1
|
Zhang W, Cheng H, Pan R, Gong Y, Gan Z, Hu R, Ding J, Zhang X, Tian X. Effective Structure Control of Colloidal Molecules and the Morphology Evolution Mechanism Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12429-12437. [PMID: 34648714 DOI: 10.1021/acs.langmuir.1c02089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Colloidal molecules (CMs), nonspherical clusters of a small number of particles, can be used as building blocks for self-assembly applications. Here, we propose a novel one pot method for CMs synthesis. First, poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAM-co-AA)) microgels were prepared by soap-free emulsion polymerization as seed particles, then monomer styrene and cross-linking agent divinylbenzene (DVB) were added, which could be polymerized by the remaining free radicals on the seed surface in situ. P(NIPAM-co-AA)-PS colloidal molecules with a series of morphologies such as popcorn-like, CO2-like, NH3-like, CH4-like and so on could be obtained. The effects of satellite colloid viscosity, interfacial tension, and polymer chain mobility on the number of satellite colloid have been investigated, and the formation mechanism of CMs is proposed based on morphology evolution investigation. Compared with the existing CM synthesis techniques, our method enables fabricating CMs from vinyl monomer in a facile and efficient way, and the scientific finding regarding the CMs formation will guide the CMs fabrication toward salable and reliable direction.
Collapse
Affiliation(s)
- Wei Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Hua Cheng
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, People's Republic of China
| | - Rui Pan
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yi Gong
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Zhengya Gan
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Rui Hu
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Jianjun Ding
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Xian Zhang
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Xingyou Tian
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| |
Collapse
|
2
|
Kobayashi Y, Arai N, Nikoubashman A. Structure and Shear Response of Janus Colloid-Polymer Mixtures in Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14214-14223. [PMID: 33207880 DOI: 10.1021/acs.langmuir.0c02308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the structure and rheological properties of dilute colloid-polymer mixtures at rest and under shear via molecular simulations that take into account hydrodynamic interactions. Mixtures of amphiphilic Janus colloids (JCs) and hydrophobic/amphiphilic polymers are considered for various solvent qualities and polymer concentrations. Free polymers, small polymer droplets, and hybrid aggregates coexist in mixtures with slightly hydrophobic homopolymers. As the solvent quality worsens, all polymers aggregate into small droplets, covered and stabilized by the JCs. In mixtures with amphiphilic polymers, we observe the coexistence of free polymers, purely polymeric micelles, and hybrid aggregates. At low shear rates, all mixtures exhibit a Newtonian-like response with intrinsic shear viscosities that are up to 2 times as large as of pure suspensions of nonadsorbing colloids at the same concentration. Furthermore, the mean aggregation number increases slightly due to the flow-enhanced collision of aggregates. At larger shear rates, however, the aggregates break up, the polymers align in the flow direction, and the mixtures exhibit shear-thinning. This shear-induced breakup occurs at stronger shear compared to pure JC suspensions, indicating that the adsorbed polymers reinforce the hybrid aggregates.
Collapse
Affiliation(s)
- Yusei Kobayashi
- Department of Mechanical Engineering, Keio University, Kohoku-ku, 223-8522 Yokohama, Japan
| | - Noriyoshi Arai
- Department of Mechanical Engineering, Keio University, Kohoku-ku, 223-8522 Yokohama, Japan
| | - Arash Nikoubashman
- Department of Mechanical Engineering, Keio University, Kohoku-ku, 223-8522 Yokohama, Japan
- Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany
| |
Collapse
|
3
|
Wang P, Xue T, Sheng A, Cheng L, Zhang J. Application of Chemoselective Ligation in Biosensing. Crit Rev Anal Chem 2020; 52:170-193. [DOI: 10.1080/10408347.2020.1791044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pei Wang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
- Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University, Shanghai, P. R. China
| | - Tianxiang Xue
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Anzhi Sheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Liangfen Cheng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|
4
|
Lee SN, Choi JH, Cho HY, Choi JW. Metallic Nanoparticle-Based Optical Cell Chip for Nondestructive Monitoring of Intra/Extracellular Signals. Pharmaceutics 2020; 12:pharmaceutics12010050. [PMID: 31936079 PMCID: PMC7022866 DOI: 10.3390/pharmaceutics12010050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 12/23/2022] Open
Abstract
The biosensing platform is noteworthy for high sensitivity and precise detection of target analytes, which are related to the status of cells or specific diseases. The modification of the transducers with metallic nanoparticles (MNPs) has attracted attention owing to excellent features such as improved sensitivity and selectivity. Moreover, the incorporation of MNPs into biosensing systems may increase the speed and the capability of the biosensors. In this review, we introduce the current progress of the developed cell-based biosensors, cell chip, based on the unique physiochemical features of MNPs. Mainly, we focus on optical intra/extracellular biosensing methods, including fluorescence, localized surface plasmon resonance (LSPR), and surface-enhanced Raman spectroscopy (SERS) based on the coupling of MNPs. We believe that the topics discussed here are useful and able to provide a guideline in the development of new MNP-based cell chip platforms for pharmaceutical applications such as drug screening and toxicological tests in the near future.
Collapse
Affiliation(s)
- Sang-Nam Lee
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea; (S.-N.L.); (J.-H.C.)
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jin-Ha Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea; (S.-N.L.); (J.-H.C.)
| | - Hyeon-Yeol Cho
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea; (S.-N.L.); (J.-H.C.)
- Correspondence: (H.-Y.C.); (J.-W.C.); Tel.: +82-2-705-8480 (J.-W.C.)
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-Gu, Seoul 04107, Korea; (S.-N.L.); (J.-H.C.)
- Correspondence: (H.-Y.C.); (J.-W.C.); Tel.: +82-2-705-8480 (J.-W.C.)
| |
Collapse
|
5
|
Abstract
Magnetic Janus particles bring together the ability of Janus particles to perform two different functions at the same time in a single particle with magnetic properties enabling their remote manipulation, which allows headed movement and orientation. This article reviews the preparation procedures and applications in the (bio)sensing field of static and self-propelled magnetic Janus particles. The main progress in the fabrication procedures and the applicability of these particles are critically discussed, also giving some clues on challenges to be dealt with and future prospects. The promising characteristics of magnetic Janus particles in the (bio)sensing field, providing increased kinetics and sensitivity and decreased times of analysis derived from the use of external magnetic fields in their manipulation, allows foreseeing their great and exciting potential in the medical and environmental remediation fields.
Collapse
|
6
|
Kirillova A, Marschelke C, Synytska A. Hybrid Janus Particles: Challenges and Opportunities for the Design of Active Functional Interfaces and Surfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9643-9671. [PMID: 30715834 DOI: 10.1021/acsami.8b17709] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Janus particles are a unique class of multifunctional patchy particles combining two dissimilar chemical or physical functionalities at their opposite sides. The asymmetry characteristic for Janus particles allows them to self-assemble into sophisticated structures and materials not attainable by their homogeneous counterparts. Significant breakthroughs have recently been made in the synthesis of Janus particles and the understanding of their assembly. Nevertheless, the advancement of their applications is still a challenging field. In this Review, we highlight recent developments in the use of Janus particles as building blocks for functional materials. We provide a brief introduction into the synthetic strategies for the fabrication of JPs and their properties and assembly, outlining the existing challenges. The focus of this Review is placed on the applications of Janus particles for active interfaces and surfaces. Active functional interfaces are created owing to the stabilization efficiency of Janus particles combined with their capability for interface structuring and functionalizing. Moreover, Janus particles can be employed as building blocks to fabricate active functional surfaces with controlled chemical and topographical heterogeneity. Ultimately, we will provide implications for the rational design of multifunctional materials based on Janus particles.
Collapse
Affiliation(s)
- Alina Kirillova
- Department of Mechanical Engineering and Materials Science, Edmund T. Pratt Jr. School of Engineering , Duke University , Durham , North Carolina 27708 , United States
| | - Claudia Marschelke
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| | - Alla Synytska
- Leibniz-Institut für Polymerforschung Dresden e.V. , Hohe Strasse 6 , 01069 Dresden , Germany
- Fakultät Mathematik und Naturwissenschaften , Technische Universität Dresden , 01062 Dresden , Germany
| |
Collapse
|
7
|
Zhao P, Bhowmick S, Yu J, Wang J. Highly Multiplexed Single-Cell Protein Profiling with Large-Scale Convertible DNA-Antibody Barcoded Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800672. [PMID: 30250804 PMCID: PMC6145231 DOI: 10.1002/advs.201800672] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/05/2018] [Indexed: 05/11/2023]
Abstract
Highly multiplexed detection of proteins secreted by single cells is always challenging. Herein, a multiplexed in situ tagging technique based on single-stranded DNA encoded microbead arrays and multicolor successive imaging for assaying single-cell secreted proteins with high throughput and high sensitivity is presented. This technology is demonstrated to be capable of increasing the multiplexity exponentially. Upon integration with polydimethylsiloxane microwells, this platform is applied to detect ten immune effector proteins from differentiated single macrophages stimulated with lipopolysaccharide. Significant heterogeneity is observed when the derived human primary macrophages are analyzed. This versatile technology is expected to open new opportunities in systems biology, immune regulation studies, signaling analysis, and molecular diagnostics.
Collapse
Affiliation(s)
- Peng Zhao
- Multiplex Biotechnology Laboratory Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Sirsendu Bhowmick
- Multiplex Biotechnology Laboratory Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Jianchao Yu
- Multiplex Biotechnology Laboratory Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Jun Wang
- Multiplex Biotechnology Laboratory Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
- Cancer Research Center University at Albany State University of New York Rensselaer NY 12144 USA
| |
Collapse
|