1
|
Tian M, Zheng R, Jia C. Bridging to Commercialization: Record-Breaking of Ultra-Large and Superior Cyclic Stability Tungsten Oxide Electrochromic Smart Window. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409790. [PMID: 39436056 DOI: 10.1002/adma.202409790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Indexed: 10/23/2024]
Abstract
Electrochromic smart windows (ESWs) can significantly reduce energy consumption in buildings, but their cost-effective, large-scale production remains a challenge. In this study, the instability of black phosphorus is leveraged to induce the growth of the tungsten oxide film through its decomposition process, inspired by the 2D material-assisted in situ growth (TAIG) method. This approach results in the preparation of large-scale, high-performance WO3-x·nH2O (n < 2) films. Characterization techniques and DFT calculations confirm efficient regulation of structural water and oxygen vacancies during TAIG preparation. The WO3-x·nH2O films exhibit excellent electrochromic (EC) properties, including high transmittance modulation (74.2%@1100 nm), fast switching time (tc = 5.5 s, tb = 3.8 s), high coloration efficiency (124.7 cm2 C-1), and superior cyclic stability (transmittance modulation retained 94.7% after 20 000 cycles). Ultra-large WO3-x·nH2O film are prepared via a simple immersion process, and fabricated into a large-area ESW under facile laboratory conditions, demonstrating the economic and practical feasibility of this approach in industrial-scale production. Operated by the intelligent control circuit, the ESW exhibits remarkable EC properties and cyclic stability This research represents a milestone in improving the performance and industrial-scale production of ESWs, bridging the gap to the commercialization of EC technology.
Collapse
Affiliation(s)
- Maofei Tian
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Rongzong Zheng
- College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| | - Chunyang Jia
- State Key Laboratory of Electronic Thin Films and Integrated Devices, National Engineering Research Center of Electromagnetic Radiation Control Materials, School of Integrated Circuit Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, PR China
| |
Collapse
|
2
|
Ganesha MK, Hakkeem H, Mondal I, Singh AK, Kulkarni GU. An ITO free All Tungsten-Based Electrochromic Energy Storage Device as Smart Window. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405467. [PMID: 39235419 DOI: 10.1002/smll.202405467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Indexed: 09/06/2024]
Abstract
Excessive electricity usage in buildings, notably for heating and cooling, accounts for over 30% of energy consumption, creating a pressing need for energy-saving solutions. Electrochromic Smart Windows (ECSW) aims to reduce energy use while maintaining comfort but faces high costs due to materials like tin-doped indium oxide (ITO) and thick electrochromic films. Moreover, achieving full opacity in the colored state of ECSW is a bottleneck for the industry to overcome privacy concerns. Herein, efforts are directed toward finding cost-efficient alternatives, with all-tungsten-based mesh networks showing promise due to enhanced stability. This newly developed ITO-free, all-tungsten ECSW displays minimal transmittance (≈3%) in the colored state using only 260 nm thick sub-stoichiometric tungsten oxide (WO3-x) film within a lithium-ion-based electrolyte. The ECSW device of size (25 cm2) also demonstrates areal capacitance of ≈13 mF cm-2 to power a liquid crystal display (LCD) for ≈25 min, showcasing its energy storage capabilities. Additionally, to confirm scalability and cost-effectiveness, a larger 15 × 15 cm2 ECSW utilized a single hybrid electrode, highlighting the potential for reducing costs when scaling up production processes. This advancement represents a significant stride toward accessible and energy-efficient smart window technology, offering broader applicability within modern architectural practices.
Collapse
Affiliation(s)
- Mukhesh K Ganesha
- Centre for Nano and Soft Matter Sciences, Arkavathi Campus, Bengaluru, 562162, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Hafis Hakkeem
- Centre for Nano and Soft Matter Sciences, Arkavathi Campus, Bengaluru, 562162, India
| | - Indrajit Mondal
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Rachenahalli Lake Rd, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Ashutosh K Singh
- Centre for Nano and Soft Matter Sciences, Arkavathi Campus, Bengaluru, 562162, India
- Manipal Academy of Higher Education, Manipal, 576104, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Giridhar U Kulkarni
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Rachenahalli Lake Rd, Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
3
|
Tiwari S, Ghosh T, Kandpal S, Saxena S, Kumar R, Prakash R, Chaudhary A. Utilizing Natural Materials in Electronic Devices: Inching Toward "Herbal Electronics". ACS APPLIED BIO MATERIALS 2024; 7:5107-5120. [PMID: 38980821 DOI: 10.1021/acsabm.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Sustainable development is the primary key to address global energy challenges. Though the scientific community is engaged in developing efficient ways to not only maximize energy production from natural resources like sun, wind, water, etc. but also to make all the electronic gadgets power efficient, despite all this, the materials used in most of the electronic devices are largely produced using various materials processing techniques and semiconductors, polymers, dielectrics, etc. which again increases the burden on energy and in turn affects the environment. While addressing these challenges, it is very important to explore the possibility to directly, or with minimum processing, utilize the potential of natural resources in the development of electronic devices. Recent articles are focused on the development of herbal electronic devices that essentially implement natural resources, like plants, leaves, etc., either in their raw or extracted form in the device assembly. This review encompasses the recent research developments around herbal electronic devices. Furthermore, herbal electronics has been discussed for several functional applications including electrochromism, energy storage, memresistor, LED, solar cell, water purification, pressure sensor, etc. Moreover, advantages, disadvantages, and challenges encountered in the realization of "herbal electronics" have been discussed at length.
Collapse
Affiliation(s)
- Soumya Tiwari
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Tanushree Ghosh
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Suchita Kandpal
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Shailendra Saxena
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Chennai, 603203 Tamil Nadu, India
| | - Rajesh Kumar
- Materials and Device Laboratory, Indian Institute of Technology Indore, Simrol, Indore 453552, India
- Centre for Advanced Electronics, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Rajiv Prakash
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| | - Anjali Chaudhary
- Department of Physics, Indian Institute of Technology Bhilai, Bhilai, Chhattisgarh 491002, India
| |
Collapse
|
4
|
Yang Y, Chen B, Zhang Y, Peng H, Chen J, Chen S. Copper Vanadium Oxide Yolk-Shell Microspheres with Excellent Capacitance and Cycling Performance for Electrochromic Supercapacitor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42502-42512. [PMID: 39096487 DOI: 10.1021/acsami.4c09004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Vanadium pentoxide (V2O5) is considered a promising material for electrochromic supercapacitors due to its rich color transitions and excellent electrochemical capacity. However, V2O5 exhibits low electrical conductivity, and its volume changes dramatically during charge-discharge cycles, leading to structural collapse and poor long-term cyclability. These issues have hindered the development and application of V2O5. In this study, copper vanadium oxide yolk-shell microspheres (CVO) were synthesized through a one-step solvent heat treatment with an annealing process. With the doping of copper element, the capacitance, conductivity, and cyclic stability of CVO microspheres were significantly enhanced. Subsequently, the sphere-wire network structure was formed by blending Na2V6O16·3H2O nanowires (NVO), resulting in the formation of CVO/NVO composites. The three-dimensional sphere-wire network efficiently facilitates the acquisition of additional redox sites and strengthens the material-to-substrate bonding. Under the combined influence of these favorable factors, CVO/NVO achieved a high specific capacitance of 39.2 mF cm-2, with a capacitance retention of 84% after 7500 cycles at a current density of 0.7 mA cm-2. The fully inorganic solid-state electrochromic supercapacitor (ECSC), assembled on the basis of CVO/NVO, demonstrates a vivid and clearly distinguishable color change (ΔE* = 37). Even more impressive is the energy storage capacity (18.4 mF·cm-2) and the cycling stability (up to 89% retention after 10,000 cycles) exhibited by the devices. These key performances are superior to those of most of the previously reported V2O5-based ECSCs, opening a promising avenue for the development of V2O5-based electrochromic energy storage devices.
Collapse
Affiliation(s)
- Yuanhaobo Yang
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Biao Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yongbo Zhang
- Down-Hole Service Company of Sinopec Shengli Petroleum Engineering Co., Ltd., Dongying 257066, China
| | - Hongchao Peng
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Jia Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Sheng Chen
- College of Biomass Science and Engineering, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Fu X, Li K, Zhang C, Wang Q, Xu G, Rogachev AA, Yarmolenko MA, Cao H, Zhang H. Homogeneous and Nanogranular Prussian Blue to Enable Long-Term-Stable Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17745-17756. [PMID: 38523600 DOI: 10.1021/acsami.3c17551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The increasing demand for the state-of-the-art electrochromic devices has received great interest in synthesizing Prussian blue (PB) nanoparticles with a uniform diameter that exhibit excellent electrochromism, electrochemistry, and cyclability. Herein, we report the controllable synthesis of sub-100 nm PB nanoparticles via the coprecipitation method. The diameter of PB nanoparticles can be modulated by adjusting the reactant concentration, the selection of a chelator, and their purification. The self-assembled nanogranular thin films, homogeneously fabricated by using optimized PB nanoparticles with an average diameter of 50 nm as building blocks via the blade coating technique enable excellent performance with a large optical modulation of 80% and a high coloration efficiency of 417.79 cm2 C-1. It is also demonstrated by in situ and ex situ observations that the nanogranular PB thin films possess outstanding structural and electrochemical reversibility. Furthermore, such nanogranular PB thin films can enjoy the enhanced long-term cycling stability of the PB-WO3 complementary electrochromic devices having a 91.4% optical contrast retention after 16,000 consecutive cycles. This work provides a newly and industrially compatible approach to producing a complementary electrochromic device with extraordinary durability for various practical applications.
Collapse
Affiliation(s)
- Xiaofang Fu
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Kun Li
- Vallight Optics Technology Ningbo Co., Ltd, Ningbo 315400, PR China
| | - Chengli Zhang
- Ningbo Wakan Electronic Science Technology Co., Ltd, Ningbo 315475, PR China
| | - Qiang Wang
- Ningbo Wakan Electronic Science Technology Co., Ltd, Ningbo 315475, PR China
| | - Guanglong Xu
- Ningbo Wakan Electronic Science Technology Co., Ltd, Ningbo 315475, PR China
| | - Alexander Alexandrovich Rogachev
- Optical Anisotropic Films Laboratory, Institute of Chemistry of New Materials of the National Academy of Sciences of Belarus, Minsk 220141, Belarus
| | | | - Hongtao Cao
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hongliang Zhang
- Laboratory of Advanced Nano Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
6
|
Xu B, Chen J, Li P, Ouyang Y, Ma Y, Wang H, Li H. Transparent metal oxide interlayer enabling durable and fast-switching zinc anode-based electrochromic devices. NANOSCALE 2023. [PMID: 38018883 DOI: 10.1039/d3nr04902g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Growing energy and environmental challenges have imposed higher requirements for the development of novel multifunctional energy storage and energy-saving devices. Electrochromic devices having similar configurations and working mechanisms with secondary batteries exhibit promising applications in dual-functional electrochromic-energy storage (ECES) devices. Electrochromic Prussian blue (PB) as typical battery cathodes are of great interest for ECES devices although they suffer from poor stability and limited capacity. In this study, a transparent metal oxide (NiO nanosheets) interlayer was incorporated to enhance the structural stability and capacity of PB while offering enlarged optical modulation (ΔT) and accelerated switching kinetics in the NiO/PB film. Impressively, the NiO/PB nanocomposite film exhibited a high areal capacity of 50 mA h m-2 and excellent electrochemical stability, simultaneously manifesting a large ΔT (73.2% at 632.8 nm), fast switching time (tc = 1.4 s, tb = 2.6 s) and higher coloration efficiency (CE = 54.9 cm2 C-1), surpassing those of the bare PB film (ΔT = 69.1% at 632.8 nm, tc = 1.6 s, tb = 4.1 s, CE = 50.9 cm2 C-1). Finally, a prototype zinc anode-based electrochromic device assembled with NiO/PB nanocomposite film exhibited a self-bleaching function and ΔT retention of up to 92% after 1000 cycles, and a 100 cm2 large area device was also demonstrated for high performance. Such a transparent metal oxide interlayer has enabled the construction of durable and fast-switching dual-functional zinc anode-based electrochromic devices and will inspire more efforts in designing novel multifunctional ECES devices.
Collapse
Affiliation(s)
- Bing Xu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jingwei Chen
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Ping Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yujia Ouyang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yu Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Haizeng Li
- Institute of Frontier & Interdisciplinary Science, Shandong University, Qingdao 266237, China.
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
7
|
Li M, Yan H, Kong S, Ning H, Guo C, Li X, Qiu T, Luo C, Yao R, Peng J. High-Performance and Stability Electrochromic Devices with a Water Isotopologue. J Phys Chem Lett 2023; 14:9677-9682. [PMID: 37870981 DOI: 10.1021/acs.jpclett.3c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In this report, an ammonium metatungstate (AMT) and ferrous chloride [Fe(II)Cl2] electrochromic liquid (ECL) was synthesized using a hydrothermal method, with D2O used as the solvent instead of H2O. The results show that the use of D2O can improve the stability and performance of ECLs. The hydrogen evolution process in electrochromic devices (ECDs) filled with ECL becomes more difficult, while the material exchange process becomes easier. The ECD exhibits a color modulation amplitude of 58%@680 nm at 2 V. After 500 cycles, the device's performance remains above 95% at a current density of 1.5 mA/cm2. Hydrogen bonds in D2O solutions are expected to exhibit stronger forces compared to those in regular H2O solutions. Therefore, we hypothesize that enhancing the strength of hydrogen bonds in H2O solutions is an effective approach for improving the performance and stability of electrochromic solutions.
Collapse
Affiliation(s)
- Muyun Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Haoyang Yan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Sifan Kong
- School of Software, South China Normal University, Foshan 528225, China
| | - Honglong Ning
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Chenxiao Guo
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Xinglin Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Tian Qiu
- Department of Intelligent Manufacturing, Wuyi University, Jiangmen 529020, China
| | - Cheng Luo
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Rihui Yao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Junbiao Peng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Yu KS, Kim SY, Moon HC. High-Voltage Pulse-Assisted Operation of Single-Layer Electrochromic Systems for High Performance and Reliability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45315-45321. [PMID: 37700484 DOI: 10.1021/acsami.3c10467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
A single-layer electrochromic device (SL-ECD) based on ionic conductors containing EC chromophores provides a very simple platform that can be readily fabricated by sandwiching the EC layer between two electrodes. The operation of SL-ECDs is governed by the diffusion of redox species due to their SL structure, which causes a relatively slow dynamic response. In this study, we propose an effective high-voltage pulse injection strategy to improve the performance of SL-ECDs. Applying a programmed voltage wave composed of DC and high-voltage pulses promotes coloration/bleaching switching without degrading device stability, which is more advantageous than applying high DC voltages. We modified the input voltage profile by considering fundamental parameters, such as the amplitude and duty ratio of additional voltage pulses. The coloration and bleaching dynamic responses with the optimized voltage wave are ∼62 and ∼20% faster, respectively, compared with those with the simple DC input. Furthermore, the additionally injected pulse aids in increasing the coloration efficiency from ∼95.3 to ∼168.6 cm2 C-1. Another notable feature of this system is that the device operates stably when a programmed voltage wave is used. These results indicate that the concept of high-voltage pulse-assisted operation of SL-ECDs is a straightforward but effective method for improving device performance without changing the EC chromophore or device structure.
Collapse
Affiliation(s)
- Kyeong Su Yu
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Seon Yeong Kim
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea
| |
Collapse
|
9
|
Gao K, Ju S, Li S, Zhang S, Liu J, Yang T, Lv J, Yu W, Zhang Z. Decoupling Electrochromism and Energy Storage for Flexible Quasi-Solid-State Aqueous Electrochromic Batteries with High Energy Density. ACS NANO 2023; 17:18359-18371. [PMID: 37703521 DOI: 10.1021/acsnano.3c05702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Currently, reported aqueous electrochromic batteries (ECBs) show only limited capacity with insufficient energy density and power density. Such a limitation is naturally imposed by the rationale that the cathode of ECBs stores charge by an ion intercalation/deintercalation mechanism, where the inherent inhibition of ion diffusion and structural collapse of cathode materials through repetitive charge/discharge cycles lead to low areal capacity and unsatisfactory electrochemical performance with short lifetime. Herein, we decouple the dual functions of electrochromism and energy storage in conventional cathodes of ECBs by introducing a polyaniline/triiodide composite cathode that is in situ formed by direct electrolysis of an iodide-based quasi-solid-state aqueous electrolyte during charging. When paired with a zinc metal anode, the composite cathode can synergistically utilize the electrochromic property of polyaniline, the high-efficiency energy storage of the Zn-I2 system, as well as the effective anchorage of polyiodide by polyaniline to suppress the shuttle effect of triiodide. By selecting 1-butyl-3-methylimidazolium ion (BMI+) as the cation, a liquid-solid cathode/quasi-solid-state electrolyte interface can be achieved to facilitate the interfacial charge transfer, rendering quasi-solid-state aqueous electrochromic batteries with a high areal capacity of 1363 μAh cm-2, energy density of 1650 μWh cm-2, and power density of 5186 μW cm-2.
Collapse
Affiliation(s)
- Kun Gao
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Shidi Ju
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Shuning Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Shaohua Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jiajia Liu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Tian Yang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jinsheng Lv
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Wenjing Yu
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhipan Zhang
- Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
10
|
Deng B, Zhu Y, Wang X, Zhu J, Liu M, Liu M, He Y, Zhu C, Zhang C, Meng H. An Ultrafast, Energy-Efficient Electrochromic and Thermochromic Device for Smart Windows. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302685. [PMID: 37358298 DOI: 10.1002/adma.202302685] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/29/2023] [Indexed: 06/27/2023]
Abstract
Smart windows nowadays undertake the esteemed obligation of reducing energy consumption as well as upgrading living experience. This project aims to devise a smart window that responds to both electricity and heat, with the intention of achieving energy efficiency, privacy preservation, and enhanced decorative attributes. Through the implementation of a novel electrochromic material design, coupled with the optimization of electrochromic devices (ECDs), a high-performance ECD is obtained, demonstrating coloring/bleaching time of 0.53/0.16 s, a transmittance modulation of 78% (from 99% to 21%), and superior performance in six dimensions. Furthermore, temperature-responsive units and an ionic liquid are incorporated into the electrolyte system to create a novel thermochromic gel electrolyte with transmittance modulation from 80% to 0%, and excellent thermal insulation (6.4 °C reduction). Ultimately, an electro- and thermochromic device is developed, featuring an ultrafast color-switching speed of 0.82/0.60 s and multiple working modes. Overall, this work showcases a prospective design pathway for the development of next-generation ultrafast-switching, and energy-efficient intelligent windows.
Collapse
Affiliation(s)
- Bin Deng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Yanan Zhu
- Faculty of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 518172, China
| | - Xiaowei Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Jinlin Zhu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Manyu Liu
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Mingqiang Liu
- Electrochemical Innovation Lab, University College London, London, WC1E7JE, UK
| | - Yaowu He
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chaohong Zhang
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong Meng
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| |
Collapse
|
11
|
Ganesha MK, Mondal I, Singh AK, Kulkarni GU. Fabrication of Large-Area, Affordable Dual-Function Electrochromic Smart Windows by Using a Hybrid Electrode Coated with an Oxygen-Deficient Tungsten Oxide Ultrathin Porous Film. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19111-19120. [PMID: 37016773 DOI: 10.1021/acsami.2c22638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Electrochromic (EC) devices are not commercialized extensively owing to their high cost. The best large-area devices in the market suffer from not reaching a distinct dark-colored state. These devices appear more like a blue tinted glass. While a better performance demands the use of appropriate components, the cost-effectiveness of such components is crucial for commercialization. Specifically, the utilization of cost-effective electrodes, thin WO3 coatings, and inexpensive electrolytes are essential for reducing the cost of EC devices. Here, we report a high-performing porous WO3 thin film (∼130 nm) achieved by optimizing the DC sputtering process parameters. This way, an affordable dual-function EC energy-storage device was fabricated, showing 84% transmittance modulation and a high power density of 3036 mW/m2, thus functioning simultaneously as a transparency switching energy-storage device. With a large-area (900 cm2) device, we have demonstrated that the need for expensive ITO electrodes and Li+ ion-based electrolytes can be eliminated by using a hybrid electrode (ITO/Al-mesh) and multivalent Al3+ ion-based electrolytes while not compromising the device performance. The findings of this study may revolutionize the EC device industry and their commercialization owing to inexpensive ingredients and scalable processing.
Collapse
Affiliation(s)
- Mukhesh K Ganesha
- Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Indrajit Mondal
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| | - Ashutosh K Singh
- Centre for Nano and Soft Matter Sciences, Bangalore 562162, India
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Giridhar U Kulkarni
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India
| |
Collapse
|
12
|
Ding Y, Wang M, Mei Z, Diao X. Flexible Inorganic All-Solid-State Electrochromic Devices toward Visual Energy Storage and Two-Dimensional Color Tunability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15646-15656. [PMID: 36926798 DOI: 10.1021/acsami.2c20986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multicolor display has gradually become a sought-after trend for electrochromic devices due to its broadened application scope. Meanwhile, the advantages of inorganic electrochromic devices such as stable electrochemical performance and good energy storage ability also have great attraction in practical production applications. However, there are still huge challenges for inorganic electrochromic materials to achieve multicolor transformation due to their single-color hue change. Herein, we design an inorganic and multicolor electrochromic energy storage device (MEESD) exhibiting flexibility and all-solid-state merits. Prussian blue (PB) and MnO2, as the asymmetrical electrodes of this MEESD, show good pseudocapacitance property, matching charge capacity, and obvious color change. As a typical electrochromic device, the MEESD shows a fast response of 0.5 s and good coloration efficiency of 144.2 cm2/C. As an energy storage device, the MEESD presents excellent rate capability and volumetric energy/power density (84.2 mWh cm-3/23.3 W cm-3). Its energy level can be visually monitored by color contrast and optical modulation. In the charging/discharging process, its color can obviously change to various degrees of yellow, green, and blue along with 40% wide optical modulation at 710 nm. Meanwhile, the stability of the MEESD in a common and humidity environment was analyzed in detail from electrochemical, optical, and energy storage aspects. This work provides feasible thoughts to design multifunctional electrochromic devices integrated with inorganic, flexible, all-solid-state, multicolor, and energy storage properties.
Collapse
Affiliation(s)
- Yilin Ding
- Beihang University, Beijing 102206, China
| | | | - Zheyue Mei
- Beihang University, Beijing 102206, China
| | | |
Collapse
|
13
|
Qu X, Liu Z, Zhou L, Chu D, Wang J, Yang Y. Porous polyoxotungstate/MXene hybrid films allowing for visualization of the energy storage status in high-performance electrochromic supercapacitors. Dalton Trans 2023; 52:5870-5881. [PMID: 36939077 DOI: 10.1039/d2dt03937k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Electrochromic supercapacitors (ECSCs) have recently received growing attention for potential smart energy storage components in intelligent electronics. However, in the development of ECSCs, the design and assembly of high-performance electrode materials remain ongoing challenges. In this study, Ti3C2Tx MXene and polyoxotungstate (P2W18) were deposited on TiO2 nanowires to construct a unique three-dimensional (3D) porous hybrid film, NW@MXene/P2W18, via a convenient layer-by-layer self-assembly approach. The 3D porous structure of the nanocomposite reduced the aggregation and stacking of Ti3C2Tx MXene nanosheets during self-assembly, leading to the formation of unobstructed ion diffusion channels and interfacial charge transfer between adjacent layers, resulting in a good electrochemical performance. Compared to the tightly packed structure, the porous hybrid film demonstrated an enhanced electrochromic energy storage performance with a higher areal capacitance (i.e., 19.0 mF cm-2 at a current density of 0.6 mA cm-2), in addition to a high cycling stability (i.e., 90.7% retention rate after 2000 cycles), and an excellent color rendering efficiency. Subsequently, an asymmetric ECSC was fabricated using an NW@MXene/P2W18 film as the cathode and a TiO2 nanowire film as the anode. This ECSC exhibited a high areal capacitance of 4.0 mF cm-2 at a current density of 0.1 mA cm-2 with a wide operating window of 4.5 V, whilst also achieving high-speed color switching between olive green and dark blue during the charge/discharge processes, ultimately offering new avenues for the development of electrochromic energy storage electrode materials and the design of novel devices.
Collapse
Affiliation(s)
- Xiaoshu Qu
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China.
| | - Zefeng Liu
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China.
| | - Lili Zhou
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China.
| | - Dongxue Chu
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China.
| | - Jilong Wang
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China.
| | - Yanyan Yang
- College of Chemical and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City, 132022, P. R. China.
| |
Collapse
|
14
|
Song J, Huang B, Xu Y, Yang K, Li Y, Mu Y, Du L, Yun S, Kang L. A Low Driving-Voltage Hybrid-Electrolyte Electrochromic Window with Only Ferreous Redox Couples. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:213. [PMID: 36616123 PMCID: PMC9823981 DOI: 10.3390/nano13010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Even after decades of development, the widespread application of electrochromic windows (ECW) is still seriously restricted by their high price and inadequate performance associated with structural/fabrication complexity and electrochemical instability. Herein, a simple hybrid electrochromic system based on PFSA (perfluorosulfonic acid)-coated Prussian blue (PB, Fe4III [FeII(CN)6]3) film and Ferricyanide-Ferrocyanide ([Fe(CN)6]4-/[Fe(CN)6]3-)-containing hybrid electrolyte is reported. The PB film and the [Fe(CN)6]4-/[Fe(CN)6]3- couple show near redox potentials well inside the electrochemical window of water, resulting in a low driven voltage (0.4 V for coloring and -0.6 V for bleaching) and a relatively long lifespan (300 cycles with 76.9% transmittance contrast retained). The PFSA layer, as a cation-exchange structure, significantly improves the transmittance modulation amplitude (ΔT: 23.3% vs. 71.9% at a wavelength of 633 nm) and optical memory abilities (ΔT retention: 10.1% vs. 67.0% after 300 s open-circuit rest increases) of the device, by means of preventing the direct contact and charge transfer between the PB film and the [Fe(CN)6]4-/[Fe(CN)6]3- couple. This "hybrid electrolyte + electron barrier layer" design provides an effective way for the construction of simple structured electrochromic devices.
Collapse
Affiliation(s)
- Jisheng Song
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Bingkun Huang
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yinyingjie Xu
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Kunjie Yang
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yingfan Li
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yuqi Mu
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Lingyu Du
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Shan Yun
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an 223003, China
| | - Litao Kang
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
15
|
A hydrogel electrolyte based on hydroxypropyl methylcellulose modified polyacrylamine for efficient electrochromic energy storage devices. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
16
|
Tao CA, Li Y, Wang J. The progress of electrochromic materials based on metal–organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Pathak DK, Moon HC. Recent progress in electrochromic energy storage materials and devices: a minireview. MATERIALS HORIZONS 2022; 9:2949-2975. [PMID: 36239257 DOI: 10.1039/d2mh00845a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integration of several functionalities into one isolated electrochemical body is necessary to realize compact and tiny smart electronics. Recently, two different technologies, electrochromic (EC) materials and energy storage, were combined to create a single system that supports and drives both functions simultaneously. In EC energy storage devices, the characteristic feature of EC materials, their optical modulation depending on the applied voltage, is used to visually identify the stored energy level in real time. Moreover, combining energy-harvesting and EC storage systems by sharing one electrode facilitates the realization of further compact multifunction systems. In this minireview, we highlight recent groundbreaking achievements in EC multifunction systems where the stored energy levels can be visualized using the color of the device.
Collapse
Affiliation(s)
- Devesh K Pathak
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
18
|
Pham NS, Phan PTQ, Nguyen BN, Le VX, Nguyen AQK. Constant current versus constant voltage electrodepostion: fabrication of long-term stable Prussian blue films toward bifunctional electrochromic pseudocapacitors. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01782-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
19
|
Ding Y, Wang M, Mei Z, Diao X. Novel Prussian White@MnO 2-Based Inorganic Electrochromic Energy Storage Devices with Integrated Flexibility, Multicolor, and Long Life. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48833-48843. [PMID: 36269142 DOI: 10.1021/acsami.2c12484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flexible electrochromic devices have attracted considerable attention in recent years due to their great potential in smart multifunction electrochromic energy storage devices and wearable intelligent electronics. Herein, we present an inorganic flexible Li-based electrochromic energy storage device (EESD) by combining a Prussian white@MnO2-composited electrode (PWM) and sputtering-made WO3 electrode. The synergistic effect of Prussian white and MnO2 plays a positive role both in energy storage and electrochromic property of the EESD. Its energy level can be quantified by the transmittance spectrum and chrominance difference, and its charging-discharging process can be monitored in real time by optical modulation at special wavelength. Specifically, the EESD can endure a 10,000 times cyclic voltammetry cycle without obvious degradation at wide voltage windows (-2 to 2.5 V) and realize a high coloration efficiency (77.6 cm2/C) with 35% optical modulation at 510 nm. In terms of energy storage performance, the EESD demonstrates excellent volumetric energy/power density (1.25 W cm-3/13.2 mWh cm-3) and remarkable stability with close to 98.3% capacitance retention and 99.4% coulombic efficiency after more than 4000 cycles. Its charging and discharging degree can be visualized in different spectral regions. There are 40% transmittance change for charging in the blue light region (450-480 nm) and 45% transmittance change for discharging in the red light region (620-750 nm). Based on its multicolor property, a quantitative indicator of charge state is achieved by the linear dependence of real-time chrominance change as stored or released charge. The ∼11 mC/cm2 stored charge capacity can cause an ∼11 increase in chrominance difference ΔE value, while ∼7 mC/cm2 discharge capacity can cause a ΔE value increase of ∼4. This work provides an efficient strategy to develop portable multicolor-integrated EESDs toward high performance and long stability.
Collapse
Affiliation(s)
- Yilin Ding
- Beihang University, Beijing102206, China
| | | | - Zheyue Mei
- Beihang University, Beijing102206, China
| | | |
Collapse
|
20
|
Liu H, Duan L, Xia K, Chen Y, Li Y, Deng S, Xu J, Hou Z. Microwave Synthesized 2D WO 3 Nanosheets for VOCs Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183211. [PMID: 36144999 PMCID: PMC9506399 DOI: 10.3390/nano12183211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 05/20/2023]
Abstract
As an n-type semiconductor material, tungsten oxide (WO3) has good application prospects in the field of gas sensing. Herein, using oxalic acid (OA), citric acid (CA) and tartaric acid (TA) as auxiliary agents, three homogeneous tungsten oxide nanosheets were prepared by the rapid microwave-assisted hydrothermal method. The potential exhaled gases of various diseases were screened for the gas sensitivity test. Compared with WO3-OA and WO3-TA, WO3-CA exhibits significant sensitivity to formaldehyde, acetone and various alkanes. Photoluminescence (PL) chromatography and photoelectric properties show that its excellent gas sensitivity is due to its abundant oxygen vacancies and high surface charge migration rate, which can provide more preferential reaction sites with gas molecules. The experiment is of great significance for the sensor selection of the large disease exhaled gas sensor array.
Collapse
Affiliation(s)
- He Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Lingyao Duan
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Kedong Xia
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yang Chen
- Shanghai Yaolu Instrument & Equipment Co., Ltd., Shanghai 200444, China
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Yunling Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Shaoxin Deng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Jiaqiang Xu
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Zhenyu Hou
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
- Correspondence:
| |
Collapse
|
21
|
Wu Z, Lian Z, Yan S, Li J, Xu J, Chen S, Tang Z, Wang SP, Ng KW. Extraordinarily Stable Aqueous Electrochromic Battery Based on Li 4Ti 5O 12 and Hybrid Al 3+/Zn 2+ Electrolyte. ACS NANO 2022; 16:13199-13210. [PMID: 35938940 DOI: 10.1021/acsnano.2c06479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aqueous electrochromic battery (ECB) is a multifunctional technology that shows great potential in various applications including energy-saving buildings and wearable batteries with visible energy levels. However, owing to the mismatch between traditional electrochromic materials and the electrolyte, aqueous ECBs generally exhibit poor cycling stability which bottlenecks their practical commercialization. Herein, we present an ultrastable electrochromic system composed of lithium titanate (Li4Ti5O12, LTO) electrode and Al3+/Zn2+ hybrid electrolyte. The fully compatible system exhibits excellent redox reaction reversibility, thus leading to extremely high cycling stabilities in optical contrast (12 500 cycles with unnoticeable degradation) and energy storage (4000 cycles with 82.6% retention of capacity), superior electrochromic performances including high optical contrast (∼74.73%) and fast responses (4.35 s/7.65 s for bleaching/coloring), as well as excellent discharge areal capacity of 151.94 mAh m-2. The extraordinary cycling stability can be attributed to the robust [TiO6] octahedral frameworks which remain chemically active even upon the gradual substitution of Li+ with Al3+ in LTO over multiple operation cycles. The high-performance electrochromic system demonstrated here not only makes the commercialization of low-cost, high-safety aqueous-based electrochromic devices possible but also provides potential design guidance for LTO-related materials used in aqueous-based energy storage devices.
Collapse
Affiliation(s)
- Zhisheng Wu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Zhendong Lian
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Shanshan Yan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Jielei Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Jincheng Xu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Shi Chen
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Shuang-Peng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| | - Kar Wei Ng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P. R. China
| |
Collapse
|
22
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
23
|
Wang X, Zhang L, Shi X, Xiao S, Xiao D. A Propylpyridinyl Triazine Salt for Dual‐band Electrochromic Devices with Response Accelerated by Sulfonyl Group. ChemElectroChem 2022. [DOI: 10.1002/celc.202200606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | - Debao Xiao
- Nanjing Tech University IAM Xinmofan Road 211816 Nanjing CHINA
| |
Collapse
|
24
|
Application of Tungsten-Oxide-Based Electrochromic Devices for Supercapacitors. APPLIED SYSTEM INNOVATION 2022. [DOI: 10.3390/asi5040060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
For making full use of the discoloration function of electrochromic (EC) devices and better show the charge and discharge states of supercapacitors (SCs), electrochromic supercapacitors (ECSCs) have attracted much attention and expectations in recent years. The research progress of tungsten-oxide-based electrochromic supercapacitors (ECSCs) in recent years is reviewed in this paper. Nanostructured tungsten oxide is widely used to facilitate ion implantation/extraction and increase the porosity of the electrode. The low-dimensional nanostructured tungsten oxide was compared in four respects: material scale, electrode life, coloring efficiency, and specific capacitance. Due to the mechanics and ductility of nano-tungsten oxide electrodes, they are very suitable for the preparation of flexible ECSCs. With the application of an organic protective layer and metal nanowire conductive electrode, the device has higher coloring efficiency and a lower activation voltage. Finally, this paper indicates that in the future, WO3-based ECSCs will develop in the direction of self-supporting power supply to meet the needs of use.
Collapse
|
25
|
Improvement of the Interface between the Lithium Anode and a Garnet-Type Solid Electrolyte of Lithium Batteries Using an Aluminum-Nitride Layer. NANOMATERIALS 2022; 12:nano12122023. [PMID: 35745362 PMCID: PMC9227169 DOI: 10.3390/nano12122023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022]
Abstract
The next generation of all-solid-state batteries can feature battery safety that is unparalleled among conventional liquid batteries. The garnet-type solid-state electrolyte Li7La3Zr2O12 (LLZO), in particular, is widely studied because of its high Li-ion conductivity and stability in air. However, the poor interface-contact between Li and the electrolyte (garnet) severely limits the development of solid electrolytes. In this study, we synthesize cubic phase Li6.4La3Zr1.4Ta0.6O12 (LLZTO) using a secondary sintering method. In addition, a thin aluminum nitride (AlN) layer is introduced between the metal (Li) and the solid electrolyte. Theoretical calculations show that AlN has a high affinity for Li. Furthermore, it is shown that the AlN coating can effectively reduce the interface impedance between Li and the solid electrolyte and improve the lithium-ion transport. The assembled symmetric Li cells can operate stably for more than 3600 h, unlike the symmetric cells without AlN coating, which short-circuited after only a few cycles. The hybrid solid-state battery with a modified layer, which is assembled using LiFePO4 (LFP), still has a capacity of 120 mAh g−1 after 200 cycles, with a capacity retention rate of 98%. This shows that the introduction of an AlN interlayer is very helpful to obtain a stable Li/solid-electrolyte interface, which improves the cycling stability of the battery.
Collapse
|
26
|
Lin CC, Chen PH, Chen MC, Wang MC, Yang CC, Huang HC, Wu CW, Chou SY, Tsai TM, Chang TC. Improved diffusion and storage of lithium ions via recrystallization induced conducting pathways in a Li:Ta 2O 5-based electrolyte for all-solid-state electrochromic devices with enhanced performance. NANOTECHNOLOGY 2022; 33:275711. [PMID: 35272278 DOI: 10.1088/1361-6528/ac5ca8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
In this study, we have investigated the improvements in the performance of an all-solid-state complementary electrochromic device (ECD) by using the proposed high pressure treatment (HPT). The Li:Ta2O5electrolyte layer was recrystallized by the HPT utilizing pressurized CO2gas (∼200 atm) and at low temperature (<60 °C), which enhanced the coloration performance of the WO3/Li:Ta2O5/NiO complementary ECD by ∼20%. The reliability and durability of the ECD were confirmed by long term transmittance retention measurements, which indicated an improvement in the coloration performance by ∼14% upon the release of the bias voltages. The ability of the devices that were fabricated with and without the HPT process to withstand high temperature environments was also verified. In addition, photoluminescence (PL) and transmittance measurements were carried out to examine the effects of the bonding between WO3and NiO. To determine the differences in lithium-ion (Li+) injection, electrical measurements were performed by utilizing varying pulse rising speeds to confirm device characteristics. The materials were characterized in terms of their composition and structure using high-resolution transmission electron microscopy along with energy-dispersive x-ray spectroscopy. Finally, a mechanistic model has been proposed to explain the improved EC characteristics based on the amorphous to crystalline transition accompanying the HPT process.
Collapse
Affiliation(s)
- Chun-Chu Lin
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R. O. C
| | - Po-Hsun Chen
- Department of Applied Science, R.O.C. Naval Academy, Kaohsiung 813, Taiwan, R. O. C
| | - Min-Chen Chen
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R. O. C
| | - Min-Chuan Wang
- Department of Physics Division, Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 325, Taiwan, R. O. C
| | - Chih-Cheng Yang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R. O. C
| | - Hui-Chun Huang
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R. O. C
| | - Chung-Wei Wu
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R. O. C
| | - Sheng-Yao Chou
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R. O. C
| | - Tsung-Ming Tsai
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R. O. C
| | - Ting-Chang Chang
- Department of Physics, and also with the Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| |
Collapse
|
27
|
Li B, Dang J, Zhuang Q, Lv Z. Recent Advances in Inorganic Electrochromic Materials from Synthesis to Applications: Critical Review on Functional Chemistry and Structure Engineering. Chem Asian J 2022; 17:e202200022. [PMID: 35191172 DOI: 10.1002/asia.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/19/2022] [Indexed: 11/10/2022]
Abstract
For the assembly of electrochromic devices (ECDs) generally with multilayer structures, supportive components usually are needed to be incorporated with EC materials. The reasonable project and development of ECDs will achieve broad expected applications. In this study, we reviewed several impressive methods to design and fabricate ECDs with high-performance and versatility based on recent frontier research. The first part of the review is centered on the desirability and strengthening mechanism of nanostructured inorganic EC materials. The second part illustrates the recent advances in transparent conductors. We then summarize the demands and means to modify the formation of electrolytes for practicable ECDs. Moreover, efforts to increase the compatibility with the EC layer and ion capacity are delineated. In the end, the application prospects of inorganic ECDs are further explored, which offers a guideline for the industrialization process of ECDs.
Collapse
Affiliation(s)
- Borui Li
- National Innovation Center of high speed train, National Innovation center of high speed train, CHINA
| | - Jie Dang
- Chongqing University, College of Materials Science and Engineering, Shapingba Strict 174, 400044, Chongqing, CHINA
| | - Qianyu Zhuang
- National innovation (Qingdao) high speed train material research institute Co. LTD, National innovation (Qingdao) high speed train material research insitute Co. LTD, CHINA
| | - Zepeng Lv
- Chongqing University, College of Materials Science and Engineering, CHINA
| |
Collapse
|
28
|
Yang Y, Peng Y, Jian Z, Qi Y, Xiong Y, Chen W. Novel High-Performance and Low-Cost Electrochromic Prussian White Film. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8157-8162. [PMID: 35107971 DOI: 10.1021/acsami.1c22050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Prussian white (PW), due to its low cost, easy synthesis, open structure, and fast ion extraction/interaction, is introduced to the electrochromic field. The PW films were successfully grown on indium tin oxide (ITO) glass by a facial hydrothermal method. Impressively, the PW film exhibits excellent electrochemical cycling stability without obvious decay over 10 000 cycles and a high coloration efficiency of 149.3 cm2 C-1. The film also provides the large optical transmittance contrast (over 70%) in a wide wavelength range of 650-800 nm. Furthermore, the PW film shows the rapid coloration and bleaching response. These results suggest that PW is a promising practical candidate of high-performance electrochromic material.
Collapse
Affiliation(s)
- Yixin Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Yuan Peng
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Zelang Jian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Yanyuan Qi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| | - Wen Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, P. R. China
| |
Collapse
|
29
|
Controllable Electrodeposition Adjusts the Electrochromic Properties of Co and Mo Co-Modified WO3 Films. CRYSTALS 2022. [DOI: 10.3390/cryst12020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metal ion modification is considered to be an effective way to construct metal oxides with specific physical and chemical properties. In this paper, we prepare a tungsten oxide (WO3) film co-modified by Co-ion and Mo-ion to serve as the electrochromic material through a one-step electrodeposition method. The effect of electrodeposition time on film thickness, surface morphology and electrochromic properties is systematically studied as well. The results show that, compared with pure WO3 film, the surface morphology of the tungsten oxide film modified by Co-ion and Mo-ion (WO3: Co, Mo) is significantly different. The Co and Mo co-modified film possesses a higher transmission modulation (58.5% at 600 nm) and rapid switching speed (coloring and bleaching time are 2.7 s and 5.6 s, respectively), low impedance value and excellent cycle stability. The performance enhancement is mainly attributed to the coral-like structure of the membrane, which provides a larger specific surface area, more ion adsorption sites and faster ion diffusion. Therefore, this work provides a fast and low-cost method to prepare tungsten oxide electrochromic films co-modified with cobalt and molybdenum ions. At the same time, it also provides an idea to obtain films with different electrochromic properties by adjusting the film thickness.
Collapse
|
30
|
Zhou QH, Pan MY, He Q, Tang Q, Chow CF, Gong CB. Electrochromic behavior of fac-tricarbonyl rhenium complexes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04955k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tricarbonyl rhenium complex shows good electrochromic performance with a colored stage of green, rapid response and good switching stability.
Collapse
Affiliation(s)
- Qian-hua Zhou
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Ming-yue Pan
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qi He
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Cheuk-fai Chow
- Department of Science and Environmental Studies, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
31
|
KIMURA S, WAKATSUKI H, NAKAMURA K, KOBAYASHI N. Compensative Electrochromic Device Utilizing Electro-deposited Plasmonic Silver Nanoparticles and Manganese Oxide to Achieve Retention of Chromatic Color. ELECTROCHEMISTRY 2022. [DOI: 10.5796/electrochemistry.22-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shunsuke KIMURA
- Graduate School of Science and Engineering, Chiba University
| | | | - Kazuki NAKAMURA
- Graduate School of Science and Engineering, Chiba University
| | | |
Collapse
|
32
|
Li J, Luo J, Yan S. Fabrication of three-dimensional WO 3 nanotube bundles on carbon cloth as a binder-free electrode for high-performance supercapacitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj02506j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The WO3 nanotube bundles are fabricated on carbon cloth, exhibiting high specific capacitance, low charge transfer resistance, and excellent stability.
Collapse
Affiliation(s)
- Jin Li
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Jie Luo
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang 471023, China
| | - Shuo Yan
- College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
33
|
Chavan HS, Hou B, Jo Y, Inamdar AI, Im H, Kim H. Optimal Rule-of-Thumb Design of Nickel-Vanadium Oxides as an Electrochromic Electrode with Ultrahigh Capacity and Ultrafast Color Tunability. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57403-57410. [PMID: 34806376 DOI: 10.1021/acsami.1c18613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of electrodes capable of functioning as both electrochromic windows and energy storage devices has been extended from green building development to various electronics and displays to promote more efficient energy consumption. Herein, we report the electrochromic energy storage of bimetallic NiV oxide (NiVO) thin films fabricated using chemical bath deposition. The best optimized NiVO electrode with a Ni/V ratio of 3 exhibits superior electronic conductivity and a large electrochemical surface area, which are beneficial for enhancing electrochemical performance. The color switches between semitransparent (a discharged state) and dark brown (a charged state) with excellent reproducibility because of the intercalation and deintercalation of OH- ions in an alkaline KOH electrolyte. A specific capacity of 2403 F g-1, a coloration efficiency of 63.18 cm2 C-1, and an outstanding optical modulation of 68% are achieved. The NiVO electrode also demonstrates ultrafast coloration and bleaching behavior (1.52 and 4.79 s, respectively), which are considerably faster than those demonstrated by the NiO electrode (9.03 and 38.87 s). It retains 91.95% capacity after 2000 charge-discharge cycles, much higher than that of the NiO electrode (83.47%), indicating that it has significant potential for use in smart energy storage applications. The superior electrochemical performance of the best NiVO compound electrode with an optimum Ni/V compositional ratio is due to the synergetic effect between the high electrochemically active surface area induced by V-doping-improved redox kinetics (low charge-transfer resistance) and fast ion diffusion, which provides a facile charge transport pathway at the electrolyte/electrode interface.
Collapse
Affiliation(s)
- Harish S Chavan
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Bo Hou
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, U.K
| | - Yongcheol Jo
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Akbar I Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| | - Hyungsang Kim
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, South Korea
| |
Collapse
|
34
|
Lee JK, Kim YM, Moon HC. Polymeric Ion Conductors Based on Sono-Polymerized Zwitterionic Polymers for Electrochromic Supercapacitors with Improved Shelf-Life Stability. Macromol Rapid Commun 2021; 42:e2100468. [PMID: 34555244 DOI: 10.1002/marc.202100468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Monolithic electrochromic supercapacitors (ECSs) have attracted increasing interest in recent electrochemical electronics due to their simplicity and unique ability to visually indicate stored energy levels. One crucial challenge for practical use is the improvement of shelf-life. Herein, zwitterionic (ZI) ionogels are proposed as effective electrolytes to reduce the self-discharging decay of ECSs. All-in-one ZI electrochromic (EC) gels are produced by one-pot sono-polymerization. The presence of ZI moieties in the gel does not affect the EC characteristics of chromophores. In addition, excellent capacitive properties in areal capacitance and coulombic efficiency are presented owing to the alignment of ZI units under an electric field and the formation of ion migration channels where rapid ion transport is allowed. Furthermore, the shelf-life of the ZI gel-based ECS is significantly improved by adjusting the interaction between polymeric gelators and ion species. The ZI gel-based ECS is expected to be a key platform for future smart energy storage devices.
Collapse
Affiliation(s)
- Jae Kyeong Lee
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yong Min Kim
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| |
Collapse
|
35
|
Han W, Shi Q, Hu R. Advances in Electrochemical Energy Devices Constructed with Tungsten Oxide-Based Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:692. [PMID: 33802013 PMCID: PMC8000231 DOI: 10.3390/nano11030692] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 01/09/2023]
Abstract
Tungsten oxide-based materials have drawn huge attention for their versatile uses to construct various energy storage devices. Particularly, their electrochromic devices and optically-changing devices are intensively studied in terms of energy-saving. Furthermore, based on close connections in the forms of device structure and working mechanisms between these two main applications, bifunctional devices of tungsten oxide-based materials with energy storage and optical change came into our view, and when solar cells are integrated, multifunctional devices are accessible. In this article, we have reviewed the latest developments of tungsten oxide-based nanostructured materials in various kinds of applications, and our focus falls on their energy-related uses, especially supercapacitors, lithium ion batteries, electrochromic devices, and their bifunctional and multifunctional devices. Additionally, other applications such as photochromic devices, sensors, and photocatalysts of tungsten oxide-based materials have also been mentioned. We hope this article can shed light on the related applications of tungsten oxide-based materials and inspire new possibilities for further uses.
Collapse
Affiliation(s)
- Wenfang Han
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Qian Shi
- The Key Lab of Guangdong for Modern Surface Engineering Technology, National Engineering Laboratory for Modern Materials Surface Engineering Technology, Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Renzong Hu
- Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China;
| |
Collapse
|
36
|
Zeng Z, Peng X, Zheng J, Xu C. Heteroatom-Doped Nickel Oxide Hybrids Derived from Metal-Organic Frameworks Based on Novel Schiff Base Ligands toward High-Performance Electrochromism. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4133-4145. [PMID: 33438396 DOI: 10.1021/acsami.0c17031] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The tenets of coordination chemistry enable researchers to design and develop nanostructured materials based on metal-organic frameworks (MOFs). Herein, for the first time, we applied the Schiff base system to MOF derivatives as a strategy for the heteroatom introduction into carbon-based metal oxides toward electrochromic applications. The presented Ni-MOF thin films based on Schiff base ligands were prepared by a facile and economical reductive electrosynthesis approach, facilitating the scalable fabrication of large-size electrochromic films derived from MOFs. After the pyrolysis, the desired N-doped NiO@C (N-C@NiO) films can achieve a high cycling stability (500 cycles with 7% contrast attenuation) and coloration efficiency (80.18 cm2/C) via different pyrolysis procedures. In addition, the one-step fabricated N-C@NiO shows an excellent ability of contrast modulation (68%@580 nm) with merely 3.6% transmittance at the colored state. These improvements in electrochromic properties are attributed to hierarchical porous heterostructures and influenced by the N/C ratio and C-N bonding configuration, indicating that N-C@NiO systems derived from Schiff base MOFs are promising for low-transmittance displays.
Collapse
Affiliation(s)
- Zhiqiang Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Xiaohan Peng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Jianming Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| | - Chunye Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
37
|
Ma Q, Zhang H, Chen J, Wu W, Dong S. Lithium-Ion-Assisted Ultrafast Charging Double-Electrode Smart Windows with Energy Storage and Display Applications. ACS CENTRAL SCIENCE 2020; 6:2209-2216. [PMID: 33376782 PMCID: PMC7760464 DOI: 10.1021/acscentsci.0c01149] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 05/12/2023]
Abstract
Lithium-ion-assisted ultrafast charging double-electrode smart windows with energy storage and a fluorescence display device (FTO/PB/Ru@SiO2||Ru@SiO2/WO/FTO) based on double electrochromic electrodes (cathode and anode) (FSDECEs) have been designed and fabricated. Here, Prussian blue (PB) and WOred are selected as the electrochromic cathode and anode, respectively. There is a synergistic effect and a large potential difference between the two electrodes. They could be simultaneously and rapidly bleached after being connected with each other. Also, the fluorescence intensity of Ru@SiO2 nanoparticles (NPs) could be regulated by the fluorescence resonance energy transfer effect (FRET). After discharging, the two electrochromic electrodes in the bleached state can be recharged by a Mg-O2 battery with a FeN5 single atomic catalyst to quickly recover the colored state. The double electrochromic electrodes can reversibly alter between coloring and bleaching states only by connecting and disconnecting the electrodes. The fluorescence intensity of FSDECEs can switch between quenching and emission, thus endowing the "on" and "off" functions. The system is concise, environmentally friendly, and easy to operate. The proposed FSDECEs demonstrate high fluorescence contrast, a fast response time, and long-term stability. Such an ingenious design of fluorescence switching based on the double electrochromic electrode in a single cell sheds light on next-generation transparent, portable, and self-powered electrochromic devices and electronic equipment.
Collapse
Affiliation(s)
- Qian Ma
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hui Zhang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Jinxing Chen
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiwei Wu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University
of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaojun Dong
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University
of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
38
|
Kimura S, Sugita T, Nakamura K, Kobayashi N. An improvement in the coloration properties of Ag deposition-based plasmonic EC devices by precise control of shape and density of deposited Ag nanoparticles. NANOSCALE 2020; 12:23975-23983. [PMID: 33125013 DOI: 10.1039/d0nr05196a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ag nanoparticles exhibit various colors depending on their localized surface plasmon resonance (LSPR). Based on this phenomenon, Ag deposition-based electrochromic devices can represent various optical states in a single device such as the three primary colors (cyan, magenta, and yellow), silver mirror, black and transparent. A control of the morphology of Ag nanoparticles can lead to dramatic changes in color, as their size and shape influence the LSPR band. In this research, we focused on the diffusion rate of Ag+ ions when Ag nanoparticles are electrochemically deposited. Consequently, well-isolated Ag nanoparticles were obtained due to the slow growth rate by using an electrolyte with a low concentration of Ag+ ions, resulting in an improvement in the color quality of cyan and magenta. Additionally, spherical Ag nanoparticles were deposited in the same device by optimizing their voltage application conditions, which represented yellow and green colors. In particular, green coloration is a unique phenomenon because it can appear by the combination of two absorption peaks of LSPR. As a result of investigating the finite-difference time-domain method, it was observed that the LSPR band in the long wavelength region was originated from the effects of the connection between Ag particles.
Collapse
Affiliation(s)
- Shunsuke Kimura
- Graduate School of Engineering, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| | | | | | | |
Collapse
|
39
|
Novel prussian blue@Carbon-dots hybrid thin film: The impact of carbon-dots on material structure and electrochromic performance. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136659] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Lv Y, Yang X, Du W, Ma P, Wang H, Bonnefont A, Wright DS, Ruhlmann L, Zhang C. An Efficient Electrochromic Supercapacitor Based on Solution-Processable Nanoporous Poly{tris[4-(3,4-ethylenedioxythiophene)phenyl]amine}. CHEMSUSCHEM 2020; 13:3844-3854. [PMID: 32413249 DOI: 10.1002/cssc.202000941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Indexed: 06/11/2023]
Abstract
A new green synthetic route to tris[4-(3,4-ethylenedioxythiophene)phenyl]amine (TEPA) monomer has been developed and the molecular structure of TEPA has been determined by using single-crystal XRD. Solution-processable nanoporous poly{tris[4-(3,4-ethylenedioxythiophene)phenyl]amine} (PTEPA) is prepared by a chemical oxidative polymerization in a microemulsion. Based on the distorted structure of TEPA in the solid state, it is proposed that dendritic PTEPA has a distorted 3 D conformation with multiple twisted channels and pores that are narrowed and blocked by bifurcation and distortion of PTEPA, which is consistent with the observed hierarchical pore structure. As a cathode material, PTEPA exhibits a discharge capacity of 89.5 mAh g-1 in the initial cycle with a highly sloping two-stage discharge curve and relatively stable cycling performance. Beyond its excellent energy storage properties, PTEPA also shows relatively good electrochromic performance. Furthermore, an efficient all-solid-state electrochromic supercapacitor (ECSC) with good electrochromic performance and high energy storage capacity (13.3 mF cm-2 ) is assembled from PTEPA and nanoporous graphene films. During charge-discharge processes, the color of the ECSC changes between yellow-green and steel blue. Thus, the energy storage level of the ECSC can be monitored by the corresponding color changes. The fabricated ECSC may have practical applications, for example, in self-powered electrochromic smart windows.
Collapse
Affiliation(s)
- Yaokang Lv
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4, rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France
| | - Xing Yang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Weishi Du
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Peihua Ma
- Shaoxing Jinye Environmental Protection Technology Co., Ltd., No.173, Zhenghai Road, Binhai Industrial Zone, Keqiao District, Shaoxing, 312073, P.R. China
| | - Hu Wang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Antoine Bonnefont
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4, rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France
| | - Dominic S Wright
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Laurent Ruhlmann
- Institut de Chimie (UMR au CNRS n°7177), Université de Strasbourg, 4, rue Blaise Pascal CS 90032, 67081, Strasbourg Cedex, France
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| |
Collapse
|
41
|
Zhou S, Wang S, Zhou S, Xu H, Zhao J, Wang J, Li Y. An electrochromic supercapacitor based on an MOF derived hierarchical-porous NiO film. NANOSCALE 2020; 12:8934-8941. [PMID: 32267275 DOI: 10.1039/d0nr01152e] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nickel oxide (NiO) is a promising candidate for future electrochromic supercapacitors due to its pronounced electrical properties and low cost. Unfortunately, the weak interaction between NiO films and conductive substrates results in poor cycling stability. In addition, the long color-switching time and low capacitance by the small lattice spacing in dense NiO impede its practical applications seriously. Herein, a hierarchical porous NiO film/ITO glass bifunctional electrode has been prepared via the solvothermal and subsequent calcination process of growing MOF-74 in situ on ITO, which shows outstanding cycle reversibility, excellent capacitance, high coloration efficiency and short color-switching time. Because of the strong binding force between the NiO film and substrate, and large surface areas with a hierarchical porous structure which are beneficial to the ion transport, the NiO film demonstrates perfect capacitive and electrochromic properties. As a bifunctional electrode, the NiO film shows a specific capacitance of 2.08 F cm-2 at 1 mA cm-2, large optical modulation of 41.08% and about 86% of optical modulation retention after 10 000 cycles. Furthermore, we assembled a bifunctional device whose energy condition can be roughly estimated according to the color state of the device. This finding can provide us with a new application of MOFs in the dual device of electrochromic supercapacitors.
Collapse
Affiliation(s)
- Shengyu Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Chaudhary A, Pathak DK, Tanwar M, Kumar R. Tracking Dynamic Doping in a Solid-State Electrochromic Device: Raman Microscopy Validates the Switching Mechanism. Anal Chem 2020; 92:6088-6093. [PMID: 32227931 DOI: 10.1021/acs.analchem.0c00513] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Solid-state electrochromic devices often need appropriate characterization to establish the real working mechanism for optimization and diagnosis. Raman mapping has been used here to track "dynamic doping", an important concept in organic electronics and in polythiophene-based solid-state electrochromic devices to understand and validate the mechanism of bias-induced redox-driven color switching. The proposed method demonstrates the live formation and movement of polarons which is best suited for in situ solid-state Raman spectroelectrochemistry. A 2-fold approach has been adopted here for this (1) by fabricating a working device in cross bar geometry followed by in situ spectroscopy to demonstrate the device functioning and (2) by carrying out Raman mapping from a device in custom-designed thin-film-transistor-like geometry to track and actually "see" the mechanism spectroscopically.
Collapse
Affiliation(s)
- Anjali Chaudhary
- Discipline of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Devesh K Pathak
- Discipline of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Manushree Tanwar
- Discipline of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| | - Rajesh Kumar
- Discipline of Physics, Indian Institute of Technology Indore, Simrol 453552, India
| |
Collapse
|
43
|
Tajima K, Watanabe H, Nishino M, Kawamoto T. Green fabrication of a complementary electrochromic device using water-based ink containing nanoparticles of WO 3 and Prussian blue. RSC Adv 2020; 10:2562-2565. [PMID: 35496121 PMCID: PMC9048757 DOI: 10.1039/c9ra09153j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/09/2020] [Indexed: 11/21/2022] Open
Abstract
We fabricated a complementary electrochromic device (ECD) by using water-dispersible nanoparticles (NP) of Prussian blue (PB) and WO3 by using a wet process, which involved just coating. Although the ECD had a thick WO3 film, it showed much higher contrast compared to other techniques. In addition, the ECD also showed fast optical switching speed and high durability over 100 cycles because of wettability control of NP inks.
Collapse
Affiliation(s)
- Kazuki Tajima
- Nanomaterial Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Hiroshi Watanabe
- Nanomaterial Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Mizuka Nishino
- Nanomaterial Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba 305-8565 Japan
| | - Tohru Kawamoto
- Nanomaterial Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Higashi Tsukuba 305-8565 Japan
| |
Collapse
|
44
|
Hao S, Sun X, Zhang H, Zhai J, Dong S. Recent development of biofuel cell based self-powered biosensors. J Mater Chem B 2020; 8:3393-3407. [DOI: 10.1039/c9tb02428j] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BFC-based SPBs have been used as power sources for other devices and as sensors for detecting toxicity and BOM.
Collapse
Affiliation(s)
- Shuai Hao
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xiaoxuan Sun
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - He Zhang
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junfeng Zhai
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| |
Collapse
|
45
|
Qu X, Fu Y, Ma C, Yang Y, Shi D, Chu D, Yu X. Bifunctional electrochromic-energy storage materials with enhanced performance obtained by hybridizing TiO2 nanowires with POMs. NEW J CHEM 2020. [DOI: 10.1039/d0nj02859b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A bifunctional electrochromic-energy storage film with enhanced performance is designed and fabricated by hybridizing TiO2 nanowires with POMs.
Collapse
Affiliation(s)
- Xiaoshu Qu
- College of Chemical and Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin City
- P. R. China
| | - Yu Fu
- College of Chemical and Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin City
- P. R. China
| | - Chao Ma
- College of Chemical and Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin City
- P. R. China
| | - Yanyan Yang
- College of Chemical and Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin City
- P. R. China
| | - Dan Shi
- College of Chemical and Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin City
- P. R. China
| | - Dongxue Chu
- College of Chemical and Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin City
- P. R. China
| | - Xiaoyang Yu
- College of Chemical and Pharmaceutical Engineering
- Jilin Institute of Chemical Technology
- Jilin City
- P. R. China
| |
Collapse
|
46
|
Zhang WJ, Lin XC, Li F, Huang ZJ, Gong CB, Tang Q. Multicolored electrochromic and electrofluorochromic materials containing triphenylamine and benzoates. NEW J CHEM 2020. [DOI: 10.1039/d0nj03666h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicolored electrochromic and electrofluorochromic materials containing triphenylamine and benzoates were developed.
Collapse
Affiliation(s)
- Wei-jing Zhang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Xin-cen Lin
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Feng Li
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Zhen-jie Huang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| |
Collapse
|
47
|
Zhao S, Huang W, Guan Z, Jin B, Xiao D. A novel bis(dihydroxypropyl) viologen-based all-in-one electrochromic device with high cycling stability and coloration efficiency. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.135] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Bon-Ryul K, Kim KH, Ahn HJ. Novel tunneled phosphorus-doped WO 3 films achieved using ignited red phosphorus for stable and fast switching electrochromic performances. NANOSCALE 2019; 11:3318-3325. [PMID: 30720820 DOI: 10.1039/c8nr08793h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Simultaneous improvement of both the performance and stability of electrochromic devices (ECDs) to encourage their practical use in various applications, such as commercialized smart windows, electronic displays, and adjustable mirrors, by tuning the film structure and the electronic structure of transition metal oxides remains a challenging issue. In the present study, we developed novel tunneled phosphorus (P)-doped WO3 films via the ignition reaction of red P. The ignited red P, which can generate exothermic energy, was used as an attractive factor to create a tunneled structure and P-doping on the WO3 films. Therefore, by optimizing the effect of ignited red P on the WO3 films, tunneled P-doped WO3 films fabricated by using 1 wt% red P demonstrated a striking improvement of the EC performances, including both a fast switching speed (6.1 s for the colouration speed and 2.5 s for the bleaching speed) caused by the improvement of Li ion diffusion by the tunneled structure and electrical conductivity by P-doping WO3 and a superb colouration efficiency (CE, 55.9 cm2 C-1) as a result of increased electrochemical activity by the elaborate formation of the tunneled structure. Simultaneously, this film displayed a noticeable long-cycling stability due to a higher retention (91.5%) of transmittance modulation after 1000 electrochromic (EC) cycles as compared to bare WO3 films, which can mainly be attributed to the optimizing effect of the tunneled structure to generate an efficient charge transfer and an alleviated structural variation during the insertion-extraction of Li ions. Therefore, our results suggest a valuable and well-designed strategy to manufacture stable fast-switching EC materials that are fit for various practical applications of the ECDs.
Collapse
Affiliation(s)
- Koo Bon-Ryul
- Program of Materials Science & Engineering, Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Korea
| | | | | |
Collapse
|
49
|
Guo Q, Li J, Zhang B, Nie G, Wang D. High-Performance Asymmetric Electrochromic-Supercapacitor Device Based on Poly(indole-6-carboxylicacid)/TiO 2 Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:6491-6501. [PMID: 30665294 DOI: 10.1021/acsami.8b19505] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A difunctional porous network of poly(indole-6-carboxylicacid) (PICA)/TiO2 nanocomposites is first prepared using TiO2 nanorod arrays as the scaffold. Because of the synergistic effect of PICA and TiO2, the nanocomposites show good electrochemical performance, a high specific capacitance value (23.34 mF cm-2), and excellent galvanostatic charge-discharge stability. Meanwhile, this nanocomposite can be reversibly switched (yellow, green, brown) with a high coloration efficiency (124 cm2 C-1). An asymmetric electrochromic-supercapacitor device (ESD) is also constructed using the PICA/TiO2 nanocomposites as the anode material and poly(3,4-ethylenedioxythiophene) as the cathode material. This ESD has robust cycle stability and a high specific capacitance value (9.65 mF cm-2), which can be switched from light green to dark blue. After charging, the device can light up a single LED for 108 s, and the energy storage level can also be monitored by the corresponding color changes. This constructed ESD will have great potential applications in intelligent energy storage and other smart electronic fields.
Collapse
Affiliation(s)
- Qingfu Guo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), Shandong Key Laboratory of Biochemical Analysis, and Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| | - Jingjing Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), Shandong Key Laboratory of Biochemical Analysis, and Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| | - Bin Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), Shandong Key Laboratory of Biochemical Analysis, and Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| | - Guangming Nie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), Shandong Key Laboratory of Biochemical Analysis, and Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| | - Debao Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science (MOE), Shandong Key Laboratory of Biochemical Analysis, and Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering , Qingdao University of Science and Technology , Qingdao 266042 , PR China
| |
Collapse
|
50
|
Zhu CR, Xie JP, Mou HR, Huang ZJ, Tang Q, Gong CB, Fu XK. Dual-colored 4,4′,4′′,4′′′-(cyclobutane-1,2,3,4-tetrayl)-tetrabenzoate electrochromic materials with large optical contrast and coloration efficiency. NEW J CHEM 2019. [DOI: 10.1039/c9nj03352a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This paper reports novel ester-containing electrochromic materials, 4,4′,4′′,4′′′-(cyclobutane-1,2,3,4-tetrayl)tetrabenzoate derivatives, with dual-colored electrochromism, high color contrast and coloration efficiency.
Collapse
Affiliation(s)
- Chun-rong Zhu
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Jia-ping Xie
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Hong-rong Mou
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Zhen-jie Huang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Xiang-kai Fu
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| |
Collapse
|