3, Fe3O4, CoO, CoOOH, FeOOH, and Co3O4). These changes enhance electrostatic interactions and surface charge between the protein and the AFM tip. This approach aids in predicting and improving the MONP lifespan while reducing their toxicity and preventing apoferritin deformation and dysfunction.
Collapse
Affiliation(s)
- Ehsan Rahimi
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amin Imani
- Department
of Materials Engineering, The University
of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Donghoon Kim
- Laboratory
for Multiscale Materials Experiments, Paul
Scherrer Institute, Forschungstrasse 111, Villigen 5232, Switzerland
| | - Mohammad Rahimi
- Department
of Mechanical Engineering, McMaster University, Hamilton, Ontario L8S 3L8, Canada
| | - Lorenzo Fedrizzi
- Polytechnic
Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy
| | - Arjan Mol
- Department
of Materials Science and Engineering, Delft
University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Edouard Asselin
- Department
of Materials Engineering, The University
of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Salvador Pané
- Multi-Scale
Robotics Lab, Institute of Robotics and Intelligent Systems, Department
of Mechanical and Process Engineering, ETH
Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Maria Lekka
- CIDETEC,
Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain
| |
Collapse
|
2
|
Cai X, Xu T, Ding R, Zhang D, Chen G, Zhao W, Hou J, Pan H, Zhang Q, Yin T. Oxygen self-supplying small size magnetic nanoenzymes for synergistic photodynamic and catalytic therapy of breast cancer. NANOSCALE 2024; 16:4095-4104. [PMID: 38333905 DOI: 10.1039/d3nr05289c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
In recent years, tumor catalytic therapy based on nanozymes has attracted widespread attention. However, its application is limited by the tumor hypoxic microenvironment (TME). In this study, we developed oxygen-supplying magnetic bead nanozymes that integrate hemoglobin and encapsulate the photosensitizer curcumin, demonstrating reactive oxygen species (ROS)-induced synergistic breast cancer therapy. Fe3O4 magnetic bead-mediated catalytic dynamic therapy (CDT) generates hydroxyl radicals (˙OH) through the Fenton reaction in the tumor microenvironment. The Hb-encapsulated Fe3O4 magnetic beads can be co-loaded with the photosensitizer/chemotherapeutic agent curcumin (cur), resulting in Fe3O4-Hb@cur. Under hypoxic conditions, oxygen molecules are released from Fe3O4-Hb@cur to overcome the TME hypoxia, resulting in comprehensive effects favoring anti-tumor responses. Upon near-infrared (NIR) irradiation, Fe3O4-Hb@cur activates the surrounding molecular oxygen to generate a certain amount of singlet oxygen (1O2), which is utilized for photodynamic therapy (PDT) in cancer treatment. Meanwhile, we validated that the O2 carried by Hb significantly enhances the intracellular ROS level, intensifying the catalytic therapy mediated by Fe3O4 magnetic beads and inflicting lethal damage to cancer cells, effectively inhibiting tumor growth. Therefore, significant in vivo synergistic therapeutic effects can be achieved through catalytic-photodynamic combination therapy.
Collapse
Affiliation(s)
- Xinyi Cai
- Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Tiantian Xu
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rui Ding
- Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Dou Zhang
- Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Guiquan Chen
- Department of Gastroenterology, the Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan 523000, China
| | - Wenchang Zhao
- Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| | - Jiajie Hou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Ting Yin
- Dongguan Key Laboratory of Screening and Research of Anti-inflammatory Ingredients in Chinese Medicine, School of Pharmacy, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
3
|
Jain P, Jangid AK, Pooja D, Kulhari H. Design of manganese-based nanomaterials for pharmaceutical and biomedical applications. J Mater Chem B 2024; 12:577-608. [PMID: 38116805 DOI: 10.1039/d3tb00779k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In the past few years, manganese-based nanostructures have been extensively investigated in the biomedical field particularly to design highly biocompatible theranostics, which can not only act as efficient diagnostic imaging contrast agents but also deliver the drugs to the target sites. The nanoscale size, large surface area-to-volume ratio, availability of cheap precursors, flexibility to synthesize nanostructures with reproducible properties and high yield, and easy scale up are the major reasons for the attraction towards manganese nanostructures. Along with these properties, the nontoxic nature, pH-sensitive degradation, and easy surface functionalization are additional benefits for the use of manganese nanostructures in biomedical and pharmaceutical sciences. Therefore, in this review, we discuss the recent progress made in the synthesis of manganese nanostructures, describe the attempts made to modify their surfaces to impart biocompatibility and stability in biological fluids, and critically discuss their use in magnetic resonance imaging, drug and gene delivery, hyperthermia, photothermal/photodynamic, immunotherapy, biosensing and tumor diagnosis.
Collapse
Affiliation(s)
- Poonam Jain
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Limda Road, Vadodara, Gujarat, 391760, India
| | - Ashok Kumar Jangid
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| | - Deep Pooja
- School of Pharmacy, National Forensic Sciences University, Sector 9, Gandhinagar, 382007, Gujarat, India.
| | - Hitesh Kulhari
- School of Nano Sciences, Central University of Gujarat, Gandhinagar, 382030, India.
| |
Collapse
|
4
|
Ma H, Guo L, Zhang H, Wang Y, Miao Y, Liu X, Peng M, Deng X, Peng Y, Fan H. The Metal Ion Release of Manganese Ferrite Nanoparticles: Kinetics, Effects on Magnetic Resonance Relaxivities, and Toxicity. ACS APPLIED BIO MATERIALS 2022; 5:3067-3074. [PMID: 35658068 DOI: 10.1021/acsabm.2c00338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mn2+ release is particularly important for biological application of manganese-based nanomaterials. However, the Mn2+ release profiles of the manganese ferrite nanoparticles are under clarification. Here, we synthesized 3, 10, and 18 nm manganese ferrite nanoparticles (MFNPs) as model systems to study the Mn2+ release behavior, size, and pH-dependent kinetics. The Mn2+ release kinetic study showed that the first-order kinetic model was suitable for 3 and 10 nm MFNPs, while the Higuchi model was suitable for 18 nm MFNPs in a neutral PBS buffer (pH 7.4). In an acidic PBS buffer (pH 4.8), the Mn2+ release from all sizes of MFNPs follows first-order kinetics, which is possible due to the reaction between MFNPs and H+. The influence of Mn2+ release was evaluated by comparing the variations of magnetic resonance (MR) relaxation and magnetic properties before and after Mn2+ release of MFNPs. The results showed that the saturation magnetization (Ms), longitudinal relaxivity (r1), and transverse relaxivity (r2) values declined due to Mn2+ release, while the ratio of r2/r1 increased slightly, showing that all sizes of MFNPs exhibited the same MR mode as the synthesized MFNPs. More importantly, the release kinetics were employed to estimate the toxicity of the released Mn2+ in vivo. The potential toxicity is acceptable for MFNP administration since the calculated amount of Mn2+ is in the range of safe doses.
Collapse
Affiliation(s)
- Huijun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Lina Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Huan Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yanyun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yuqing Miao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi'an 710069, China
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| | - Xia Deng
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yong Peng
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou 730000, P. R. China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shaanxi 710069, China
| |
Collapse
|
5
|
Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14050937. [PMID: 35631523 PMCID: PMC9145864 DOI: 10.3390/pharmaceutics14050937] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is among the leading causes of mortality globally, with nearly 10 million deaths in 2020. The emergence of nanotechnology has revolutionised treatment strategies in medicine, with rigorous research focusing on designing multi-functional nanoparticles (NPs) that are biocompatible, non-toxic, and target-specific. Iron-oxide-based NPs have been successfully employed in theranostics as imaging agents and drug delivery vehicles for anti-cancer treatment. Substituted iron-oxides (MFe2O4) have emerged as potential nanocarriers due to their unique and attractive properties such as size and magnetic tunability, ease of synthesis, and manipulatable properties. Current research explores their potential use in hyperthermia and as drug delivery vehicles for cancer therapy. Significantly, there are considerations in applying iron-oxide-based NPs for enhanced biocompatibility, biodegradability, colloidal stability, lowered toxicity, and more efficient and targeted delivery. This review covers iron-oxide-based NPs in cancer therapy, focusing on recent research advances in the use of ferrites. Methods for the synthesis of cubic spinel ferrites and the requirements for their considerations as potential nanocarriers in cancer therapy are discussed. The review highlights surface modifications, where functionalisation with specific biomolecules can deliver better efficiency. Finally, the challenges and solutions for the use of ferrites in cancer therapy are summarised.
Collapse
|
6
|
Zhou M, Li L, Xie W, He Z, Li J. Synthesis of a Thermal-Responsive Dual-Modal Supramolecular Probe for Magnetic Resonance Imaging and Fluorescence Imaging. Macromol Rapid Commun 2021; 42:e2100248. [PMID: 34272782 DOI: 10.1002/marc.202100248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Indexed: 11/05/2022]
Abstract
Dual-modal imaging can integrate the advantages of different imaging technologies, which could improve the accuracy and efficiency of clinical diagnosis. Herein, a novel amphiphilic thermal-responsive copolymer obtained from three types of monomers, N-isopropyl acrylamide, 2-(acetoacetoxy) ethyl methacrylate, and propargyl methacrylate, by RAFT copolymerization, is reported. It can be grafted with β-cyclodextrin and aggregation-induced emission (AIE) luminogens tetraphenylethylene by click chemistry and Biginelli reaction. The multifunctional supramolecular polymer (P4) can be constructed by host-guest inclusion between the copolymer and the Gd-based contrast agent (CA) modified by adamantane [Ad-(DOTA-Gd)]. And it can form vesicles with a bilayer structure in aqueous which will enhance the AIE and magnetic resonance imaging effects. As fluorescent thermometer, P4 can enter HeLa cells for intracellular fluorescence imaging (FI) and is sensitive to temperature with detection limit value of 1.5 °C. As magnetic resonance CA, P4 exhibits higher relaxation compared to Magnevist, which can prolong the circulation time in vivo. In addition, Gd3+ in the polymer can be quickly released from the body by disassembly that reduced the biological toxicity. This work introduces new synthetic ideas for dual-modal probe, which has great potential for clinical diagnostic applications in bioimaging.
Collapse
Affiliation(s)
- Mi Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Li Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Wensheng Xie
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zejian He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| | - Jie Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
| |
Collapse
|
7
|
Pan S, Zhang Y, Huang M, Deng Z, Zhang A, Pei L, Wang L, Zhao W, Ma L, Zhang Q, Cui D. Urinary exosomes-based Engineered Nanovectors for Homologously Targeted Chemo-Chemodynamic Prostate Cancer Therapy via abrogating EGFR/AKT/NF-kB/IkB signaling. Biomaterials 2021; 275:120946. [PMID: 34119884 DOI: 10.1016/j.biomaterials.2021.120946] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/14/2022]
Abstract
Multi-functional nanovectors based on exosomes from cancer cell culture supernatants in vitro has been successfully utilized for tumor-specific targeting and immune escape. However, the labor-intensive purification procedures for rich-dose and high-purity homogeneous exosomes without using targeting ligands are still a challenging task. Herein, we developed a nanovector Exo-PMA/Fe-HSA@DOX through cloaked by urinary exosome membrane as a chemo/chemodynamic theranostic nano-platform for targeted homologous prostate cancer therapy which pertain to the abrogation of Epidermal Growth Factor Receptor (EGFR) and its downstream AKT/NF-kB/IkB signaling instead of ERK signaling cascades. Urinary exosomes-based nanovectors own the same urological cancer cell membrane antigen inclusive of E-cadherin, CD 47 and are free from intracellular substance such as Histone 3 and COX Ⅳ. The targeting properties of the homologous cancer cell are well preserved in Exo-PMA/Fe-HSA@DOX nanovectors in high purity. Meanwhile, the nanovectors based on urinary exosomes from prostate patients deeply penetrated into prostate cancer DU145 3D MCTS, and successfully achieve superior synergistic low-dose chemo/chemodynamic performance in vivo. In addition, the blockage of bypassing EGFR/AKT/NF-kB/IkB signaling pathway is greatly enhanced via elevated intracellular PMA/Fe-HSA@DOX nanoparticles (NPs). It is expected that the rich source and high purity of urinary exosomes offer a reliable solution for mass production of such nanovectors in the future. The targeted homologous cancer therapy based on the urinary exosomes from cancer patients exemplifies a novel targeted anticancer scheme with efficient and facile method.
Collapse
Affiliation(s)
- Shaojun Pan
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China; First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Yuhui Zhang
- Department of General Practice, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Mark Huang
- School of Electronic Information and Electrical Engineering, Shenzhen University, Shenzhen, 518061, China
| | - Zhoufeng Deng
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Lijia Pei
- First Affiliated Hospital of Bengbu Medical College, Bengbu, 233030, China
| | - Lirui Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China
| | - Weiyong Zhao
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Lijun Ma
- Department of Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, PR China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| | - Daxiang Cui
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai, 200240, PR China.
| |
Collapse
|
8
|
Mourdikoudis S, Kostopoulou A, LaGrow AP. Magnetic Nanoparticle Composites: Synergistic Effects and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004951. [PMID: 34194936 PMCID: PMC8224446 DOI: 10.1002/advs.202004951] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 05/17/2023]
Abstract
Composite materials are made from two or more constituent materials with distinct physical or chemical properties that, when combined, produce a material with characteristics which are at least to some degree different from its individual components. Nanocomposite materials are composed of different materials of which at least one has nanoscale dimensions. Common types of nanocomposites consist of a combination of two different elements, with a nanoparticle that is linked to, or surrounded by, another organic or inorganic material, for example in a core-shell or heterostructure configuration. A general family of nanoparticle composites concerns the coating of a nanoscale material by a polymer, SiO2 or carbon. Other materials, such as graphene or graphene oxide (GO), are used as supports forming composites when nanoscale materials are deposited onto them. In this Review we focus on magnetic nanocomposites, describing their synthetic methods, physical properties and applications. Several types of nanocomposites are presented, according to their composition, morphology or surface functionalization. Their applications are largely due to the synergistic effects that appear thanks to the co-existence of two different materials and to their interface, resulting in properties often better than those of their single-phase components. Applications discussed concern magnetically separable catalysts, water treatment, diagnostics-sensing and biomedicine.
Collapse
Affiliation(s)
- Stefanos Mourdikoudis
- Biophysics GroupDepartment of Physics and AstronomyUniversity College LondonLondonWC1E 6BTUK
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories21 Albemarle StreetLondonW1S 4BSUK
| | - Athanasia Kostopoulou
- Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology‐Hellas (FORTH)100 Nikolaou PlastiraHeraklionCrete70013Greece
| | - Alec P. LaGrow
- International Iberian Nanotechnology LaboratoryBraga4715‐330Portugal
| |
Collapse
|
9
|
Song B, Wen X, Zhang X, Liu Q, Ma H, Tan M, Yuan J. Bioconjugates of versatile β-diketonate-lanthanide complexes as probes for time-gated luminescence and magnetic resonance imaging of cancer cells in vitro and in vivo. J Mater Chem B 2021; 9:3161-3167. [PMID: 33885620 DOI: 10.1039/d1tb00144b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic resonance imaging (MRI) and optical imaging (OI) are attractive for constructing bimodal probes due to their complementary imaging characteristics. The combination of these two techniques could be a useful tool to simultaneously obtain both anatomical and molecular information as well as to significantly improve the accuracy of detection. In this study, we found that β-diketonate-lanthanide complexes, BHHBCB-Ln3+, could covalently bind to proteins to exhibit long-lived and intense luminescence (Ln3+ = Eu3+, τ = 0.52 ms, Φ = 0.40) and remarkably high relaxivity (Ln3+ = Gd3+, r1 = 35.67 mM-1 s-1, r2 = 43.25 mM-1 s-1) with excellent water solubility, stability and biocompatibility. Hence, we conjugated BHHBCB-Ln3+ with a tumor-targetable biomacromolecule, transferrin (Tf), to construct the probes, Tf-BHHBCB-Ln3+, for time-gated luminescence (TGL, Ln3+ = Eu3+) and MR (Ln3+ = Gd3+) imaging of cancerous cells in vitro and in vivo. As expected, the as-prepared probes showed high specificity to bind with the transferrin receptor-overexpressed cancerous cells, to enable the probe molecules to be accumulated in these cells. Using Tf-BHHBCB-Ln3+ as probes, the cultured cancerous cells and the tumors in tumor-bearing mice have been clearly visualized by background-free TGL and in vivo MR imaging. The research outcomes suggested the potential of β-diketonate-lanthanide complexes for use in constructing bimodal TGL/MR imaging bioprobes.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Mondal DK, Jonak S, Paul N, Borah JP. Dextran mediated MnFe 2O 4/ZnS magnetic fluorescence nanocomposites for controlled self-heating properties. RSC Adv 2021; 11:12507-12519. [PMID: 35423807 PMCID: PMC8696989 DOI: 10.1039/d0ra09745d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
Dextran mediated MnFe2O4/ZnS opto-magnetic nanocomposites with different concentrations of ZnS were competently synthesized adopting the co-precipitation method. The structural, morphological, magnetic, and optical properties of the nanocomposites were exhaustively characterized by XRD, HRTEM, FTIR, VSM techniques, and PL spectroscopy. XRD spectra demonstrate the existence of the cubic spinel phase of MnFe2O4 and the cubic zinc blend phase of ZnS in the nanocomposites. HRTEM images show the average crystallite size ranges of 15-21 nm for MnFe2O4 and 14-45 nm for ZnS. Investigation of the FTIR spectra reveals the incorporation of ZnS nanoparticles on the surface of MnFe2O4 nanoparticles by dint of biocompatible surfactant dextran. The nanocomposites exhibit both magnetic and photoluminescence properties. Photoluminescence analysis confirmed the redshift of the emission peaks owing to the trap states in the ZnS nanocrystals. The room temperature VSM analysis shows that the saturation magnetization and coercivity of MnFe2O4 nanoparticles initially increase then decrease with the increasing concentration of ZnS in the nanocomposite. The induction heating analysis shows that the presence of dextran enhances the self heating properties of the MnFe2O4/ZnS nanocomposites which can also be controlled by tailoring the concentration of the ZnS nanoparticles. These suggest that MnFe2O4/Dex/ZnS is a decent candidate for hyperthermia applications.
Collapse
Affiliation(s)
- D K Mondal
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| | - Sarodi Jonak
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| | - N Paul
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| | - J P Borah
- Department of Physics, National Institute of Technology Nagaland Chumukedima 797103 India
| |
Collapse
|
11
|
Niu H, Li J, Cai Q, Wang X, Luo F, Gong J, Qiang Z, Ren J. Molecular Stereocomplexation for Enhancing the Stability of Nanoparticles Encapsulated in Polymeric Micelles for Magnetic Resonance Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13881-13889. [PMID: 33170710 DOI: 10.1021/acs.langmuir.0c02281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A generalizable approach for improving the stability of polylactide-based (PLA-based) micelles for encapsulating nanoparticles (NPs) is demonstrated, using stereocomplexation between a pair of poly (ethylene glycol)-b-poly(d-lactide)/poly(ethylene glycol)-b-poly(l-lactide) block copolymer blends. Three different superparamagnetic ferrite-based NPs with distinct nanostructures are first prepared by the high-temperature pyrolysis method, including spherical MnFe2O4, cubic MnFe2O4, and core-shell MnFe2O4@Fe3O4. The diameters of these NPs are approximately 7-10 nm as revealed by transmission electron microscopy. These hydrophobic NPs can be encapsulated within self-assembled, stereocomplexed PLA (sc-PLA) micelles. All sc-PLA micelle systems loaded with three different NPs exhibit enhanced stability at elevated temperatures (20-60 °C) and with extended storage time (∼96 h) compared with analogous samples without stereocomplex formation, confirmed by dynamic light scattering measurements. The magnetic NP-loaded micelles with mean diameters of approximately 150 nm show both biocompatibility and superparamagnetic property. Under a 1.5 T magnetic field, cubic MnFe2O4 (c-MnFe2O4)-loaded micelles exhibit an excellent negative contrast enhancement of MR signals (373 mM-1·s-1), while core-shell MnFe2O4@Fe3O4-loaded micelles show a slightly lower signal for MR imaging (275 mM-1·s-1). These results suggest the potential of using sc-PLA-based polymer micelles as universal carriers for magnetic resonance imaging contrast agents with improved stability for different applications such as cancer diagnosis.
Collapse
Affiliation(s)
- Haifeng Niu
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianbo Li
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Quan Cai
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Xuefang Wang
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Fuhong Luo
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jiaying Gong
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jie Ren
- Institute of Nano and Biopolymeric Materials, Department of Polymeric Materials, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
12
|
Passion fruit-like exosome-PMA/Au-BSA@Ce6 nanovehicles for real-time fluorescence imaging and enhanced targeted photodynamic therapy with deep penetration and superior retention behavior in tumor. Biomaterials 2020; 230:119606. [DOI: 10.1016/j.biomaterials.2019.119606] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 11/05/2019] [Indexed: 01/08/2023]
|
13
|
Cheng J, Zhang Q, Fan S, Zhang A, Liu B, Hong Y, Guo J, Cui D, Song J. The vacuolization of macrophages induced by large amounts of inorganic nanoparticle uptake to enhance the immune response. NANOSCALE 2019; 11:22849-22859. [PMID: 31755508 DOI: 10.1039/c9nr08261a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inorganic nanoparticles (NPs), particularly iron oxide (IO) and gold (Au) NPs, are widely used in a variety of biomedical applications, such as diagnosis and cancer therapy. As an important component of host defense in organisms, macrophages play a crucial role in responding to foreign substances, such as nanoparticles. Thus, it is of utmost importance to understand the nanotoxicity effects on the immune system by investigating the influences of such nanoparticles. In this study, we found that macrophages can take up large amounts of amphiphilic polymer (PMA)-modified Au and IO NPs, which will induce macrophage cell vacuolization and enhance macrophage polarization. This mechanism is an essential part of the immune response in vivo. In addition, we report that smaller-sized nanoparticles (ca. 4 nm) show more significant effects on the macrophage polarization and caused lysosomal damage compared to larger nanoparticles (ca. 14 nm). Moreover, the amount of NP uptake in macrophages decreases upon trapping the PMA with PEG, resulting in reduced vacuolization and a reduced immune response. We hypothesize that vacuoles are formed in large amounts during NP uptake by macrophages, which enhances the immune response and induces macrophages toward M1 polarization. These findings are potentially useful for disease treatment and understanding the immune response when NPs are used in vitro and in vivo.
Collapse
Affiliation(s)
- Jin Cheng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Sisi Fan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Bin Liu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Yuping Hong
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Jinghui Guo
- Department of gastroenterology, Shanghai Sixth People's Hospital, Shanghai JiaoTong University, P. R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, P. R. China.
| |
Collapse
|
14
|
Zhu G, Chen L, Zeng F, Gu L, Yu X, Li X, Jiang J, Guo G, Cao J, Tang K, Zhu H, Daldrup-Link HE, Wu M. GdVO 4:Eu 3+,Bi 3+ Nanoparticles as a Contrast Agent for MRI and Luminescence Bioimaging. ACS OMEGA 2019; 4:15806-15814. [PMID: 31592157 PMCID: PMC6776971 DOI: 10.1021/acsomega.9b00444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 02/05/2023]
Abstract
With the development of multifunctional imaging, gadolinium (Gd)-bearing inorganic nanoparticles (NPs), which were doped with trivalent lanthanide (Ln3+), have been applied in magnetic resonance imaging (MRI) and optical imaging owing to their high payload of Gd3+ ions and specific optical characteristics. In this study, we chose GdVO4 codoped with Eu3+ and Bi3+ as the host material to generate a highly efficient contrast agent (CA) for MRI and long-term luminescence imaging. The new CA emits strong and stable luminescence because of its strong characteristic emissions, resulting from the energy-transfer process from the vanadate groups (VO4 3-) to the Eu3+ and Bi3+ dopants. Additionally, these NPs provided conspicuous T 1 and T 2 relaxation time-shortening characteristics, which result in MRI enhancement. GdVO4:Eu3+,Bi3+ NPs were tested on liver tumor-bearing nude mice, and showed improved liver tumor contrast in T 2-weighted MR images (T 2WI). The dual-modal imaging probe exhibited no cytotoxicity or organ toxicity, reflecting its excellent biocompatibility. Thus, GdVO4:Eu3+,Bi3+ has the potential to be used for bioassays in vitro and liver tumor targeting in vivo. The results reveal the great promise of using the designed GdVO4:Eu3+,Bi3+ NPs as luminescent and MRI dual-mode bioprobes for clinical bioimaging applications.
Collapse
Affiliation(s)
- Guannan Zhu
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liping Chen
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fanxin Zeng
- Department
of Clinic Medical Center, Dazhou Central
Hospital, Dazhou 635000, China
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Road, Stanford, California 94305, United States
| | - Lei Gu
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuefeng Yu
- Institute
of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xue Li
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Jiang
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gang Guo
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiayi Cao
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ke Tang
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hongyan Zhu
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Heike E. Daldrup-Link
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Road, Stanford, California 94305, United States
| | - Min Wu
- Huaxi
MR Research Center (HMRRC), Department of Radiology, West China
Hospital, Department of Biliary Surgery, West China Hospital,
and Laboratory of Stem
Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Department
of Clinic Medical Center, Dazhou Central
Hospital, Dazhou 635000, China
- Department
of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, 725 Welch Road, Stanford, California 94305, United States
| |
Collapse
|
15
|
Zhang Y, Zhang Q, Zhang A, Pan S, Cheng J, Zhi X, Ding X, Hong L, Zi M, Cui D, He J. Multifunctional co-loaded magnetic nanocapsules for enhancing targeted MR imaging and in vivo photodynamic therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102047. [PMID: 31271877 DOI: 10.1016/j.nano.2019.102047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 01/12/2023]
Abstract
Drug delivery nanocarriers based on magnetic nanoparticles have attracted increasing attention due to their potential applications in magnetic resonance imaging, photodynamic therapy and targeted drug delivery. Herein, we have fabricated the multifunctional co-loaded magnetic nanocapsules (MNCPs) using a microemulsion process for enhancing targeted magnetic resonance imaging and in vivo photodynamic therapy. MNCPs were synthesized by co-loading Co@Mn magnetic nanoparticles and chlorin e6 into the matrix of an amphiphilic polymer, and further surface covalently coupled with target molecules. This work demonstrates that MNCPs have uniform sizes (dc: ~150 nm), favorable biocompatibility, long-term stability, excellent T2 relaxation values, and high drug loading efficiency. These advantages offer MNCPs successfully applied in targeted magnetic resonance imaging, real-time fluorescent labeling, and photodynamic therapy. The research results will contribute to rationally design novel nano-platform and provide a promising approach for further clinical integration of diagnosis and treatment in the near future.
Collapse
Affiliation(s)
- Yuhui Zhang
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, PR China.
| | - Amin Zhang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shaojun Pan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, PR China
| | - Xiao Zhi
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xianting Ding
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Lixin Hong
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Mei Zi
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, PR China; Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Shanghai, PR China
| | - Jinghua He
- Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
16
|
Song B, Shi W, Shi W, Qin X, Ma H, Tan M, Zhang W, Guo L, Yuan J. A dual-modal nanoprobe based on Eu(iii) complex-MnO 2 nanosheet nanocomposites for time-gated luminescence-magnetic resonance imaging of glutathione in vitro and in vivo. NANOSCALE 2019; 11:6784-6793. [PMID: 30907913 DOI: 10.1039/c9nr00838a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dual-modal fluorescence-magnetic resonance imaging (MRI) techniques have gained great interest in biomedical research and clinical practice, since they integrate the advantages of both imaging techniques and provide a useful approach to simultaneously investigate both molecular and anatomical information at the same biological structures. Herein, we report the construction of a dual-modal time-gated luminescence (TGL)/MRI nanoprobe, BHHBB-Eu3+@MnO2, for glutathione (GSH) by anchoring luminescent β-diketone-Eu3+ complexes on layered MnO2 nanosheets. The fabricated nanoprobe exhibited very week luminescence and MR signals since the luminescence of the Eu3+ complex was quenched by MnO2 nanosheets and Mn atoms were isolated from water. Upon exposure to GSH, the MnO2 nanosheets were rapidly and selectively reduced to Mn2+ ions, resulting in remarkable enhancements of TGL and MR signals simultaneously. The combination of TGL and MR detection modes enables the nanoprobe to be used for detecting GSH in a wide concentration range (1-1000 μM) and imaging GSH at different resolutions and depths ranging from the subcellular level to the whole body. Furthermore, the as-prepared nanoprobe exhibited a low cytotoxicity and good biocompatibility, rapid response rate, long-lived luminescence, and high sensitivity and selectivity for responding to GSH. These features allowed it to be successfully used for the TGL detection of GSH in human sera, TGL imaging of GSH in living cells and zebrafish, as well as dual-modal TGL/MR imaging of GSH in tumor-bearing mice. All of these results highlighted the applicability and advantages of the nanoprobe for detecting GSH in vitro and in vivo.
Collapse
Affiliation(s)
- Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mu Q, Wang H, Gu X, Stephen ZR, Yen C, Chang FC, Dayringer CJ, Zhang M. Biconcave Carbon Nanodisks for Enhanced Drug Accumulation and Chemo-Photothermal Tumor Therapy. Adv Healthc Mater 2019; 8:e1801505. [PMID: 30856295 PMCID: PMC6483846 DOI: 10.1002/adhm.201801505] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/18/2019] [Indexed: 12/11/2022]
Abstract
It is considered a significant challenge to construct nanocarriers that have high drug loading capacity and can overcome physiological barriers to deliver efficacious amounts of drugs to solid tumors. Here, the development of a safe, biconcave carbon nanodisk to address this challenge for treating breast cancer is reported. The nanodisk demonstrates fluorescent imaging capability, an exceedingly high loading capacity (947.8 mg g-1 , 94.78 wt%) for doxorubicin (DOX), and pH-responsive drug release. It exhibits a higher uptake rate by tumor cells and greater accumulation in tumors in a mouse model than its carbon nanosphere counterpart. In addition, the nanodisk absorbs and transforms near-infrared (NIR) light to heat, which enables simultaneous NIR-responsive drug release for chemotherapy and generation of thermal energy for tumor cell destruction. Notably, this NIR-activated dual therapy demonstrates a near complete suppression of tumor growth in a mouse model of triple-negative breast cancer when DOX-loaded nanodisks are administered systemically.
Collapse
Affiliation(s)
- Qingxin Mu
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, DC, 98195, USA
| | - Hui Wang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, DC, 98195, USA
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Xinyu Gu
- Department of Biochemistry, University of Washington Seattle, Washington, DC, 98195, USA
| | - Zachary R Stephen
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, DC, 98195, USA
| | - Charles Yen
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, DC, 98195, USA
| | - Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, DC, 98195, USA
| | - Christopher J Dayringer
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, DC, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington, DC, 98195, USA
| |
Collapse
|
18
|
Guo H, Zhang Y, Liang W, Tai F, Dong Q, Zhang R, Yu B, Wong WY. An inorganic magnetic fluorescent nanoprobe with favorable biocompatibility for dual-modality bioimaging and drug delivery. J Inorg Biochem 2019; 192:72-81. [DOI: 10.1016/j.jinorgbio.2018.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 11/27/2022]
|
19
|
Shi W, Song B, Shi W, Qin X, Liu Z, Tan M, Wang L, Song F, Yuan J. Bimodal Phosphorescence-Magnetic Resonance Imaging Nanoprobes for Glutathione Based on MnO 2 Nanosheet-Ru(II) Complex Nanoarchitecture. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27681-27691. [PMID: 30058801 DOI: 10.1021/acsami.8b08872] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Bimodal fluorescence-magnetic resonance imaging (MRI) technique has shown great utilities in bioassays because it combines the advantages of both optical imaging and MRI to provide more sufficient information over any modality alone. In this work, on the basis of a MnO2 nanosheet-Ru(II) complex nanoarchitecture, a bimodal phosphorescence-MRI nanoprobe for glutathione (GSH) has been constructed. The nanoprobe, Ru(BPY)3@MnO2, was constructed by integrating MnO2 nanosheets with a phosphorescent Ru(II) complex [Ru(BPY)3](PF6)2 (BPY = 2,2'-bipyridine), which resulted in complete phosphorescence quenching of the Ru(II) complex, accompanied by very low longitudinal and transverse relaxivity. Upon exposure to GSH, the reduction of MnO2 nanosheets by GSH triggers a recovery of phosphorescence and simultaneously produces a number of Mn2+ ions, a perfect MRI contrast agent. The as-prepared nanoprobe showed good water dispersion and biocompatibility and a rapid, selective, and sensitive response toward GSH in the phosphorescence and MR detection modes. The practicability of the nanoprobe was proved by time-gated luminescence assay of GSH in human serum, phosphorescent imaging of endogenous GSH in living cells, zebrafish, and tumor-bearing mice, as well as the MRI of GSH in tumor-bearing mice. The research outcomes suggested the potential of Ru(BPY)3@MnO2 for the bimodal phosphorescence-MRI sensing of GSH in vitro and in vivo.
Collapse
Affiliation(s)
- Wenbo Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Bo Song
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Wenjing Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Xiaodan Qin
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Zhiwei Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Mingqian Tan
- School of Food Science and Technology, National Engineering Research Center of Seafood , Dalian Polytechnic University , Qinggongyuan1, Ganjingzi District, Dalian 116034 , China
| | - Liu Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| | - Jingli Yuan
- State Key Laboratory of Fine Chemicals, School of Chemistry , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
20
|
Dai Z, Ma H, Tian L, Song B, Tan M, Zheng X, Yuan J. Construction of a multifunctional nanoprobe for tumor-targeted time-gated luminescence and magnetic resonance imaging in vitro and in vivo. NANOSCALE 2018; 10:11597-11603. [PMID: 29892761 DOI: 10.1039/c8nr03085e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A dual-modal fluorescence-magnetic resonance imaging technique has gained tremendous attention for its potential in the dawning era of early diagnosis of tumors with high accuracy. In this study, a facile approach has been developed to prepare a tumor-targetable nanoprobe, PTTA-Eu3+-CoFeO-FA nanoparticles, for dual-modal time-gated luminescence (TGL)-magnetic resonance (MR) imaging of tumor cells in vitro and in vivo. The multifunctional nanoprobe was constructed by coating a tumor-targeting molecule, folic acid (FA), and a luminescent Eu3+ complex, PTTA-Eu3+, onto the surface of cobalt/iron oxide (CoFeO) nanoparticles. The as-prepared PTTA-Eu3+-CoFeO-FA nanoparticles are well dispersed in water with good biocompatibility, strong long-lived luminescence as well as pronounced transverse relaxivity. The in vitro study reveals that the nanoprobe works well as an effective luminescent probe to achieve the targeted TGL imaging of RAW 264.7 cells without the interference of background fluorescence, and the results of in vivo dual-modal TGL-MR imaging indicate that the fabricated nanoprobe can be preferentially accumulated in the tumor to effectively enhance the signals of T2-weighted MR imaging and TGL imaging. The research achievements will contribute to the development of new dual-modal fluorescence-MR nanoprobes for application in clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Zhichao Dai
- Shandong Key Laboratory of Functional Nano Materials and Technology, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang G, Qian K, Mei X. A theranostic nanoplatform: magneto-gold@fluorescence polymer nanoparticles for tumor targeting T 1&T 2-MRI/CT/NIR fluorescence imaging and induction of genuine autophagy mediated chemotherapy. NANOSCALE 2018; 10:10467-10478. [PMID: 29799598 DOI: 10.1039/c8nr02429d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multifunctional nanoparticles, bearing low toxicity and tumor-targeting properties, coupled with multifunctional diagnostic imaging and enhanced treatment efficacy, have drawn tremendous attention due to their enormous potential for medical applications. Herein, we report a new kind of biocompatible and tumor-targeting magneto-gold@fluorescent polymer nanoparticle (MGFs-LyP-1), which is based on ultra-small magneto-gold (Fe3O4-Au) nanoparticles and NIR emissive fluorescent polymers by a solvent-mediated method. This kind of nanoparticle could be taken up efficiently and simultaneously serve for in vivo tumor targeting T1&T2-MRI/CT/near infrared (NIR) fluorescence bioimaging. Furthermore, the nanoparticles exhibit small size, higher tumor targeting accumulation, excellent cytocompatibility for long-term tracking, and no disturbing cell proliferation and differentiation. Moreover, clear and convincing evidence proves that as-synthesized MGFs-LyP-1 could elicit genuine autophagy via inducing autophagosome formation, which offers a definite synergistic effect to enhance cancer therapy with doxorubicin (DOX) at a nontoxic concentration through enhancement of the autophagy flux. Meanwhile, the as-prepared nanoparticles could be rapidly cleared from mice without any obvious organ impairment. The results indeed reveal a promising prospect of an MGFs-LyP-1 contrast agent with low toxicity and high efficiency for promising application in biomedicine.
Collapse
Affiliation(s)
- Guannan Wang
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, P. R. China.
| | - Kun Qian
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, P. R. China.
| | - Xifan Mei
- Department of Chemistry & The Key Laboratory for Medical Tissue Engineering of Liaoning Province, Jinzhou Medical University, Jinzhou, 121001, P. R. China.
| |
Collapse
|
22
|
Srinivasan SY, Paknikar KM, Bodas D, Gajbhiye V. Applications of cobalt ferrite nanoparticles in biomedical nanotechnology. Nanomedicine (Lond) 2018; 13:1221-1238. [PMID: 29882719 DOI: 10.2217/nnm-2017-0379] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Magnetic nanoparticles (MNPs) are very attractive especially for biomedical applications, among which, iron oxide nanoparticles have received substantial attention in the past decade due to the elemental composition that makes them biocompatible and degradable. However recently, other magnetic nanomaterials such as spinel ferrites that can provide improved magnetic properties such as coercivity and anisotropy without compromising on inherent advantages of iron oxide nanoparticles are being researched for better applicability of MNPs. Among various spinel ferrites, cobalt ferrite (CoFe2O4) nanoparticles (NPs) are one of the most explored MNPs. Therefore, the intention of this article is to provide a comprehensive review of CoFe2O4 NPs and their inherent properties that make them exceptional candidates, different synthesis methods that influence their properties, and applications of CoFe2O4 NPs and their relevant applications that have been considered in biotechnology and bioengineering.
Collapse
Affiliation(s)
- Sumithra Y Srinivasan
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Dhananjay Bodas
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune - 411 004, India.,Savitribai Phule Pune University, Ganeshkhind, Pune - 411 007, India
| |
Collapse
|
23
|
Zhang Q, Lai W, Yin T, Zhang C, Yue C, Cheng J, Wang K, Yang Y, Cui D, Parak WJ. Investigation of the Viability of Cells upon Co-Exposure to Gold and Iron Oxide Nanoparticles. Bioconjug Chem 2018; 29:2120-2125. [DOI: 10.1021/acs.bioconjchem.8b00349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Qian Zhang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan RD, Shanghai 200240, China
| | - Weien Lai
- Academy of Photoelectric Technology, HeFei University of Technology, HeFei, 230009, China
| | - Ting Yin
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Chunlei Zhang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Caixia Yue
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Yuming Yang
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan RD, Shanghai 200240, China
| | - Wolfgang J. Parak
- Institute of Nano Biomedicine and Engineering, Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan RD, Shanghai 200240, China
- Faculty of Physics and Chemistry and CHyN, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| |
Collapse
|
24
|
Recent Progress in Synthesis and Functionalization of Multimodal Fluorescent-Magnetic Nanoparticles for Biological Applications. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8020172] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
There is a great interest in the development of new nanomaterials for multimodal imaging applications in biology and medicine. Multimodal fluorescent-magnetic based nanomaterials deserve particular attention as they can be used as diagnostic and drug delivery tools, which could facilitate the diagnosis and treatment of cancer and many other diseases. This review focuses on the recent developments of magnetic-fluorescent nanocomposites and their biomedical applications. The recent advances in synthetic strategies and approaches for the preparation of fluorescent-magnetic nanocomposites are presented. The main biomedical uses of multimodal fluorescent-magnetic nanomaterials, including biological imaging, cancer therapy and drug delivery, are discussed, and prospects of this field are outlined.
Collapse
|
25
|
Zhou X, Lv X, Zhao W, Zhou T, Zhang S, Shi Z, Ye S, Ren L, Chen Z. Porous MnFe2O4-decorated PB nanocomposites: a new theranostic agent for boosted T1/T2 MRI-guided synergistic photothermal/magnetic hyperthermia. RSC Adv 2018; 8:18647-18655. [PMID: 35541095 PMCID: PMC9080558 DOI: 10.1039/c8ra02946f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
This study reports a multifunctional core/shell nanoparticle (NP) that can be used for amplified magnetic resonance image (MRI), enhanced photothermal therapy (PTT) and magnetic hyperthermia therapy (MHT) due to its surface coating with a porous shell. Importantly, by means of introducing the surface coating of a porous shell, it helps entrap large quantities of water around NPs and allow more efficient water exchange, leading to greatly improved MR contrast signals. Besides, the porous shell helps the near-infrared (NIR) absorbance of the core, and then the extremely enhanced thermal effect can be obtained under synergistic combination of PTT and MHT. By synthesizing multifunctional porous MnFe2O4/PB as an example, we found that the transversal relaxivity (r2) of MnFe2O4 NPs might improve from 112.11 to 123.46 mM−1 s−1, and the specific absorption rate (SAR) of MnFe2O4/PB nanoparticles reached unprecedented levels of up to 4800 W g−1 compared with the SAR 1182 W g−1 of PTT under an 808 nm laser and 180 W g−1 of MHT under an external AC magnetic field. Meanwhile, when MnFe2O4 was decorated on PB nanoparticles, the magnetic properties became lower slightly, but the synergistic photothermal/magnetic hyperthermia conversion was enhanced greatly. Subsequently, in vitro T1–T2 dual-modal MRI, PTT and MHT results verified that MnFe2O4/PB could serve as an excellent MRI/PTT/MHT theranostic agent. Furthermore, the MnFe2O4/PB NPs were applied as a T1–T2 dual-modal MRI, PTT and MHT theranostic agent for in vivo MRI-guided photothermal and magnetic hyperthermia ablation of tumors by intratumoral injection in 4T1 tumor-bearing mice. The T1–T2 dual-modal MR imaging result shows a significantly contrast in the tumor site. The MPB-mediated PTT and MHT result shows high therapeutic efficiency as a result of high photothermal and magnetic hyperthermia conversion efficiency. The multifunctional NPs have a great potential application for future clinical tumorous diagnosis and treatment. We synthesized a new theranostic agent of porous MnFe2O4-decorated PB nanocomposites for boosted T1/T2 MRI-guided synergistic photothermal/magnetic hyperthermia.![]()
Collapse
Affiliation(s)
- Xi Zhou
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Xiaolin Lv
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Wen Zhao
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Tiantian Zhou
- Department of Electronic Science
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Shupeng Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Zhan Shi
- Department of Materials Science and Engineering
- College of Materials
- Xiamen University
- Xiamen 361005
- P. R. China
| | - Shefang Ye
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Lei Ren
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering Technology of Xiamen
- Department of Biomaterials
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Zhiwei Chen
- Department of Electronic Science
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance Research
- Xiamen University
- Xiamen 361005
- P. R. China
| |
Collapse
|
26
|
Dehvari K, Lin PT, Chang JY. Fluorescence-guided magnetic nanocarriers for enhanced tumor targeting photodynamic therapy. J Mater Chem B 2018; 6:4676-4686. [DOI: 10.1039/c8tb00734a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fe3O4-HA-Ce6 nanotheranostic agents demonstrated specific targeting ability toward cancer cells with subsequent improvement in dual modal MR/NIR imaging and photodynamic therapeutic effects.
Collapse
Affiliation(s)
- Khalilalrahman Dehvari
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taiwan
- Republic of China
| | - Po-Ting Lin
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taiwan
- Republic of China
| | - Jia-Yaw Chang
- Department of Chemical Engineering
- National Taiwan University of Science and Technology
- Taiwan
- Republic of China
- Taiwan Building Technology Center
| |
Collapse
|
27
|
Liu R, Zhao J, Han G, Zhao T, Zhang R, Liu B, Liu Z, Zhang C, Yang L, Zhang Z. Click-Functionalized SERS Nanoprobes with Improved Labeling Efficiency and Capability for Cancer Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38222-38229. [PMID: 28920430 DOI: 10.1021/acsami.7b10409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Precise identification and detection of cancer cells using nanoparticle probes are critically important for early cancer diagnosis and subsequent therapy. We herein develop novel folate receptor (FR)-targeted surface-enhanced Raman scattering (SERS) nanoprobes for cancer cell imaging based on a click coupling strategy. A Raman-active derivative (5,5'-dithiobis(2-nitrobenzoic acid)-N3 (DNBA-N3)) is designed with a disulfide bond for covalently anchoring to the surface of hollow gold nanoparticles (HAuNPs) and a terminal azide group for facilitating highly efficient conjugation with the bioligand. Modification of HAuNPs with DNBA-N3 yields monolayer coverage of Raman labels absorbed on the nanoparticle surface (HAuNP-DNBA-N3) and strong SERS signals. HAuNP-DNBA-N3 can be simply and effectively conjugated with folate bicyclo[6.1.0]nonyne derivatives via a copper-free click reaction. The synthesized nanoprobes (HAuNP-DNBA-folic acid (FA)) exhibit excellent targeted capacities to FR-positive cancer cells relative to FR-negative cells through SERS mappings. The receptor-mediated delivery behaviors are confirmed by comparison with the uptake of HAuNP-DNBA-N3 and free FA competition experiments. In addition to its good stability and benign biocompatibility, the developed SERS nanoprobes have great potential for applications in targeted tumor imaging.
Collapse
Affiliation(s)
- Renyong Liu
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
- Department of Chemistry, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jun Zhao
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| | - Guangmei Han
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| | - Tingting Zhao
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Anhui University , Hefei, Anhui 230601, China
| | - Bianhua Liu
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| | - Zhengjie Liu
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| | - Cheng Zhang
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| | - Linlin Yang
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
| | - Zhongping Zhang
- CAS Center for Excellence in Nanoscience, Institute of Intelligent Machines, Chinese Academy of Sciences , Hefei, Anhui 230031, China
- School of Chemistry and Chemical Engineering, Anhui University , Hefei, Anhui 230601, China
| |
Collapse
|
28
|
Zhang Q, Yin T, Xu R, Gao W, Zhao H, Shapter JG, Wang K, Shen Y, Huang P, Gao G, Wu Y, Cui D. Large-scale immuno-magnetic cell sorting of T cells based on a self-designed high-throughput system for potential clinical application. NANOSCALE 2017; 9:13592-13599. [PMID: 28875998 DOI: 10.1039/c7nr04914e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this contribution, we designed four types of immuno-magnetic nanoparticles for separation of different T cells (CD3+, CD4+, CD8+ and CD14+ T cells), and we established a new large-scale immuno-magnetic cell sorting procedure to achieve an enrichment of particular T cells using our designed auto-IMACS device. This device could achieve recyclable large-scale cell sorting, for which the throughput of the system reached ∼4000 mL and the maximum cell capacity was 4 × 1010. The collected cells were analyzed by flow cytometry and visual cytology data, and the effective selection rates of CD3+, CD4+, CD8+ and CD14+ T cells were 79.3%, 74.1%, 57.1% and 67.9%, respectively. The sorted CD8+ T cells still retained good cytotoxic activity against specific cells. In addition, the sorted T cells can also be further incubated in vitro and proliferated, and even could be infused back into patients for immunotherapy in the near future.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Ting Yin
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Rongrong Xu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China.
| | - Wenjun Gao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Hui Zhao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Joseph G Shapter
- School of Chemical and Physical Sciences, Flinders University, Bedford Park, Adelaide 5042, Australia
| | - Kan Wang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Yulan Shen
- Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, 200240, China
| | - Peng Huang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Guo Gao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China.
| | - Yanfeng Wu
- National Key Laboratory of Medical Immunology, Institute of Immunology, Second Military Medical University, Shanghai 200433, China.
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China.
| |
Collapse
|