1
|
Wei H, Sha X, Chen L, Wang Z, Zhang C, He P, Tao WQ. Visualization of Multiphase Reactive Flow and Mass Transfer in Functionalized Microfluidic Porous Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401393. [PMID: 38477692 DOI: 10.1002/smll.202401393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Multiphase reactive flow in porous media is an important research topic in many natural and industrial processes. In the present work, photolithography is adopted to fabricate multicomponent mineral porous media in a microchannel, microfluidics experiments are conducted to capture the multiphase reactive flow, methyl violet 2B is employed to visualize the real-time concentration field of the acid solution and a sophisticated image processing method is developed to obtain the quantitative results of the distribution of different phases. With the advanced methods, experiments are conducted with different acid concentration and inlet velocity in different porous structures with different phenomena captured. Under a low acid concentration, the reaction will be single phase. In the gaseous cases with higher acid concentration, preferential flow paths with faster flow and reaction are formed by the multiphase hydrodynamic instabilities. In the experiments with different inlet velocities, it is observed that a higher inlet velocity will lead to a faster reaction but less gas bubbles generated. In contrast, more gas bubbles would be generated and block the flow and reaction under a lower inlet velocity. Finally, in heterogeneous structures, fractures or cavities would significantly redirect the flow and promote the formation of preferential flow path nearby.
Collapse
Affiliation(s)
- Hangkai Wei
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, UK
| | - Xin Sha
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Li Chen
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zi Wang
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Chuangde Zhang
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Peng He
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Wen-Quan Tao
- Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
2
|
Arabuli KV, Kopoleva E, Akenoun A, Mikhailova LV, Petrova E, Muslimov AR, Senichkina DA, Tsymbal S, Shakirova AI, Ignatiev AI, Lepik KV, Zyuzin MV. On-chip fabrication of calcium carbonate nanoparticles loaded with various compounds using microfluidic approach. BIOMATERIALS ADVANCES 2024; 161:213904. [PMID: 38805763 DOI: 10.1016/j.bioadv.2024.213904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.
Collapse
Affiliation(s)
- Konstantin V Arabuli
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Kopoleva
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Anas Akenoun
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Lidia V Mikhailova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Petrova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Albert R Muslimov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Dina A Senichkina
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Sergey Tsymbal
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg 197101, Russian Federation
| | - Alena I Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Alexander I Ignatiev
- Research and Educational Centre of Photonics and Optoinformatics, ITMO University, Saint-Petersburg 199034, Russian Federation
| | - Kirill V Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation; Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China.
| |
Collapse
|
3
|
Yuan K, Starchenko V, Rampal N, Yang F, Xiao X, Stack AG. Assessing an aqueous flow cell designed for in situ crystal growth under X-ray nanotomography and effects of radiolysis products. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:634-642. [PMID: 37067259 PMCID: PMC10161885 DOI: 10.1107/s1600577523002783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023]
Abstract
Nucleation and growth of minerals has broad implications in the geological, environmental and materials sciences. Recent developments in fast X-ray nanotomography have enabled imaging of crystal growth in solutions in situ with a resolution of tens of nanometres, far surpassing optical microscopy. Here, a low-cost, custom-designed aqueous flow cell dedicated to the study of heterogeneous nucleation and growth of minerals in aqueous environments is shown. To gauge the effects of radiation damage from the imaging process on growth reactions, radiation-induced morphological changes of barite crystals (hundreds of nanometres to ∼1 µm) that were pre-deposited on the wall of the flow cell were investigated. Under flowing solution, minor to major crystal dissolution was observed when the tomography scan frequency was increased from every 30 min to every 5 min (with a 1 min scan duration). The production of reactive radicals from X-ray induced water radiolysis and decrease of pH close to the surface of barite are likely responsible for the observed dissolution. The flow cell shown here can possibly be adopted to study a wide range of other chemical reactions in solutions beyond crystal nucleation and growth where the combination of fast flow and fast scan can be used to mitigate the radiation effects.
Collapse
Affiliation(s)
- Ke Yuan
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Vitalii Starchenko
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nikhil Rampal
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Chemical Engineering, Columbia University, NY 10027, USA
| | - Fengchang Yang
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xianghui Xiao
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Andrew G. Stack
- Chemical Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
4
|
Lei W, Lu X, Wang M. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Adv Colloid Interface Sci 2023; 311:102826. [PMID: 36528919 DOI: 10.1016/j.cis.2022.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Multiphase displacement in porous media can be adjusted by micro/nanoparticle suspensions, which is widespread in many scientific and industrial contexts. Direct visualization of suspension flow dynamics and corresponding multiphase patterns is crucial to understanding displacement mechanisms and eventually optimizing these processes in geological, biological, chemical, and other engineering systems. However, suspension flow inside the opaque realistic porous media makes direct observation challenging. The advances in microfluidic experiments have provided us with alternative methods to observe suspension influence on the interface and multiphase flow behaviors at high temporal and spatial resolutions. Macroscale processes are controlled by microscale interfacial behaviors, which are affected by multiple physical factors, such as particle adsorption, capillarity, and hydrodynamics. These properties exerted on the suspension flow in porous media may lead to interesting interfacial phenomena and new displacement consequences. As an underpinning science, understanding and controlling the suspension transport process from interface to flow patterns in porous media is critical for a lower operating cost to improve resource production while reducing harmful emissions and other environmental impacts. This review summarizes the basic properties of different micro/nanoparticle suspensions and the state-of-the-art microfluidic techniques for displacement research activities in porous media. Various suspension transport behaviors and displacement mechanisms explored by microfluidic experiments are comprehensively reviewed. This review is expected to boost both experimental and theoretical understanding of suspension transport and interfacial interaction processes in porous media. It also brings forward the challenges and opportunities for future research in controlling complex fluid flow in porous media for diverse applications.
Collapse
Affiliation(s)
- Wenhai Lei
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xukang Lu
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Moran Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Xu J, Balhoff MT. Dissolution-After-Precipitation (DAP): a simple microfluidic approach for studying carbonate rock dissolution and multiphase reactive transport mechanisms. LAB ON A CHIP 2022; 22:4205-4223. [PMID: 36172900 DOI: 10.1039/d2lc00426g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We propose a simple microfluidic approach: Dissolution-After-Precipitation (DAP), to investigate regimes of carbonate rock dissolution and multiphase reactive transport. In this method, a carbonate porous medium is created in a glass microchannel via calcium carbonate precipitation, after which an acid is injected into the channel to dissolve the precipitated porous medium. Utilizing the DAP method, for the first time we realized all five classical single-phase carbonate rock dissolution regimes (uniform, compact, conical, wormhole, ramified wormholes) in a microfluidic chip. The results are validated against the established theoretical dissolution diagram, which shows good agreement. Detailed analysis of these single-phase dissolutions suggests that the heterogeneity of the porous medium may significantly impact how the dissolution patterns evolve over time. Furthermore, DAP is utilized to investigate multiphase dissolution. As examples we tested the cases of an oleic phase (tetradecane) and a gaseous phase (CO2). Results show that the presence of a nonaqueous phase in pore spaces induces the formation of wormholes despite weak advection, and these wormholes ultimately become pathways for nonaqueous phase transport. However, the transport of tetradecane in the wormhole is very slow, causing acid breakthrough into neighboring regions. This mechanism enhances lateral connectivity between wormholes and may lead to a wormhole network. In contrast, CO2 moves rapidly and continuously seeks to enter a widening wormhole from a narrower wormhole or the porous regions, generating phenomena such as ganglia redistribution and counterflow (flow of gas opposite to acid flow). Extensive independent experiments are conducted to verify the reproducibility of the observed phenomena/mechanisms and further analyze them. Real-time monitoring of fluid pressure drop during dissolution is implemented to complement microscopy image analysis. Our method can be implemented repeatedly on the same chip, which offers a convenient and inexpensive option to study pore-scale reactive transport mechanisms.
Collapse
Affiliation(s)
- Jianping Xu
- Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Matthew T Balhoff
- Hildebrand Department of Petroleum and Geosystems Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
- Center for Subsurface Energy and the Environment, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
6
|
Le-Anh D, Rao A, Stetten AZ, Ayirala SC, Alotaibi MB, Duits MHG, Gardeniers H, AlYousef AA, Mugele F. Oil Displacement in Calcite-Coated Microfluidic Chips via Waterflooding at Elevated Temperatures and Long Times. MICROMACHINES 2022; 13:1316. [PMID: 36014237 PMCID: PMC9415086 DOI: 10.3390/mi13081316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
In microfluidic studies of improved oil recovery, mostly pore networks with uniform depth and surface chemistry are used. To better mimic the multiple porosity length scales and surface heterogeneity of carbonate reservoirs, we coated a 2.5D glass microchannel with calcite particles. After aging with formation water and crude oil (CRO), high-salinity Water (HSW) was flooded at varying temperatures and durations. Time-resolved microscopy revealed the CRO displacements. Precise quantification of residual oil presented some challenges due to calcite-induced optical heterogeneity and brine-oil coexistence at (sub)micron length scales. Both issues were addressed using pixel-wise intensity calibration. During waterflooding, most of the ultimately produced oil gets liberated within the first pore volume (similar to glass micromodels). Increasing temperature from 22 °C to 60 °C and 90 °C produced some more oil. Waterflooding initiated directly at 90 °C produced significantly more oil than at 22 °C. Continuing HSW exposure at 90 °C for 8 days does not release additional oil; although, a spectacular growth of aqueous droplets is observed. The effect of calcite particles on CRO retention is weak on flat surfaces, where the coverage is ~20%. The calcite-rich pore edges retain significantly more oil suggesting that, in our micromodel wall roughness is a stronger determinant for oil retention than surface chemistry.
Collapse
Affiliation(s)
- Duy Le-Anh
- Physics of Complex Fluids, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ashit Rao
- Physics of Complex Fluids, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Amy Z. Stetten
- Physics of Complex Fluids, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Subhash C. Ayirala
- The Exploration and Petroleum Engineering Center-Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 34465, Saudi Arabia
| | - Mohammed B. Alotaibi
- The Exploration and Petroleum Engineering Center-Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 34465, Saudi Arabia
| | - Michel H. G. Duits
- Physics of Complex Fluids, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Han Gardeniers
- Mesoscale Chemical Systems Groups, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ali A. AlYousef
- The Exploration and Petroleum Engineering Center-Advanced Research Center (EXPEC ARC), Saudi Aramco, Dhahran 34465, Saudi Arabia
| | - Frieder Mugele
- Physics of Complex Fluids, MESA+ Institute, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
7
|
Ghasemi H, Mozaffari S, Mohammadghasemi H, Jemere AB, Nazemifard N. Microfluidic Platform for Characterization of Crude Oil Emulsion Stability. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microfluidic technology has gained significant scientific interest in the characterization of crude oil emulsions that are often formed in the process of oil production. Microfluidic platforms can be used to mimic the pores of natural rock and study multiphase displacement, as well as emulsion formation at a microscale level. This mini-Review focuses on the applications of microfluidics to probe the stability of emulsified droplets against coalescence (e.g., in the presence of additives, electric field, etc.) for both water-in-oil (W/O) and oil-in-water (O/W) emulsion systems. Additionally, this study summarizes the recent efforts made to identify the effects of various experimental factors, including crude oil composition, aging, salinity, and pH on the interfacial properties of water/oil interface and their ultimate roles in the formation/stability of emulsions. Finally, main findings and some recommendations for future work related to the potential of microfluidics in different aspects of crude oil emulsion studies are discussed.
Collapse
Affiliation(s)
- Homa Ghasemi
- University of Wisconsin-Milwaukee, 14751, Department of Materials Science & Engineering, Milwaukee, United States
| | - Saeed Mozaffari
- Virginia Polytechnic Institute and State University, 1757, Department of Chemical Engineering, Blacksburg, United States, 24061-0131
- University of Alberta, 3158, Department of Chemical and Materials Engineering, Edmonton, Canada, T6G 2R3
| | | | - Abebaw B. Jemere
- National Research Council Canada Nanotechnology Research Centre, 103212, Edmonton, Alberta, Canada
| | - Neda Nazemifard
- University of Alberta, 3158, Department of Chemical and Materials Engineering, Edmonton, Canada, T6G 2R3
| |
Collapse
|
8
|
Bajgiran KR, Hymel HC, Sombolestani S, Dante N, Safa N, Dorman JA, Rao D, Melvin AT. Fluorescent visualization of oil displacement in a microfluidic device for enhanced oil recovery applications. Analyst 2021; 146:6746-6752. [PMID: 34609383 DOI: 10.1039/d1an01333e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A microfluidic device was developed to mimic the reservoir pore-scale and track the oil/water phases during air flooding. The chip was generated by combining soft-lithography and NOA81 replication. A unique feature of this approach is the inclusion of fluorescent dyes into the oil/water phases, allowing for real-time visualization of oil recovery without altering the phases' surface properties. As a proof of concept, the air was injected into the water/oil-flooded device for enhanced oil recovery applications.
Collapse
Affiliation(s)
- Khashayar R Bajgiran
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Hannah C Hymel
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Shayan Sombolestani
- Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Nathalie Dante
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Nora Safa
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - James A Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| | - Dandina Rao
- Craft and Hawkins Department of Petroleum Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
9
|
Jahanbakhsh A, Shahrokhi O, Maroto-Valer MM. Understanding the role of wettability distribution on pore-filling and displacement patterns in a homogeneous structure via quasi 3D pore-scale modelling. Sci Rep 2021; 11:17847. [PMID: 34497276 PMCID: PMC8426499 DOI: 10.1038/s41598-021-97169-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Most numerical simulation studies have focused on the effect of homogenous wettability on fluid flow dynamics; however, most rocks display spatially heterogeneous wettability. Therefore, we have used direct numerical simulations (DNS) to investigate wettability heterogeneity at pore-scale. We have built a quasi-3D pore-scale model and simulated two-phase flow in a homogenous porous media with homogenous and heterogeneous wettability distributions. Five different heterogeneous wettability patterns were used in this study. We observed that heterogenous wettability significantly affects the evolution of fluid interface, trapped saturation, and displacement patterns. Wettability heterogeneity results in fingering and specific trapping patterns which do not follow the flow behaviour characteristic of a porous medium with homogenous wettability. This flow behaviour indicates a different flow regime that cannot be estimated using homogenous wettability distributions represented by an average contact angle. Moreover, our simulation results show that certain spatial configurations of wettability heterogeneity at the microscale, e.g. being perpendicular to the flow direction, may assist the stability of the displacement and delay the breakthrough time. In contrast, other configurations such as being parallel to the flow direction promote flow instability for the same pore-scale geometry.
Collapse
Affiliation(s)
- Amir Jahanbakhsh
- grid.9531.e0000000106567444Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Omid Shahrokhi
- grid.9531.e0000000106567444Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - M. Mercedes Maroto-Valer
- grid.9531.e0000000106567444Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
10
|
Manipulation of surface charges of oil droplets and carbonate rocks to improve oil recovery. Sci Rep 2021; 11:14518. [PMID: 34267283 PMCID: PMC8282872 DOI: 10.1038/s41598-021-93920-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/30/2021] [Indexed: 11/09/2022] Open
Abstract
This work investigates the effect of the surface charges of oil droplets and carbonate rocks in brine and in surfactant solutions on oil production. The influences of the cations in brine and the surfactant types on the zeta-potentials of both oil droplets and carbonate rock particles are studied. It is found that the addition of anionic and cationic surfactants in brine result in both negative or positive zeta-potentials of rock particles and oil droplets respectively, while the zwitterionic surfactant induces a positive charge on rock particles and a negative charge on oil droplets. Micromodels with a CaCO3 nanocrystal layer coated on the flow channels were used in the oil displacement tests. The results show that when the oil-water interfacial tension (IFT) was at 10-1 mN/m, the injection of an anionic surfactant (SDS-R1) solution achieved 21.0% incremental oil recovery, higher than the 12.6% increment by the injection of a zwitterionic surfactant (SB-A2) solution. When the IFT was lowered to 10-3 mM/m, the injection of anionic/non-ionic surfactant SMAN-l1 solution with higher absolute zeta potential value (ζoil + ζrock) of 34 mV has achieved higher incremental oil recovery (39.4%) than the application of an anionic/cationic surfactant SMAC-l1 solution with a lower absolute zeta-potential value of 22 mV (30.6%). This indicates that the same charge of rocks and oil droplets improves the transportation of charged oil/water emulsion in the porous media. This work reveals that the surface charge in surfactant flooding plays an important role in addition to the oil/water interfacial tension reduction and the rock wettability alteration.
Collapse
|
11
|
Gizzatov A, Pierobon S, AlYousef Z, Jian G, Fan X, Abedini A, Abdel-Fattah AI. High-temperature high-pressure microfluidic system for rapid screening of supercritical CO 2 foaming agents. Sci Rep 2021; 11:3360. [PMID: 33564048 PMCID: PMC7873061 DOI: 10.1038/s41598-021-82839-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/25/2021] [Indexed: 12/03/2022] Open
Abstract
CO2 foam helps to increase the viscosity of CO2 flood fluid and thus improve the process efficiency of the anthropogenic greenhouse gas's subsurface utilization and sequestration. Successful CO2 foam formation mandates the development of high-performance chemicals at close to reservoir conditions, which in turn requires extensive laboratory tests and evaluations. This work demonstrates the utilization of a microfluidic reservoir analogue for rapid evaluation and screening of commercial surfactants (i.e., Cocamidopropyl Hydroxysultaine, Lauramidopropyl Betaine, Tallow Amine Ethoxylate, N,N,N' Trimethyl-N'-Tallow-1,3-diaminopropane, and Sodium Alpha Olefin Sulfonate) based on their performance to produce supercritical CO2 foam at high salinity, temperature, and pressure conditions. The microfluidic analogue was designed to represent the pore sizes of the geologic reservoir rock and to operate at 100 °C and 13.8 MPa. Values of the pressure drop across the microfluidic analogue during flow of the CO2 foam through its pore network was used to evaluate the strength of the generated foam and utilized only milliliters of liquid. The transparent microfluidic pore network allows in-situ quantitative visualization of CO2 foam to calculate its half-life under static conditions while observing if there is any damage to the pore network due to precipitation and blockage. The microfluidic mobility reduction results agree with those of foam loop rheometer measurements, however, the microfluidic approach provided more accurate foam stability data to differentiate the foaming agent as compared with conventional balk testing. The results obtained here supports the utility of microfluidic systems for rapid screening of chemicals for carbon sequestration or enhanced oil recovery operations.
Collapse
Affiliation(s)
- Ayrat Gizzatov
- Aramco Services Company, Aramco Research Center-Boston, 400 Technology Square, Cambridge, MA, 02139, USA
| | - Scott Pierobon
- Interface Fluidics Ltd., National Institute for Nanotechnology, 11421 Saskatchewan Dr NW #4-087, Edmonton, AB, T6G 2M9, Canada
| | - Zuhair AlYousef
- EXPEC ARC, Reservoir Engineering Technology Division, Saudi Aramco, Dhahran, 31311, Saudi Arabia
| | - Guoqing Jian
- Aramco Services Company, Aramco Research Center-Boston, 400 Technology Square, Cambridge, MA, 02139, USA
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Xingyu Fan
- Interface Fluidics Ltd., National Institute for Nanotechnology, 11421 Saskatchewan Dr NW #4-087, Edmonton, AB, T6G 2M9, Canada
| | - Ali Abedini
- Interface Fluidics Ltd., National Institute for Nanotechnology, 11421 Saskatchewan Dr NW #4-087, Edmonton, AB, T6G 2M9, Canada.
| | - Amr I Abdel-Fattah
- EXPEC ARC, Reservoir Engineering Technology Division, Saudi Aramco, Dhahran, 31311, Saudi Arabia.
| |
Collapse
|
12
|
Colloid retention and mobilization mechanisms under different physicochemical conditions in porous media: A micromodel study. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2020.08.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Lv Q, Zhou T, Zheng R, Li X, Xiao K, Dong Z, Li J, Wei F. CO2 Mobility Control in Porous Media by Using Armored Bubbles with Silica Nanoparticles. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c05648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qichao Lv
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
| | - Tongke Zhou
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
| | - Rong Zheng
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
| | - Xiangling Li
- Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, China
| | - Kang Xiao
- Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, China
| | - Zhaoxia Dong
- Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, China
| | - Junjian Li
- College of Petroleum Engineering, China University of Petroleum (Beijing), Beijing 102249, China
| | - Falin Wei
- Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, China
| |
Collapse
|
14
|
Deng H, Fitts JP, Tappero RV, Kim JJ, Peters CA. Acid Erosion of Carbonate Fractures and Accessibility of Arsenic-Bearing Minerals: In Operando Synchrotron-Based Microfluidic Experiment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12502-12510. [PMID: 32845141 DOI: 10.1021/acs.est.0c03736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Underground flows of acidic fluids through fractured rock can create new porosity and increase accessibility to hazardous trace elements such as arsenic. In this study, we developed a custom microfluidic cell for an in operando synchrotron experiment using X-ray attenuation. The experiment mimics reactive fracture flow by passing an acidic fluid over a surface of mineralogically heterogeneous rock from the Eagle Ford shale. Over 48 h, calcite was preferentially dissolved, forming an altered layer 200-500 μm thick with a porosity of 63-68% and surface area >10× higher than that in the unreacted shale as shown by xCT analyses. Calcite dissolution rate quantified from the attenuation data was 3 × 10-4 mol/m2s and decreased to 3 × 10-5 mol/m2s after 24 h because of increasing diffusion limitations. Erosion of the fracture surface increased access to iron-rich minerals, thereby increasing access to toxic metals such as arsenic. Quantification using XRF and XANES microspectroscopy indicated up to 0.5 wt % of As(-I) in arsenopyrite and 1.2 wt % of As(V) associated with ferrihydrite. This study provides valuable contributions for understanding and predicting fracture alteration and changes to the mobilization potential of hazardous metals and metalloids.
Collapse
Affiliation(s)
- Hang Deng
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey P Fitts
- Columbia Electrochemical Energy Center, Columbia University, New York, New York 10027, United States
| | - Ryan V Tappero
- Photon Sciences Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Julie J Kim
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Catherine A Peters
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
15
|
Zou H, Kang H, Slim AC, Neild A. Pore-scale multiple-contact miscibility measurements in a microfluidic chip. LAB ON A CHIP 2020; 20:3582-3590. [PMID: 32869051 DOI: 10.1039/d0lc00659a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon dioxide enhanced oil recovery is an interim solution as the world transitions to a cleaner energy future, extending oil production from existing fields whilst also sequestering carbon dioxide. To make this process efficient, the gas and oil need to develop miscibility over a period of time through the exchange of chemical components between the two phases, termed multiple-contact miscibility. Currently, measurements to infer the development of multiple-contact miscibility are limited to macroscopic visualization. We present a "rock-on-a-chip" measurement system that offers several potential measurements for different wetting conditions to infer the onset of multiple-contact miscibility. Here, a two-dimensional microfluidic porous medium with a stochastic distribution of pillars was created, and an analogue ternary system was used to mimic the real oil and gas multiple-contact miscibility process. Experiments were performed in two directions, imbibition and drainage, permitting study of different wetting properties of the host rock. The distinct behavior of trapped non-wetting ganglia during imbibition and the evolution of phase interfaces during drainage were observed and analyzed as the system developed miscibility. We show how these observations can be converted into rapid measurements for identifying the development of miscibility.
Collapse
Affiliation(s)
- Hanbang Zou
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Hanwen Kang
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Anja C Slim
- School of Mathematics, Monash University, Clayton, Victoria 3800, Australia and School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria 3800, Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
16
|
Li H, Raza A, Ge Q, Lu JY, Zhang T. Empowering microfluidics by micro-3D printing and solution-based mineral coating. SOFT MATTER 2020; 16:6841-6849. [PMID: 32638816 DOI: 10.1039/d0sm00958j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluid-solid interaction in porous materials is of tremendous importance to earth, space, energy, environment, biological, and medical applications. High-resolution 3D printing enables efficient fabrication of porous microfluidic devices with complicated pore-throat morphology, but lacking desired surface functionality. In this work, we propose a novel approach to additively fabricate functional porous devices by integrating micro-3D printing and solution-based internal coating. This approach is successfully applied to create energy/environment-orientated porous micromodels that replicate the μCT-captured porous geometry and natural mineralogy of carbonate rock. The functional mineral coating in a 3D-printed porous scaffold is achieved by seeding calcite nanoparticles along the inner surface and enabling in situ growth of calcite crystals. For conformal and stable coating in confined pore spaces, we manage to control the wetting and capillarity effects during fabrication: (i) capillarity-enhanced nanoparticle immobilization for forming an adhered seeding layer; (ii) capillary pore-throat blockage mitigation for uniform crystal growth. These transparent micromodels are then used to directly image and characterize microscopic fluid dynamics including wettability-dependent fluid propagation and capillarity-held phase transition processes. The proposed approach can be readily tailored with on-demand-designed scaffold geometry and appropriate coating recipe to fit in many other emerging applications.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Aikifa Raza
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Qiaoyu Ge
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Jin-You Lu
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - TieJun Zhang
- Department of Mechanical Engineering, Masdar Institute, Khalifa University of Science and Technology, P. O. Box 54224, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
17
|
Jahanbakhsh A, Wlodarczyk KL, Hand DP, Maier RRJ, Maroto-Valer MM. Review of Microfluidic Devices and Imaging Techniques for Fluid Flow Study in Porous Geomaterials. SENSORS 2020; 20:s20144030. [PMID: 32698501 PMCID: PMC7412536 DOI: 10.3390/s20144030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 02/06/2023]
Abstract
Understanding transport phenomena and governing mechanisms of different physical and chemical processes in porous media has been a critical research area for decades. Correlating fluid flow behaviour at the micro-scale with macro-scale parameters, such as relative permeability and capillary pressure, is key to understanding the processes governing subsurface systems, and this in turn allows us to improve the accuracy of modelling and simulations of transport phenomena at a large scale. Over the last two decades, there have been significant developments in our understanding of pore-scale processes and modelling of complex underground systems. Microfluidic devices (micromodels) and imaging techniques, as facilitators to link experimental observations to simulation, have greatly contributed to these achievements. Although several reviews exist covering separately advances in one of these two areas, we present here a detailed review integrating recent advances and applications in both micromodels and imaging techniques. This includes a comprehensive analysis of critical aspects of fabrication techniques of micromodels, and the most recent advances such as embedding fibre optic sensors in micromodels for research applications. To complete the analysis of visualization techniques, we have thoroughly reviewed the most applicable imaging techniques in the area of geoscience and geo-energy. Moreover, the integration of microfluidic devices and imaging techniques was highlighted as appropriate. In this review, we focus particularly on four prominent yet very wide application areas, namely “fluid flow in porous media”, “flow in heterogeneous rocks and fractures”, “reactive transport, solute and colloid transport”, and finally “porous media characterization”. In summary, this review provides an in-depth analysis of micromodels and imaging techniques that can help to guide future research in the in-situ visualization of fluid flow in porous media.
Collapse
Affiliation(s)
- Amir Jahanbakhsh
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.L.W.); (M.M.M.-V.)
- Correspondence:
| | - Krystian L. Wlodarczyk
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.L.W.); (M.M.M.-V.)
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.P.H.); (R.R.J.M.)
| | - Duncan P. Hand
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.P.H.); (R.R.J.M.)
| | - Robert R. J. Maier
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (D.P.H.); (R.R.J.M.)
| | - M. Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (K.L.W.); (M.M.M.-V.)
| |
Collapse
|
18
|
Gaol CL, Wegner J, Ganzer L. Real structure micromodels based on reservoir rocks for enhanced oil recovery (EOR) applications. LAB ON A CHIP 2020; 20:2197-2208. [PMID: 32426764 DOI: 10.1039/d0lc00257g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the application of microfluidics is not new in the petroleum industry, the upscaling of fluid flow behavior from micromodels to reservoir rocks is still challenging. In this work, an attempt to close the gaps between micromodels and reservoir rocks was performed by constructing micromodels based on the X-ray micro-computed tomography (μCT) images of a Bentheimer core plug. The goal of this work was to build a digital 3D model of reservoir rocks and transfer its rock properties and morphological features such as porosity, permeability, pore and grain size distribution into a 2D microfluidics chip. The workflow consists of several steps which are (1) rock property extraction from a μCT image stack of the core plug, (2) micromodel pore structure design, (3) lithographic mask construction and (4) fabrication. Flooding experiments, including single- and two-phase flow experiments, were performed to confirm the micromodel design. As a result, the real structure micromodels show similar rock properties, as well as a comparable fluid flow behavior, to those of the Bentheimer core plug during typical water flooding and EOR polymer application. This framework demonstrates the potential for the general applicability of micromodels to support EOR studies on a larger scale, such as those on sandpacks or core plugs before field implementation.
Collapse
Affiliation(s)
- Calvin Lumban Gaol
- Institute of Subsurface Energy Systems, TU Clausthal, Agricolastrasse 10, 38678, Clausthal-Zellerfeld, Germany.
| | | | | |
Collapse
|
19
|
Zhang Y, Khorshidian H, Mohammadi M, Sanati-Nezhad A, Hejazi SH. Functionalized multiscale visual models to unravel flow and transport physics in porous structures. WATER RESEARCH 2020; 175:115676. [PMID: 32193027 DOI: 10.1016/j.watres.2020.115676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/18/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
The fluid flow, species transport, and chemical reactions in geological formations are the chief mechanisms in engineering the exploitation of fossil fuels and geothermal energy, the geological storage of carbon dioxide (CO2), and the disposal of hazardous materials. Porous rock is characterized by a wide surface area, where the physicochemical fluid-solid interactions dominate the multiphase flow behavior. A variety of visual models with differences in dimensions, patterns, surface properties, and fabrication techniques have been widely utilized to simulate and directly visualize such interactions in porous media. This review discusses the six categories of visual models used in geological flow applications, including packed beds, Hele-Shaw cells, synthesized microchips (also known as microfluidic chips or micromodels), geomaterial-dominated microchips, three-dimensional (3D) microchips, and nanofluidics. For each category, critical technical points (such as surface chemistry and geometry) and practical applications are summarized. Finally, we discuss opportunities and provide a framework for the development of custom-built visual models.
Collapse
Affiliation(s)
- Yaqi Zhang
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Hossein Khorshidian
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mehdi Mohammadi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Biological Sciences, University of Calgary, Canada
| | - Amir Sanati-Nezhad
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; BioMEMS and Bioinspired Microfluidic Laboratory, Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; Centre for Bioengineering Research and Education, University of Calgary, Calgary, Canada
| | - S Hossein Hejazi
- Interfacial Flows and Porous Media Laboratory, Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
20
|
Toward Reservoir-on-a-Chip: Rapid Performance Evaluation of Enhanced Oil Recovery Surfactants for Carbonate Reservoirs Using a Calcite-Coated Micromodel. Sci Rep 2020; 10:782. [PMID: 31964925 PMCID: PMC6972785 DOI: 10.1038/s41598-020-57485-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/12/2019] [Indexed: 11/25/2022] Open
Abstract
Enhanced oil recovery (EOR) plays a significant role in improving oil production. Tertiary EOR, including surfactant flooding, can potentially mobilize residual oil after water flooding. Prior to the field deployment, the surfactant performance must be evaluated using site-specific crude oil at reservoir conditions. Core flood experiments are common practice to evaluate surfactants for oil displacement efficiency using core samples. Core flood experiments, however, are expensive and time-consuming and do not allow for pore scale observations of fluid-fluid interactions. This work introduces the framework to evaluate the performance of EOR surfactants via a Reservoir-on-a-Chip approach, which uses microfluidic devices to mimic the oil reservoir. A unique feature of this study is the use of chemically modified micromodels such that the pore surfaces are representative of carbonate reservoir rock. To represent calcium carbonate reservoir pores, the inner channels of glass microfluidic devices were coated with thin layers of calcium carbonate nanocrystals and the surface was modified to exhibit oil-wet conditions through a crude oil aging process. During surfactant screening, oil and water phases were imaged by fluorescence microscopy to reveal the micro to macro scale mechanisms controlling surfactant-assisted oil recovery. The role of the interfacial tension (IFT) and wettability in the microfluidic device was simulated using a phase-field model and compared to laboratory results. We demonstrated the effect of low IFT at the oil-water interface and wettability alteration on surfactant-enhanced oil displacement efficiency; thus providing a time-efficient and low-cost strategy for quantitative and qualitative assessment. In addition, this framework is an effective method for pre-screening EOR surfactants for use in carbonate reservoirs prior to further core and field scale testing.
Collapse
|
21
|
Morais S, Cario A, Liu N, Bernard D, Lecoutre C, Garrabos Y, Ranchou-Peyruse A, Dupraz S, Azaroual M, Hartman RL, Marre S. Studying key processes related to CO 2 underground storage at the pore scale using high pressure micromodels. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00023j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micromodels experimentation for studying and understanding CO2 geological storage mechanisms at the pore scale.
Collapse
Affiliation(s)
| | - Anaïs Cario
- CNRS
- Univ. Bordeaux
- Bordeaux INP
- ICMCB
- Pessac Cedex
| | - Na Liu
- CNRS
- Univ. Bordeaux
- Bordeaux INP
- ICMCB
- Pessac Cedex
| | | | | | | | | | | | | | - Ryan L. Hartman
- Department of Chemical and Biomolecular Engineering
- New York University
- Brooklyn
- USA
| | | |
Collapse
|
22
|
Fazeli H, Nooraiepour M, Hellevang H. Microfluidic Study of Fracture Dissolution in Carbonate-Rich Caprocks Subjected to CO2-Charged Brine. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b06048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hossein Fazeli
- Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway
| | - Mohammad Nooraiepour
- Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway
| | - Helge Hellevang
- Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway
- The University Centre in Svalbard (UNIS),
P.O. Box 156, N-9171 Longyearbyen, Norway
| |
Collapse
|
23
|
Alzahid YA, Mostaghimi P, Alqahtani NJ, Sun C, Lu X, Armstrong RT. Oil mobilization and solubilization in porous media by in situ emulsification. J Colloid Interface Sci 2019; 554:554-564. [PMID: 31326787 DOI: 10.1016/j.jcis.2019.07.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
HYPOTHESIS For a wide range of subsurface engineering processes, such as geological carbon sequestration and enhanced oil recovery, it is critical to understand multiphase flow at a fundamental level. To this end, geomaterial microfluidic devices provide visual data that can be quantified to explain the physics of multiphase flow at the length scale of individual pores in realistic rock structures. For surfactant enhanced oil recovery, it is the underlying geometrical states of the capillary trapped oil that dictates the recovery process and the degree to which oil is recovered through either mobilization or solubilization during in situ emulsification. EXPERIMENTS A novel geomaterial microfluidic device is fabricated and its integrity is checked using light microscopy and X-ray micro-computed tomography (μ-CT) imaging. Subsequently, alkaline surfactant (AS) flooding of an oil saturated device is studied for enhanced recovery. The recovery process is analyzed by collecting 2D radiographic projections of the device during water flooding and in situ emulsification. 3D μ-CT images are also collected to quantify the geometrical states of the fluids after each flooding sequence. FINDINGS Our study reveals the processes of oil cluster mobilization and solubilization in porous media. After water flooding there are numerous oil clusters that are relatively large, extending over multiple pores, forming various loop-like structures. These clusters are mobile under AS flooding accounting for 75% of the recovered oil. The less mobile smaller clusters, isolated to single pores, forming no loop-like structures are immobile. These clusters are solubilized during AS flooding accounting for 25% of the recovered oil. The mobilized clusters coalesce forming an oil bank prior to total solubilization. The remaining oil clusters after AS flooding are highly non-wetting, as indicated by contact angle measurements and would only be recoverable after further solubilization.
Collapse
Affiliation(s)
- Yara A Alzahid
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Peyman Mostaghimi
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Naif J Alqahtani
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Chenhao Sun
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Xiao Lu
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Kensington, NSW 2052, Australia
| | - Ryan T Armstrong
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
24
|
Jeon I, Peeks MD, Savagatrup S, Zeininger L, Chang S, Thomas G, Wang W, Swager TM. Janus Graphene: Scalable Self-Assembly and Solution-Phase Orthogonal Functionalization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900438. [PMID: 30968473 DOI: 10.1002/adma.201900438] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Orthogonal functionalization of 2D materials by selective assembly at interfaces provides opportunities to create new materials with transformative properties. Challenges remain in realizing controllable, scalable surface-selective, and orthogonal functionalization. Herein, dynamic covalent assembly is reported that directs the functionalization of graphene surfaces at liquid-liquid interfaces. This process allows facile addition and segregation of chemical functionalities to impart Janus characteristics to graphenes. Specifically, dynamic covalent functionalization is accomplished via Meisenheimer complexes produced by reactions of primary amines with pendant dinitroaromatics attached to graphenes. Janus graphenes are demonstrated to be powerful surfactants that organize at water/organic, water/fluorocarbon, and organic/fluorocarbon liquid interfaces. This approach provides general access to the creation of diverse surfactant materials and promising building blocks for 2D materials.
Collapse
Affiliation(s)
- Intak Jeon
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Martin D Peeks
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Suchol Savagatrup
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lukas Zeininger
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sehoon Chang
- Aramco Services Company, Aramco Research Center-Boston, Cambridge, MA, 02139, USA
| | - Gawain Thomas
- Aramco Services Company, Aramco Research Center-Boston, Cambridge, MA, 02139, USA
| | - Wei Wang
- Aramco Services Company, Aramco Research Center-Boston, Cambridge, MA, 02139, USA
| | - Timothy M Swager
- Department of Chemistry, Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
25
|
|
26
|
Alzahid YA, Mostaghimi P, Gerami A, Singh A, Privat K, Amirian T, Armstrong RT. Functionalisation of Polydimethylsiloxane (PDMS)- Microfluidic Devices coated with Rock Minerals. Sci Rep 2018; 8:15518. [PMID: 30341346 PMCID: PMC6195554 DOI: 10.1038/s41598-018-33495-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/28/2018] [Indexed: 11/09/2022] Open
Abstract
Fluid flow in porous rocks is commonly capillary driven and thus, dependent on the surface characteristics of rock grains and in particular the connectivity of corners and crevices in which fluids reside. Traditional microfluidic fabrication techniques do not provide a connected pathway of crevices that are essential to mimic multiphase flow in rocks. Here, geo-material microfluidic devices with connected pathways of corners and crevices were created by functionalising Polydimethylsiloxane (PDMS) with rock minerals. A novel fabrication process that provides attachment of rock minerals onto PDMS was demonstrated. The geo-material microfluidic devices were compared to carbonate and sandstone rocks by using energy dispersive X-ray spectroscopy, scanning electron microscopy (SEM), contact angle measurements, and a surface profilometer. Based on SEM coupled with energy-dispersive X-ray spectrometry (SEM-EDS) analyses, roughness measurements, contact angle, wettability, and roughness were comparable to real rocks. In addition, semivariograms showed that mineral deposition across the different geo-material devices was nearly isotropic. Lastly, important multiphase flow phenomena, such as snap-off and corner flow mechanisms, equivalent to those occurring in reservoir rocks have been visualised. The presented approach can be used to visualise rock-fluid interactions that are relevant to subsurface engineering applications, such as hydrocarbon recovery and CO2 sequestration.
Collapse
Affiliation(s)
- Yara A Alzahid
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peyman Mostaghimi
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alireza Gerami
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ankita Singh
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Karen Privat
- Electron Microscope Unit, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tammy Amirian
- Australian School of Petroleum, Faculty of Engineering, Computer and Mathematical Sciences, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Ryan T Armstrong
- School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|