1
|
Wan C, Li R, Wang J, Cheng DG, Chen F, Xu L, Gao M, Kang Y, Eguchi M, Yamauchi Y. Silica Confinement for Stable and Magnetic Co-Cu Alloy Nanoparticles in Nitrogen-Doped Carbon for Enhanced Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202404505. [PMID: 38598471 DOI: 10.1002/anie.202404505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/02/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Ammonia borane (AB) with 19.6 wt % H2 content is widely considered a safe and efficient medium for H2 storage and release. Co-based nanocatalysts present strong contenders for replacing precious metal-based catalysts in AB hydrolysis due to their high activity and cost-effectiveness. However, precisely adjusting the active centers and surface properties of Co-based nanomaterials to enhance their activity, as well as suppressing the migration and loss of metal atoms to improve their stability, presents many challenges. In this study, mesoporous-silica-confined bimetallic Co-Cu nanoparticles embedded in nitrogen-doped carbon (CoxCu1-x@NC@mSiO2) were synthesized using a facile mSiO2-confined thermal pyrolysis strategy. The obtained product, an optimized Co0.8Cu0.2@NC@mSiO2 catalyst, exhibits enhanced performance with a turnover frequency of 240.9 molH2 ⋅ molmetal ⋅ min-1 for AB hydrolysis at 298 K, surpassing most noble-metal-free catalysts. Moreover, Co0.8Cu0.2@NC@mSiO2 demonstrates magnetic recyclability and extraordinary stability, with a negligible decline of only 0.8 % over 30 cycles of use. This enhanced performance was attributed to the synergistic effect between Co and Cu, as well as silica confinement. This work proposes a promising method for constructing noble-metal-free catalysts for AB hydrolysis.
Collapse
Affiliation(s)
- Chao Wan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Rong Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
| | - Jiapei Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Fengqiu Chen
- College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Lixin Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China
| | - Mingbin Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yunqing Kang
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science Zhengzhou, Henan, 451163, China
| | - Miharu Eguchi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
2
|
Zhang H, Han G, Liu Y, Zhao L, Zhang W, Tahir Khalil M, Wei H, Wang C, Liu T, Guo X, Wu X, Jiang J, Li B. CoP/Co heterojunction on porous g-C 3N 4 nanosheets as a highly efficient catalyst for hydrogen generation. J Colloid Interface Sci 2024; 658:22-31. [PMID: 38091795 DOI: 10.1016/j.jcis.2023.12.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Designing non-precious catalysts to synergistically achieve a facilitated exposure of abundant active sites is highly desired but remains a significant challenge. Herein, a hetero-structured catalyst CoP-Co supported on porous g-C3N4 nanosheets (CoP-Co/CN-I) was prepared by pyrolysis and P-inducing strategy. The optimal catalyst achieves a turnover frequency (TOF) of 26 min-1 at room temperature and the apparent activation energy (Ea) is 35.5 kJ·mol-1. The catalytic activity is ranked top among the non-precious metal phosphides or the other supports. Meanwhile, the catalytic activity has no significant decrease even after 5 cycles. The CoP/Co interfaces provide richly exposed active sites, optimize hydrogen/water absorption free energy via electronic coupling, and thus improve the catalytic activity. The experimental results reveal that the CoP/Co heterojunction improves the catalytic activity due to the construction of dual-active sites. This research facilitates the innovative construction of non-noble metal catalysts to meet industrial demand for heterogeneous catalysis.
Collapse
Affiliation(s)
- Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Guosheng Han
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, PR China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, PR China.
| | - Lingli Zhao
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Wenbo Zhang
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, PR China
| | - Muhammad Tahir Khalil
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Chengming Wang
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Tao Liu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xianji Guo
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory of Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210042, PR China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, College of Mechanical and Power Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Department of Chemistry, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
3
|
Song J, Wu F. Highly electron-deficient ultrathin Co nanosheets supported on mesoporous Cr 2O 3 for catalytic hydrogen evolution from ammonia borane. NANOSCALE 2023; 15:16741-16751. [PMID: 37814935 DOI: 10.1039/d3nr03867j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The hydrolysis of ammonia borane (NH3BH3) on metal-based heterogeneous catalysts under light irradiation has been considered as an efficient technique for hydrogen (H2) generation, in which the activity of the catalyst can be improved by increasing the electron density of the active metal. However, studies focused on reducing the electron density of the active metal are rare. Here, we report an electron density manipulation strategy to prepare highly electron-deficient ultrathin Co nanosheets via transferring nanosheets to support mesoporous Cr2O3 by simple one-step in situ reduction (denoted as Co/Cr2O3). X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES) spectra confirm the formation of electron-deficient Co nanosheets and the Co-O-Cr bond due to electron transfer from the nanosheets to mesoporous Cr2O3. Importantly, the Co-O-Cr bond can work as a bridge to accelerate the electron transfer under light irradiation and then improve the electron-deficiency degree of Co nanosheets. As a result, the optimal Co/Cr2O3 exhibits a high intrinsic catalytic performance with the turnover frequency (TOF) value of 106.8 min-1 and significantly reduces the activation energy (Ea) to 16.8 kJ mol-1 under visible light irradiation, which make it among the best ever recorded monometallic Co-based catalyst with enriched electrons. The density functional theory (DFT) calculation results suggest that the electron-deficient Co nanosheets are responsible for the greatly decreased H2O activation and dissociation energy barriers and then the acceleration of the evolution of H2. The work provides a new perspective for designing high efficiency catalysts for H2 production, which is beneficial for relative energy conversion and storage catalysis.
Collapse
Affiliation(s)
- Jin Song
- Department of Chemical and Environmental Engineering, Hetao College, Bayan Nur 015000, China.
| | - Fenglong Wu
- Department of Chemical and Environmental Engineering, Hetao College, Bayan Nur 015000, China.
| |
Collapse
|
4
|
Guan S, Liu Y, Zhang H, Shen R, Wen H, Kang N, Zhou J, Liu B, Fan Y, Jiang J, Li B. Recent Advances and Perspectives on Supported Catalysts for Heterogeneous Hydrogen Production from Ammonia Borane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300726. [PMID: 37118857 PMCID: PMC10375177 DOI: 10.1002/advs.202300726] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/19/2023] [Indexed: 06/19/2023]
Abstract
Ammonia borane (AB), a liquid hydrogen storage material, has attracted increasing attention for hydrogen utilization because of its high hydrogen content. However, the slow kinetics of AB hydrolysis and the indefinite catalytic mechanism remain significant problems for its large-scale practical application. Thus, the development of efficient AB hydrolysis catalysts and the determination of their catalytic mechanisms are significant and urgent. A summary of the preparation process and structural characteristics of various supported catalysts is presented in this paper, including graphite, metal-organic frameworks (MOFs), metal oxides, carbon nitride (CN), molybdenum carbide (MoC), carbon nanotubes (CNTs), boron nitride (h-BN), zeolites, carbon dots (CDs), and metal carbide and nitride (MXene). In addition, the relationship between the electronic structure and catalytic performance is discussed to ascertain the actual active sites in the catalytic process. The mechanism of AB hydrolysis catalysis is systematically discussed, and possible catalytic paths are summarized to provide theoretical considerations for the designing of efficient AB hydrolysis catalysts. Furthermore, three methods for stimulating AB from dehydrogenation by-products and the design of possible hydrogen product-regeneration systems are summarized. Finally, the remaining challenges and future research directions for the effective development of AB catalysts are discussed.
Collapse
Affiliation(s)
- Shuyan Guan
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanyan Liu
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Hao Wen
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Naixin Kang
- ISM, UMR CNRS N° 5255, Univ. Bordeaux, Talence Cedex, 33405, France
| | - Jingjing Zhou
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
| | - Baozhong Liu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Yanping Fan
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab on Forest Chemical Engineering, SFA, 16 Suojinwucun, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Science, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, P. R. China
- Research Center of Green Catalysis, College of Chemistry, School of Physics and Microelectronics, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, 2001 Century Avenue, Jiaozuo, 454000, P. R. China
| |
Collapse
|
5
|
Song B, Li N, Chang Q, Xue C, Yang J, Hu S. Water State-Driven Catalytic Hydrolysis of Ammonia Borane on Cu 3P-Carbon Dot-Cu Composite. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22123-22131. [PMID: 37126804 DOI: 10.1021/acsami.3c01679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hydrogen production from ammonia borane (AB) is usually governed by water activation, which is not only energy-intensive but also requires expensive and complicated catalysts. We here propose an integrated photocatalytic-photothermal system that dramatically improves water activation and lowers the transport resistance of H2 by means of intermediate state water evaporation. This system is constructed by covering nanocomposites (Cu3P-carbon dots-Cu) upon vertically aligned acetate fibers (VAAFs). As a result of superior hydration effect of VAAFs and local photothermal heating for rapid water evaporation, its hydrogen production efficiency from AB hydrolysis reaches over 10 times the particulate suspension system under solar irradiation. Mechanism analysis reveals that the rapid vaporization of intermediate water promotes the cleavages of O-H bonds in bound water and the adsorption reaction of AB and water molecules at active sites. Therefore, this work provides a novel approach to optimize catalytic reaction in thermodynamics and kinetics for the hydrolysis of AB.
Collapse
Affiliation(s)
- Bo Song
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| | - Ning Li
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| | - Qing Chang
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| | - Chaorui Xue
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| | - Jinlong Yang
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shengliang Hu
- Research Group of New Energy Materials and Devices, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
6
|
A review on hydrogen production from ammonia borane: Experimental and theoretical studies. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
7
|
Xu D, Zhang SN, Chen JS, Li XH. Design of the Synergistic Rectifying Interfaces in Mott-Schottky Catalysts. Chem Rev 2023; 123:1-30. [PMID: 36342422 DOI: 10.1021/acs.chemrev.2c00426] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The functions of interfacial synergy in heterojunction catalysts are diverse and powerful, providing a route to solve many difficulties in energy conversion and organic synthesis. Among heterojunction-based catalysts, the Mott-Schottky catalysts composed of a metal-semiconductor heterojunction with predictable and designable interfacial synergy are rising stars of next-generation catalysts. We review the concept of Mott-Schottky catalysts and discuss their applications in various realms of catalysis. In particular, the design of a Mott-Schottky catalyst provides a feasible strategy to boost energy conversion and chemical synthesis processes, even allowing realization of novel catalytic functions such as enhanced redox activity, Lewis acid-base pairs, and electron donor-acceptor couples for dealing with the current problems in catalysis for energy conversion and storage. This review focuses on the synthesis, assembly, and characterization of Schottky heterojunctions for photocatalysis, electrocatalysis, and organic synthesis. The proposed design principles, including the importance of constructing stable and clean interfaces, tuning work function differences, and preparing exposable interfacial structures for designing electronic interfaces, will provide a reference for the development of all heterojunction-type catalysts, electrodes, energy conversion/storage devices, and even super absorbers, which are currently topics of interest in fields such as electrocatalysis, fuel cells, CO2 reduction, and wastewater treatment.
Collapse
Affiliation(s)
- Dong Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Shi-Nan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| | - Xin-Hao Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai200240, P. R. China
| |
Collapse
|
8
|
Paul R, Shit SC, Singh A, Wong RJ, Dao DQ, Joseph B, Liu W, Bhattacharya S, Mondal J. Organogel-assisted porous organic polymer embedding Cu NPs for selectivity control in the semi hydrogenation of alkynes. NANOSCALE 2022; 14:1505-1519. [PMID: 35029265 DOI: 10.1039/d1nr07255b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heteroatom-rich porous-organic-polymers (POPs) comprising highly cross-linked robust skeletons with high physical and thermal stability, high surface area, and tunable pore size distribution have garnered significant research interest owing to their versatile functionalities in a wide range of applications. Here, we report a newly developed organogel-assisted porous-organic-polymer (POP) supported Cu catalyst (Cu@TpRb-POP). The organogel was synthesized via a temperature induced gelation strategy, employing Schiff-base coupling between 2,4,6-triformylphloroglucinol aldehyde (Tp) and pararosaniline base (Rb). The gel is subsequently transformed to hierarchical porous organic structures without the use of any additive, thereby offering advantageous features including extremely low density, high surface area, a highly cross-linked framework, and a heteroatom-enriched backbone of the polymer. During the semi-hydrogenation of terminal and internal alkynes, the Cu@TpRb-POP-B catalyst with Cu embedded in the TpRb-POP structure consistently demonstrated improved selectivity towards alkenes compared to Cu@TpRb-POP-A, which contains Cu NPs exposed at the exterior surfaces of the POP support. Additionally, Cu@TpRb-POP-B showed higher stability and reusability than Cu@TpRb-POP-A. The superior performance of the Cu@TpRb-POP-B catalyst is attributed to the steric hindrance effect, which controls the product selectivity, as well as the synergistic interaction between the heteroatom-rich POP framework and the embedded Cu NPs. Both the effects are corroborated by experimental characterization of the catalysts and density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Ratul Paul
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Subhash Chandra Shit
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arunima Singh
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016, India.
| | - Roong Jien Wong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore.
| | - Duy Quang Dao
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000, Vietnam
| | - Boby Joseph
- Elettra-Sincrotrone Trieste, S.S. 14, Km 163.5 in Area Science Park, Basovizza 34149, Italy
| | - Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore.
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi Hauz Khas, New Delhi 110 016, India.
| | - John Mondal
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
9
|
Mboyi CD, Poinsot D, Roger J, Fajerwerg K, Kahn ML, Hierso JC. The Hydrogen-Storage Challenge: Nanoparticles for Metal-Catalyzed Ammonia Borane Dehydrogenation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102759. [PMID: 34411437 DOI: 10.1002/smll.202102759] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Dihydrogen is one of the sustainable energy vectors envisioned for the future. However, the rapidly reversible and secure storage of large quantities of hydrogen is still a technological and scientific challenge. In this context, this review proposes a recent state-of-the-art on H2 production capacities from the dehydrogenation reaction of ammonia borane (and selected related amine-boranes) as a safer solid source of H2 by hydrolysis (or solvolysis), catalyzed by nanoparticle-based systems. The review groups the results according to the transition metals constituting the catalyst with a mention to their current cost and availability. This includes the noble metals Rh, Pd, Pt, Ru, Ag, as well as cheaper Co, Ni, Cu, and Fe. For each element, the monometallic and polymetallic structures are presented and the performances are described in terms of turnover frequency and recyclability. The structure-property links are highlighted whenever possible. It appears from all these works that the mastery of the preparation of catalysts remains a crucial point both in terms of process, and control and understanding of the electronic structures of the elaborated nanomaterials. A particular effort of the scientific community remains to be made in this multidisciplinary field with major societal stakes.
Collapse
Affiliation(s)
- Clève D Mboyi
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| | - Didier Poinsot
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| | - Julien Roger
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| | - Katia Fajerwerg
- Laboratoire de Chimie de Coordination (LCC-CNRS), Université de Toulouse, INPT, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Myrtil L Kahn
- Laboratoire de Chimie de Coordination (LCC-CNRS), Université de Toulouse, INPT, 205 route de Narbonne, 31077, Toulouse Cedex 4, France
| | - Jean-Cyrille Hierso
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB) UMR-CNRS 6302 Université Bourgogne-Franche-Comté (UBFC), 9 avenue Alain Savary, Dijon, 21078, France
| |
Collapse
|
10
|
Fang MH, Wu SY, Chang YH, Narwane M, Chen BH, Liu WL, Kurniawan D, Chiang WH, Lin CH, Chuang YC, Hsu IJ, Chen HT, Lu TT. Mechanistic Insight into the Synergetic Interaction of Ammonia Borane and Water on ZIF-67-Derived Co@Porous Carbon for Controlled Generation of Dihydrogen. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47465-47477. [PMID: 34592812 DOI: 10.1021/acsami.1c11521] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Regarding dihydrogen as a clean and renewable energy source, ammonia borane (NH3BH3, AB) was considered as a chemical H2-storage and H2-delivery material due to its high storage capacity of dihydrogen (19.6 wt %) and stability at room temperature. To advance the development of efficient and recyclable catalysts for hydrolytic dehydrogenation of AB with parallel insight into the reaction mechanism, herein, ZIF-67-derived fcc-Co@porous carbon nano/microparticles (cZIF-67_nm/cZIF-67_μm) were explored to promote catalytic dehydrogenation of AB and generation of H2(g). According to kinetic and computational studies, zero-order dependence on the concentration of AB, first-order dependence on the concentration of cZIF-67_nm (or cZIF-67_μm), and a kinetic isotope effect value of 2.45 (or 2.64) for H2O/D2O identify the Co-catalyzed cleavage of the H-OH bond, instead of the H-BH2NH3 bond, as the rate-determining step in the hydrolytic dehydrogenation of AB. Despite the absent evolution of H2(g) in the reaction of cZIF-67 and AB in the organic solvents (i.e., THF or CH3OH) or in the reaction of cZIF-67 and water, Co-mediated activation of AB and formation of a Co-H intermediate were evidenced by theoretical calculation, infrared spectroscopy in combination with an isotope-labeling experiment, and reactivity study toward CO2-to-formate/H2O-to-H2 conversion. Moreover, the computational study discovers a synergistic interaction between AB and the water cluster (H2O)9 on fcc-Co, which shifts the splitting of water into an exergonic process and lowers the thermodynamic barrier for the generation and desorption of H2(g) from the Co-H intermediates. With the kinetic and mechanistic study of ZIF-67-derived Co@porous carbon for catalytic hydrolysis of AB, the spatiotemporal control on the generation of H2(g) for the treatment of inflammatory diseases will be further investigated in the near future.
Collapse
Affiliation(s)
- Min-Hsuan Fang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shiuan-Yau Wu
- Department of Chemistry and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Yu-Hsiang Chang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Manmath Narwane
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bo-Hao Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Wei-Ling Liu
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Hsin-Tsung Chen
- Department of Chemistry and R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
11
|
Zheng J, Wang CG, Zhou H, Ye E, Xu J, Li Z, Loh XJ. Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. RESEARCH (WASHINGTON, D.C.) 2021; 2021:3750689. [PMID: 33623916 PMCID: PMC7877397 DOI: 10.34133/2021/3750689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 12/02/2020] [Indexed: 11/26/2022]
Abstract
Hydrogen energy, with environment amicable, renewable, efficiency, and cost-effective advantages, is the future mainstream substitution of fossil-based fuel. However, the extremely low volumetric density gives rise to the main challenge in hydrogen storage, and therefore, exploring effective storage techniques is key hurdles that need to be crossed to accomplish the sustainable hydrogen economy. Hydrogen physically or chemically stored into nanomaterials in the solid-state is a desirable prospect for effective large-scale hydrogen storage, which has exhibited great potentials for applications in both reversible onboard storage and regenerable off-board storage applications. Its attractive points include safe, compact, light, reversibility, and efficiently produce sufficient pure hydrogen fuel under the mild condition. This review comprehensively gathers the state-of-art solid-state hydrogen storage technologies using nanostructured materials, involving nanoporous carbon materials, metal-organic frameworks, covalent organic frameworks, porous aromatic frameworks, nanoporous organic polymers, and nanoscale hydrides. It describes significant advances achieved so far, and main barriers need to be surmounted to approach practical applications, as well as offers a perspective for sustainable energy research.
Collapse
Affiliation(s)
- Jie Zheng
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Chen-Gang Wang
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Hui Zhou
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Enyi Ye
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Jianwei Xu
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, ASTAR (Agency for Science Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore, Singapore 138634
| |
Collapse
|
12
|
Xu SH, Wang JF, Valério A, Zhang WY, Sun JL, He DN. Activating Co nanoparticles on graphitic carbon nitride by tuning the Schottky barrier via P doping for the efficient dehydrogenation of ammonia-borane. Inorg Chem Front 2021. [DOI: 10.1039/d0qi00659a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly active Mott–Schottky nanocatalyst for the efficient dehydrogenation of ammonia-borane was constructed by rationally tuning the Schottky barrier of Co/PxCN (P-doped g-C3N4) via simply varying the doping amount of P atoms.
Collapse
Affiliation(s)
- Shao-Hong Xu
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jing-Feng Wang
- National Engineering Research Center for Nanotechnology
- Shanghai 200241
- P. R. China
- Shanghai University of Medicine & Health Sciences
- Shanghai
| | - Alexsandra Valério
- Department of Chemical Engineering and Food Engineering
- Federal University of Santa Catarina
- 88040-900 Florianópolis
- Brazil
| | - Wen-Yu Zhang
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jia-Lun Sun
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Dan-Nong He
- School of Materials Science and Engineering
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
- National Engineering Research Center for Nanotechnology
| |
Collapse
|
13
|
Zhang S, Li M, Li L, Dushimimana F, Zhao J, Wang S, Han J, Zhu X, Liu X, Ge Q, Wang H. Visible-Light-Driven Multichannel Regulation of Local Electron Density to Accelerate Activation of O–H and B–H Bonds for Ammonia Borane Hydrolysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03965] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shengbo Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Mei Li
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Lisheng Li
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Fabrice Dushimimana
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jiankang Zhao
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Shuai Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Jinyu Han
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xinli Zhu
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xiao Liu
- Key Laboratory of Pesticide & Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, Illinois 62901, United States
| | - Hua Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
14
|
Sun Q, Wang N, Xu Q, Yu J. Nanopore-Supported Metal Nanocatalysts for Efficient Hydrogen Generation from Liquid-Phase Chemical Hydrogen Storage Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001818. [PMID: 32638425 DOI: 10.1002/adma.202001818] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Hydrogen has emerged as an environmentally attractive fuel and a promising energy carrier for future applications to meet the ever-increasing energy challenges. The safe and efficient storage and release of hydrogen remain a bottleneck for realizing the upcoming hydrogen economy. Hydrogen storage based on liquid-phase chemical hydrogen storage materials is one of the most promising hydrogen storage techniques, which offers considerable potential for large-scale practical applications for its excellent safety, great convenience, and high efficiency. Recently, nanopore-supported metal nanocatalysts have stood out remarkably in boosting the field of liquid-phase chemical hydrogen storage. Herein, the latest research progress in catalytic hydrogen production is summarized, from liquid-phase chemical hydrogen storage materials, such as formic acid, ammonia borane, hydrous hydrazine, and sodium borohydride, by using metal nanocatalysts confined within diverse nanoporous materials, such as metal-organic frameworks, porous carbons, zeolites, mesoporous silica, and porous organic polymers. The state-of-the-art synthetic strategies and advanced characterizations for these nanocatalysts, as well as their catalytic performances in hydrogen generation, are presented. The limitation of each hydrogen storage system and future challenges and opportunities on this subject are also discussed. References in related fields are provided, and more developments and applications to achieve hydrogen energy will be inspired.
Collapse
Affiliation(s)
- Qiming Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ning Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
15
|
Zhang S, Xu J, Cheng H, Zang C, Bian F, Sun B, Shen Y, Jiang H. Photocatalytic H 2 Evolution from Ammonia Borane: Improvement of Charge Separation and Directional Charge Transmission. CHEMSUSCHEM 2020; 13:5264-5272. [PMID: 32681615 DOI: 10.1002/cssc.202001536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/10/2020] [Indexed: 06/11/2023]
Abstract
Co/MII Fe layered double hydroxide (LDH) LDH photocatalysts have been designed from the aspect of employing stable half-filled Fe3+ to trap photogenerated electrons, adjusting the MII -O-Fe oxo-bridged structure to optimize the short-range directional charge transmission and intercalating oxometallate anions into the LDH to further improve light absorption along with electron-hole separation and non-noble metal Co NP loading and reduction to form a heterojunction. These LDH-based photocatalysts are employed for photocatalytic H2 evolution from ammonia borane in aqueous solution under visible light at 298 K. The photocatalytic H2 evolution activity is greatly improved through adjustment of the MII -O-Fe oxo-bridged structure and molybdate intercalation into the LDH. Turnover frequencies of up to 113.2 min-1 are achieved with Co/CoFe-Mo. Alongside the experimental results and materials characterization, capture experiments and in situ DRIFTS analysis are carried out to study the photocatalytic hydrogen production mechanism.
Collapse
Affiliation(s)
- Sishi Zhang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Jie Xu
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Hongmei Cheng
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Cuicui Zang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Fengxia Bian
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Bin Sun
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Yu Shen
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
- Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, P. R. China
| | - Heyan Jiang
- Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environmental and Resources, National Base of International Science and Technology, Cooperation for Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| |
Collapse
|
16
|
Song J, Gu X, Zhang H. Electrons and Hydroxyl Radicals Synergistically Boost the Catalytic Hydrogen Evolution from Ammonia Borane over Single Nickel Phosphides under Visible Light Irradiation. ChemistryOpen 2020; 9:366-373. [PMID: 32211281 PMCID: PMC7083169 DOI: 10.1002/open.201900335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/02/2020] [Indexed: 11/12/2022] Open
Abstract
From the perspective of tailoring the reaction pathways of photogenerated charge carriers and intermediates to remarkably enhance the solar‐to‐hydrogen energy conversion efficiency, we synthesized the three low‐cost semiconducting nickel phosphides Ni2P, Ni12P5 and Ni3P, which singly catalyzed the hydrogen evolution from ammonia borane (NH3BH3) in the alkaline aqueous solution under visible light irradiation at 298 K. The systematic investigations showed that all the catalysts had higher activities under visible light irradiation than in the dark and Ni2P had the highest photocatalytic activity with the initial turnover frequency (TOF) value of 82.7 min−1, which exceeded the values of reported metal phosphides at 298 K. The enhanced activities of nickel phosphides were attributed to the visible‐light‐driven synergistic effect of photogenerated electrons (e−) and hydroxyl radicals (.OH), which came from the oxidation of hydroxide anions by photogenerated holes. This was verified by the fluorescent spectra and the capture experiments of photogenerated electrons and holes as well as hydroxyl radicals in the catalytic hydrogen evolution process.
Collapse
Affiliation(s)
- Jin Song
- Inner Mongolia Key Laboratory of Coal Chemistry School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, Inner Mongolia China.,Academician Expert Workstation of Ecological Governance and Green Development of Bayan Nur Department of Ecology and Resource Engineering College of Hetao Bayan Nur 015000, Inner Mongolia China
| | - Xiaojun Gu
- Inner Mongolia Key Laboratory of Coal Chemistry School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, Inner Mongolia China
| | - Hao Zhang
- Inner Mongolia Key Laboratory of Coal Chemistry School of Chemistry and Chemical Engineering Inner Mongolia University Hohhot 010021, Inner Mongolia China
| |
Collapse
|
17
|
Yang X, He Y, Li L, Shen J, Huang J, Li L, Zhuang Z, Bi J, Yu Y. One-Pot Fabrication of Pd Nanoparticles@Covalent-Organic-Framework-Derived Hollow Polyamine Spheres as a Synergistic Catalyst for Tandem Catalysis. Chemistry 2020; 26:1864-1870. [PMID: 31774593 DOI: 10.1002/chem.201904731] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Indexed: 02/05/2023]
Abstract
Facile fabrication of nanocatalysts consisting of metal nanoparticles (NPs) anchored on a functional support is highly desirable, yet remains challenging. Covalent organic frameworks (COFs) provide an emerging materials platform for structural control and functional design. Here, a facile one-pot in situ reduction approach is demonstrated for the encapsulation of small Pd NPs into the shell of COF-derived hollow polyamine spheres (Pd@H-PPA). In the one-pot synthetic process, the nucleation and growth of Pd NPs in the cavities of the porous shell take place simultaneously with the reduction of imine linkages to secondary amine groups. Pd@H-PPA shows a significantly enhanced catalytic activity and recyclability in the tandem dehydrogenation of ammonia borane and selective hydrogenation of nitroarenes through an adsorption-activation-reaction mechanism. The strong interactions of the secondary amine linkage with borane and nitroarene molecules afford a positive synergy to promote the catalytic reaction. Moreover, the hierarchical structure of Pd@H-PPA allows the accessibility of active Pd NPs to reactants.
Collapse
Affiliation(s)
- Xinyi Yang
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fujian, 350108, P. R. China.,Key Laboratory of Ecological Environment and Information Atlas (Putian University), Fujian Provincial University, Putian, 351100, P. R. China
| | - Yajun He
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fujian, 350108, P. R. China
| | - Liuyi Li
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fujian, 350108, P. R. China
| | - Jinni Shen
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fujian, 350108, P. R. China
| | - Jianhui Huang
- Key Laboratory of Ecological Environment and Information Atlas (Putian University), Fujian Provincial University, Putian, 351100, P. R. China
| | - Lingyun Li
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fujian, 350108, P. R. China
| | - Zanyong Zhuang
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fujian, 350108, P. R. China
| | - Jinhong Bi
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fujian, 350108, P. R. China
| | - Yan Yu
- Key Laboratory of Eco-Materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fujian, 350108, P. R. China
| |
Collapse
|