1
|
Bartschmid T, Menath J, Roemling L, Vogel N, Atalay F, Farhadi A, Bourret GR. Au Nanoparticles@Si Nanowire Oligomer Arrays for SERS: Dimers Are Best. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41379-41389. [PMID: 39057191 PMCID: PMC11310913 DOI: 10.1021/acsami.4c10004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
We report the synthesis of vertically aligned silicon nanowire (VA-SiNW) oligomer arrays coated with Au nanoparticle (NP) monolayers via a combination of colloidal lithography, metal-assisted chemical etching, and directed NP assembly. Arrays of SiNW monomers (i.e., isolated NWs), dimers, and tetramers are synthesized, decorated with AuNPs, and tested for their performance in surface-enhanced Raman spectroscopy. The ∼20 nm AuNPs easily enter within the ca. 40 nm gaps of the SiNW oligomers, thus reaching the hot spot region. At 785 nm excitation, the AuNPs@SiNW dimer arrays provide the highest Raman signal, in agreement with electromagnetic simulations showing a high electric field enhancement at the Au/Si interface within the dimer gap region.
Collapse
Affiliation(s)
- Theresa Bartschmid
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Johannes Menath
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Lukas Roemling
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Furkan Atalay
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Amin Farhadi
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| |
Collapse
|
2
|
Teng Y, Huang W, Li X, Pan Z, Shao K. Electrochemically assisted wide area Raman with standard curved surface quantification method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121932. [PMID: 36228486 DOI: 10.1016/j.saa.2022.121932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/04/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Reproducibility is still a great challenge for surface-enhanced Raman scattering (SERS), because the uncontrollable fabrication of SERS substrates or the uneven distribution of samples on the substrate result in the signal fluctuation with or between the substrates. Herein, a novel SERS quantitative method with good reproducibility was proposed. It is based on the basic principle that the SERS signal intensity is not only related to electromagnetic enhancement and the concentration of sample, but also related to the specific surface area of the substrate. The surface area information of the substrate is obtained through electrochemical technology, and then introduced into the standard curve with the linear relationship of concentration of sample and SERS intensity as a new variable to obtain a 3D standard curved surface, which effectively corrects the signal difference between the substrates, and combines the wide area Raman method to reduce the difference within the substrate, thereby improving the reproducibility of SERS quantitative detection. Using malachite green (MG) as the probe molecule and using cyclic voltammetry to calculate the substrate area fitted plane model (CV-standard curved surface), the root mean square error (RMSE) of the predicted result is 0.26 and the relative error (RE) is 0.25. It shows that the detection error significantly reduces comparing with the traditional standard curve method. Also, the proposed method can be used in other SERS quantitative detection and has potential application prospects.
Collapse
Affiliation(s)
- Yuanjie Teng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Weihao Huang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xin Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zaifa Pan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Kang Shao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
3
|
Biswas S, Devi YD, Sarma D, Namsa ND, Nath P. Gold nanoparticle decorated blu-ray digital versatile disc as a highly reproducible surface-enhanced Raman scattering substrate for detection and analysis of rotavirus RNA in laboratory environment. JOURNAL OF BIOPHOTONICS 2022; 15:e202200138. [PMID: 36054627 DOI: 10.1002/jbio.202200138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Detection and estimation of various biomolecular samples are often required in research and clinical laboratory applications. Present work demonstrates the functioning of a surface-enhanced Raman scattering (SERS) substrate that has been obtained by drop-casting of citrate-reduced gold nanoparticles (AuNPs) of average dimension of 23 nm on a bare blu-ray digital versatile disc (BR-DVD) substrate. The performance of the proposed SERS substrate has been initially evaluated with standard Raman active samples, namely malachite green (MG) and 1,2-bis(4-pyridyl)ethylene (BPE). The designed SERS substrate yields an average enhancement factor of 3.2 × 106 while maintaining reproducibility characteristics as good as 94% over the sensing region of the substrate. The usability of the designed SERS substrate has been demonstrated through the detection and analysis of purified rotavirus double-stranded RNA (dsRNA) samples in the laboratory environment condition. Rotavirus RNA concentrations as low as 10 ng/μL could be detected with the proposed sensing scheme.
Collapse
Affiliation(s)
- Sritam Biswas
- Applied Photonics and Nanophotonics Lab, Department of Physics, Tezpur University, Assam, India
| | | | - Dipjyoti Sarma
- Applied Photonics and Nanophotonics Lab, Department of Physics, Tezpur University, Assam, India
| | - Nima D Namsa
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Assam, India
| | - Pabitra Nath
- Applied Photonics and Nanophotonics Lab, Department of Physics, Tezpur University, Assam, India
| |
Collapse
|
4
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
5
|
Bartschmid T, Farhadi A, Musso ME, Goerlitzer ESA, Vogel N, Bourret GR. Self-Assembled Au Nanoparticle Monolayers on Silicon in Two- and Three-Dimensions for Surface-Enhanced Raman Scattering Sensing. ACS APPLIED NANO MATERIALS 2022; 5:11839-11851. [PMID: 36062062 PMCID: PMC9425434 DOI: 10.1021/acsanm.2c01904] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/03/2022] [Indexed: 05/05/2023]
Abstract
Gold nanoparticle/silicon composites are canonical substrates for sensing applications because of their geometry-dependent physicochemical properties and high sensing activity via surface-enhanced Raman spectroscopy (SERS). The self-assembly of gold nanoparticles (AuNPs) synthesized via wet-chemistry on functionalized flat silicon (Si) and vertically aligned Si nanowire (VA-SiNW) arrays is a simple and cost-effective approach to prepare such substrates. Herein, we report on the critical parameters that influence nanoparticle coverage, aggregation, and assembly sites in two- and three-dimensions to prepare substrates with homogeneous optical properties and SERS activity. We show that the degree of AuNP aggregation on flat Si depends on the silane used for the Si functionalization, while the AuNP coverage can be adjusted by the incubation time in the AuNP solution, both of which directly affect the substrate properties. In particular, we report the reproducible synthesis of nearly touching AuNP chain monolayers where the AuNPs are separated by nanoscale gaps, likely to be formed due to the capillary forces generated during the drying process. Such substrates, when used for SERS sensing, produce a uniform and large enhancement of the Raman signal due to the high density of hot spots that they provide. We also report the controlled self-assembly of AuNPs on VA-SiNW arrays, which can provide even higher Raman signal enhancement. The directed assembly of the AuNPs in specific regions of the SiNWs with a control over NP density and monolayer morphology (i.e., isolated vs nearly touching NPs) is demonstrated, together with its influence on the resulting SERS activity.
Collapse
Affiliation(s)
- Theresa Bartschmid
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| | - Amin Farhadi
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| | - Maurizio E. Musso
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| | - Eric Sidney Aaron Goerlitzer
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, 5020 Salzburg, Austria
| |
Collapse
|
6
|
Electrochemical Synthesis of Plasmonic Nanostructures. Molecules 2022; 27:molecules27082485. [PMID: 35458688 PMCID: PMC9027786 DOI: 10.3390/molecules27082485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
Thanks to their tunable and strong interaction with light, plasmonic nanostructures have been investigated for a wide range of applications. In most cases, controlling the electric field enhancement at the metal surface is crucial. This can be achieved by controlling the metal nanostructure size, shape, and location in three dimensions, which is synthetically challenging. Electrochemical methods can provide a reliable, simple, and cost-effective approach to nanostructure metals with a high degree of geometrical freedom. Herein, we review the use of electrochemistry to synthesize metal nanostructures in the context of plasmonics. Both template-free and templated electrochemical syntheses are presented, along with their strengths and limitations. While template-free techniques can be used for the mass production of low-cost but efficient plasmonic substrates, templated approaches offer an unprecedented synthetic control. Thus, a special emphasis is given to templated electrochemical lithographies, which can be used to synthesize complex metal architectures with defined dimensions and compositions in one, two and three dimensions. These techniques provide a spatial resolution down to the sub-10 nanometer range and are particularly successful at synthesizing well-defined metal nanoscale gaps that provide very large electric field enhancements, which are relevant for both fundamental and applied research in plasmonics.
Collapse
|
7
|
Piaskowski J, Ibragimov A, Wendisch FJ, Bourret GR. Selective Enhancement of Surface and Bulk E-Field within Porous AuRh and AuRu Nanorods. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:27661-27670. [PMID: 34970380 PMCID: PMC8713288 DOI: 10.1021/acs.jpcc.1c08699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/30/2021] [Indexed: 05/21/2023]
Abstract
A variety of multisegmented nanorods (NRs) composed of dense Au and porous Rh and Ru segments with lengths controlled down to ca. 10 nm are synthesized within porous anodic aluminum oxide membranes. Despite the high Rh and Ru porosity (i.e., ∼40%), the porous metal segments are able to efficiently couple with the longitudinal localized surface plasmon resonance (LSPR) of Au NRs. Finite-difference time-domain simulations show that the LSPR wavelength can be precisely tuned by adjusting the Rh and Ru porosity. Additionally, light absorption inside Rh and Ru segments and the surface electric field (E-field) at Rh and Ru can be independently and selectively enhanced by varying the position of the Rh and Ru segment within the Au NR. The ability to selectively control and decouple the generation of high-energy, surface hot electrons and low-energy, bulk hot electrons within photocatalytic metals such as Rh and Ru makes these bimetallic structures great platforms for fundamental studies in plasmonics and hot-electron science.
Collapse
|
8
|
Forouzanfar S, Pala N, Madou M, Wang C. Perspectives on C-MEMS and C-NEMS biotech applications. Biosens Bioelectron 2021; 180:113119. [PMID: 33711652 DOI: 10.1016/j.bios.2021.113119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 02/04/2023]
Abstract
Carbon microelectromechanical system (C-MEMS) and carbon nanoelectromechanical system (C-NEMS) have been identified as promising technologies for a range of biotech applications, including electrochemical biosensors, biofuel cells, neural probes, and dielectrophoretic cell trapping. Research teams around the world have devoted more and more time to this field. After almost two decades of efforts on developing C-MEMS and C-NEMS, a review of the relevant progress and addressing future research opportunities and critical issues is in order. This review first introduces C-MEMS and C-NEMS fabrication processes that fall into two categories: photolithography- and non-photolithography- based techniques. Next, a detailed discussion of the state of the art, and technical challenges and opportunities associated with C-MEMS and C-NEMS devices used in biotech applications are presented. These devices are discussed in the relevant sub-sections of biosensors, biofuel cells, intracorporeal neural probe, dielectrophoresis cell trapping, and cell culture. The review concludes with an exposition of future perspectives in C-MEMS and C-NEMS.
Collapse
Affiliation(s)
- Shahrzad Forouzanfar
- Electrical and Computer Engineering, Florida International University, United States
| | - Nezih Pala
- Electrical and Computer Engineering, Florida International University, United States
| | - Marc Madou
- Mechanical and Aerospace Engineering, University of California Irvine, United States
| | - Chunlei Wang
- Mechanical and Materials Engineering, Florida International University, United States; Center for Study of Matter at Extreme Conditions, Florida International University, United States.
| |
Collapse
|
9
|
Mussel-inspired immobilization of silver nanoparticles toward sponge for rapid swabbing extraction and SERS detection of trace inorganic explosives. Talanta 2019; 204:189-197. [PMID: 31357281 DOI: 10.1016/j.talanta.2019.05.110] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
It is fairly crucial to detect inorganic explosives through a sensitive and fast method in the field of public safety, nevertheless, the high non-volatility and stability characteristics severely confine their accurate on-site detection from a real-world surface. In this work, an efficient, simple and cost effective method was developed to fabricate uniform silver nanoparticles (AgNPs) immobilized on polyurethane (PU) sponge through the in-situ reduction of polydopamine (PDA) based on mussel-inspired surface chemistry, in virtue of a large quantities catechol and amine functional groups. The formed PU@PDA@Ag sponges exhibited high SERS sensitivity, uniformity and reproducibility to 4-Aminothiophenol (4-ATP) probe molecule, and the limit of detection was calculated to be about 0.02 nmol L-1. Moreover, these PU@PDA@Ag sponges could be served as excellent flexible SERS substrates to rapidly detect trace inorganic explosives with high collection efficiency via swabbing extraction. The detection limit for perchlorates (ClO4-), chlorates (ClO3-) and nitrates (NO3-) were approximately down to 0.13, 0.13 and 0.11 ng respectively. These flexible substrates not only could drastically increase the sample collection efficiency, but also enhance analytical sensitivity and reliability for inorganic explosive, and would have a great potential application in the future homeland security fields.
Collapse
|
10
|
Wendisch F, Saller MS, Eadie A, Reyer A, Musso M, Rey M, Vogel N, Diwald O, Bourret GR. Three-Dimensional Electrochemical Axial Lithography on Si Micro- and Nanowire Arrays. NANO LETTERS 2018; 18:7343-7349. [PMID: 30359028 PMCID: PMC6238956 DOI: 10.1021/acs.nanolett.8b03608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A templated electrochemical technique for patterning macroscopic arrays of single-crystalline Si micro- and nanowires with feature dimensions down to 5 nm is reported. This technique, termed three-dimensional electrochemical axial lithography (3DEAL), allows the design and parallel fabrication of hybrid silicon nanowire arrays decorated with complex metal nano-ring architectures in a flexible and modular approach. While conventional templated approaches are based on the direct replication of a template, our method can be used to perform high-resolution lithography on pre-existing nanostructures. This is made possible by the synthesis of a porous template with tunable dimensions that guides the deposition of well-defined metallic shells around the Si wires. The synthesis of a variety of ring architectures composed of different metals (Au, Ag, Fe, and Ni) with controlled sequence, height, and position along the wire is demonstrated for both straight and kinked wires. We observe a strong enhancement of the Raman signal for arrays of Si nanowires decorated with multiple gold rings due to the plasmonic hot spots created in these tailored architectures. The uniformity of the fabrication method is evidenced by a homogeneous increase in the Raman signal throughout the macroscopic sample. This demonstrates the reliability of the method for engineering plasmonic fields in three dimensions within Si wire arrays.
Collapse
Affiliation(s)
- Fedja
J. Wendisch
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Michael S. Saller
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Alex Eadie
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Andreas Reyer
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Maurizio Musso
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Marcel Rey
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute
of Particle Technology, Friedrich-Alexander
University Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - Oliver Diwald
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
| | - Gilles R. Bourret
- Department
of Chemistry and Physics of Materials, University
of Salzburg, Jakob Haringer Strasse 2A, A-5020 Salzburg, Austria
- E-mail:
| |
Collapse
|
11
|
Hakonen A, Wu K, Stenbæk Schmidt M, Andersson PO, Boisen A, Rindzevicius T. Detecting forensic substances using commercially available SERS substrates and handheld Raman spectrometers. Talanta 2018; 189:649-652. [DOI: 10.1016/j.talanta.2018.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/05/2018] [Indexed: 01/22/2023]
|
12
|
Viehrig M, Thilsted AH, Matteucci M, Wu K, Catak D, Schmidt MS, Zór K, Boisen A. Injection-Molded Microfluidic Device for SERS Sensing Using Embedded Au-Capped Polymer Nanocones. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37417-37425. [PMID: 30277378 DOI: 10.1021/acsami.8b13424] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
To enable affordable detection and diagnostic, there is a need for low-cost and mass producible miniaturized sensing platforms. We present a fully polymeric microfluidic lab-on-a-chip device with integrated gold (Au)-capped nanocones for sensing applications based on surface-enhanced Raman spectroscopy (SERS). All base components of the device were fabricated via injection molding (IM) and can be easily integrated using ultrasonic welding. The SERS sensor array, embedded in the bottom of a fluidic channel, was created by evaporating Au onto IM nanocone structures, resulting in densely packed Au-capped SERS active nanostructures. Using a Raman active model analyte, trans-1,2-bis-(4-pyridyl)-ethylene, we found a surface-averaged SERS enhancement factor of ∼5 × 106 with a relative standard deviation of 14% over the sensor area (2 × 2 mm2), and a 18% signal variation among substrates. This reproducible fabrication method is cost-effective, less time consuming, and allows mass production of fully integrated polymeric, microfluidic systems with embedded high-density and high-aspect ratio SERS sensor.
Collapse
Affiliation(s)
- Marlitt Viehrig
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsted Plads , 2800 Kgs. Lyngby , Denmark
| | - Anil H Thilsted
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsted Plads , 2800 Kgs. Lyngby , Denmark
| | - Marco Matteucci
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsted Plads , 2800 Kgs. Lyngby , Denmark
| | - Kaiyu Wu
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsted Plads , 2800 Kgs. Lyngby , Denmark
| | - Darmin Catak
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsted Plads , 2800 Kgs. Lyngby , Denmark
| | - Michael S Schmidt
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsted Plads , 2800 Kgs. Lyngby , Denmark
| | - Kinga Zór
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsted Plads , 2800 Kgs. Lyngby , Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Micro- and Nanotechnology , Technical University of Denmark , Ørsted Plads , 2800 Kgs. Lyngby , Denmark
| |
Collapse
|
13
|
Pilát Z, Kizovský M, Ježek J, Krátký S, Sobota J, Šiler M, Samek O, Buryška T, Vaňáček P, Damborský J, Prokop Z, Zemánek P. Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3212. [PMID: 30249041 PMCID: PMC6210807 DOI: 10.3390/s18103212] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 01/12/2023]
Abstract
Optofluidics, a research discipline combining optics with microfluidics, currently aspires to revolutionize the analysis of biological and chemical samples, e.g., for medicine, pharmacology, or molecular biology. In order to detect low concentrations of analytes in water, we have developed an optofluidic device containing a nanostructured substrate for surface enhanced Raman spectroscopy (SERS). The geometry of the gold surface allows localized plasmon oscillations to give rise to the SERS effect, in which the Raman spectral lines are intensified by the interaction of the plasmonic field with the electrons in the molecular bonds. The SERS substrate was enclosed in a microfluidic system, which allowed transport and precise mixing of the analyzed fluids, while preventing contamination or abrasion of the highly sensitive substrate. To illustrate its practical use, we employed the device for quantitative detection of persistent environmental pollutant 1,2,3-trichloropropane in water in submillimolar concentrations. The developed sensor allows fast and simple quantification of halogenated compounds and it will contribute towards the environmental monitoring and enzymology experiments with engineered haloalkane dehalogenase enzymes.
Collapse
Affiliation(s)
- Zdeněk Pilát
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
| | - Martin Kizovský
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
| | - Jan Ježek
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
| | - Stanislav Krátký
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
| | - Jaroslav Sobota
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
| | - Martin Šiler
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
| | - Ota Samek
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
| | - Tomáš Buryška
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 62500 Brno, Czech Republic.
| | - Pavel Vaňáček
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 62500 Brno, Czech Republic.
| | - Jiří Damborský
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 62500 Brno, Czech Republic.
| | - Zbyněk Prokop
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 62500 Brno, Czech Republic.
| | - Pavel Zemánek
- Institute of Scientific Instruments of the CAS, v.v.i., Czech Academy of Sciences, Kralovopolska 147, 61264 Brno, Czech Republic.
| |
Collapse
|