2
|
Bai X, Purcell-Milton F, Gun'ko YK. Optical Properties, Synthesis, and Potential Applications of Cu-Based Ternary or Quaternary Anisotropic Quantum Dots, Polytypic Nanocrystals, and Core/Shell Heterostructures. NANOMATERIALS 2019; 9:nano9010085. [PMID: 30634642 PMCID: PMC6359286 DOI: 10.3390/nano9010085] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 12/28/2018] [Accepted: 12/31/2018] [Indexed: 12/29/2022]
Abstract
This review summaries the optical properties, recent progress in synthesis, and a range of applications of luminescent Cu-based ternary or quaternary quantum dots (QDs). We first present the unique optical properties of the Cu-based multicomponent QDs, regarding their emission mechanism, high photoluminescent quantum yields (PLQYs), size-dependent bandgap, composition-dependent bandgap, broad emission range, large Stokes’ shift, and long photoluminescent (PL) lifetimes. Huge progress has taken place in this area over the past years, via detailed experimenting and modelling, giving a much more complete understanding of these nanomaterials and enabling the means to control and therefore take full advantage of their important properties. We then fully explore the techniques to prepare the various types of Cu-based ternary or quaternary QDs (including anisotropic nanocrystals (NCs), polytypic NCs, and spherical, nanorod and tetrapod core/shell heterostructures) are introduced in subsequent sections. To date, various strategies have been employed to understand and control the QDs distinct and new morphologies, with the recent development of Cu-based nanorod and tetrapod structure synthesis highlighted. Next, we summarize a series of applications of these luminescent Cu-based anisotropic and core/shell heterostructures, covering luminescent solar concentrators (LSCs), bioimaging and light emitting diodes (LEDs). Finally, we provide perspectives on the overall current status, challenges, and future directions in this field. The confluence of advances in the synthesis, properties, and applications of these Cu-based QDs presents an important opportunity to a wide-range of fields and this piece gives the reader the knowledge to grasp these exciting developments.
Collapse
Affiliation(s)
- Xue Bai
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| | - Finn Purcell-Milton
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| | - Yuri K Gun'ko
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin 2, Dublin, Ireland.
| |
Collapse
|
3
|
Song T, Cheong JY, Cho H, Kim ID, Jeon DY. Mixture of quantum dots and ZnS nanoparticles as emissive layer for improved quantum dots light emitting diodes. RSC Adv 2019; 9:15177-15183. [PMID: 35514803 PMCID: PMC9064264 DOI: 10.1039/c9ra01462d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/04/2019] [Indexed: 11/21/2022] Open
Abstract
Recently, quantum dots based light-emitting diodes (QLEDs) have received huge attention due to the properties of quantum dots (QDs), such as high photoluminescence quantum yield (PLQY) and narrow emission. To improve the performance of QLEDs, reducing non-radiative energy transfer is critical. So far, most conventional methods required additional chemical treatment like giant shell and/or ligands exchange. However that triggers unsought shifted emission or reduced PLQY of QDs. In this work, we have firstly suggested a novel approach to improve the efficiency of QLEDs by introducing inorganic nanoparticles (NPs) spacer between QDs, without additional chemical treatment. As ZnS NPs formed a mixture layer with QDs, the energy transfer was reduced and the distance between the QDs increased, leading to improved PLQY of mixture layer. As a result, current efficiency (CE) of the QLED device was improved by twice compared with one using only QDs layer. This is an early report on utilizing ZnS NPs as an efficient spacer, which can be utilized to other compositions of QDs. Mixture of quantum dots and ZnS nanoparticles as emissive layer for improved QLEDs by decreasing energy transfer between the QDs.![]()
Collapse
Affiliation(s)
- Taeyoung Song
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Republic of Korea
| | - Jun Young Cheong
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Republic of Korea
| | - Hyunjin Cho
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Republic of Korea
| | - Duk Young Jeon
- Department of Materials Science and Engineering
- Korea Advanced Institute of Science and Technology
- Daejeon 305-701
- Republic of Korea
| |
Collapse
|
4
|
Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators. J Colloid Interface Sci 2019; 534:509-517. [DOI: 10.1016/j.jcis.2018.09.065] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 01/06/2023]
|
5
|
Xu Y, Fei J, Li G, Yuan T, Xu X, Wang C, Li J. Optically Matched Semiconductor Quantum Dots Improve Photophosphorylation Performed by Chloroplasts. Angew Chem Int Ed Engl 2018; 57:6532-6535. [PMID: 29655302 DOI: 10.1002/anie.201802555] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/30/2018] [Indexed: 01/30/2023]
Abstract
A natural-artificial hybrid system was constructed to enhance photophosphorylation. The system comprises chloroplasts modified with optically matched quantum dots (chloroplast-QD) with a large Stokes shift. The QDs possess a unique optical property and transform ultraviolet light into available and highly effective red light for use by chloroplasts. This favorable feature enables photosystem II contained within the hybrid system to split more water and produce more protons than chloroplasts would otherwise do on their own. Consequently, a larger proton gradient is generated and photophosphorylation is improved. At optimal efficiency activity increased by up to 2.3 times compared to pristine chloroplasts. Importantly, the degree of overlap between emission of the QDs and absorption of chloroplasts exerts a strong influence on the photophosphorylation efficiency. The chloroplast-QD hybrid presents an efficient solar energy conversion route, which involves a rational combination of a natural system and an artificial light-harvesting nanomaterial.
Collapse
Affiliation(s)
- Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Xu Y, Fei J, Li G, Yuan T, Xu X, Wang C, Li J. Optically Matched Semiconductor Quantum Dots Improve Photophosphorylation Performed by Chloroplasts. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Youqian Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jinbo Fei
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Guangle Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tingting Yuan
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xia Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Chenlei Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) CAS Key Lab of Colloid, Interface and Chemical ThermodynamicsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Yang J, Zhu X, Mo Z, Yi J, Yan J, Deng J, Xu Y, She Y, Qian J, Xu H, Li H. A multidimensional In2S3–CuInS2 heterostructure for photocatalytic carbon dioxide reduction. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00924d] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multidimensional heterostructured In2S3–CuInS2 photocatalyst was fabricated to convert CO2 to CO with promising CO generation.
Collapse
|