1
|
Hao X, Gai W, Zhang Y, Zhao D, Zhou W, Feng Y. Peptide functionalized biomimetic gene complexes enhance specificity for vascular endothelial regeneration. Colloids Surf B Biointerfaces 2024; 241:114020. [PMID: 38878659 DOI: 10.1016/j.colsurfb.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/29/2024]
Abstract
Gene delivery presents great potential in endothelium regeneration and prevention of vascular diseases, but its outcome is inevitably limited by high shear stress and instable microenvironment. Highly efficient nanosystems may alleviate the problem with strong dual-specificity for diseased site and targeted cells. Hence, biomimetic coatings incorporating EC-targeting peptides were constructed by platelets and endothelial cells (ECs) for surface modification. A series of biomimetic gene complexes were fabricated by the biomimetic coatings to deliver pcDNA3.1-VEGF165 plasmid (pVEGF) for rapid recovery of endothelium. The gene complexes possessed good biocompatibility with macrophages, stability with serum and showed no evident cytotoxicity for ECs even at very high concentrations. Furthermore, the peptide modified gene complexes achieved selective internalization in ECs and significant accumulation in endothelium-injured site, especially the REDV-modified and EC-derived gene complexes. They substantially enhanced VEGF expression at mRNA and protein levels, thereby enabling a wound to heal completely within 24 h according to wound healing assay. In an artery endothelium-injured mouse model, the REDV-modified and EC-derived gene complexes presented efficient re-endothelialization with the help of enhanced specificity. The biomimetic gene complexes offer an efficient dual-targeting strategy for rapid recovery of endothelium, and hold potential in vascular tissue regeneration.
Collapse
Affiliation(s)
- Xuefang Hao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| | - Weiwei Gai
- College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yanping Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Dandan Zhao
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Weitong Zhou
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Skowicki M, Tarvirdipour S, Kraus M, Schoenenberger CA, Palivan CG. Nanoassemblies designed for efficient nuclear targeting. Adv Drug Deliv Rev 2024; 211:115354. [PMID: 38857762 DOI: 10.1016/j.addr.2024.115354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024]
Abstract
One of the key aspects of coping efficiently with complex pathological conditions is delivering the desired therapeutic compounds with precision in both space and time. Therefore, the focus on nuclear-targeted delivery systems has emerged as a promising strategy with high potential, particularly in gene therapy and cancer treatment. Here, we explore the design of supramolecular nanoassemblies as vehicles to deliver specific compounds to the nucleus, with the special focus on polymer and peptide-based carriers that expose nuclear localization signals. Such nanoassemblies aim at maximizing the concentration of genetic and therapeutic agents within the nucleus, thereby optimizing treatment outcomes while minimizing off-target effects. A complex scenario of conditions, including cellular uptake, endosomal escape, and nuclear translocation, requires fine tuning of the nanocarriers' properties. First, we introduce the principles of nuclear import and the role of nuclear pore complexes that reveal strategies for targeting nanosystems to the nucleus. Then, we provide an overview of cargoes that rely on nuclear localization for optimal activity as their integrity and accumulation are crucial parameters to consider when designing a suitable delivery system. Considering that they are in their early stages of research, we present various cargo-loaded peptide- and polymer nanoassemblies that promote nuclear targeting, emphasizing their potential to enhance therapeutic response. Finally, we briefly discuss further advancements for more precise and effective nuclear delivery.
Collapse
Affiliation(s)
- Michal Skowicki
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Manuel Kraus
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 22, 4058 Basel, Switzerland; NCCR-Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
3
|
Xiang K, Li Y, Cong H, Yu B, Shen Y. Peptide-based non-viral gene delivery: A comprehensive review of the advances and challenges. Int J Biol Macromol 2024; 266:131194. [PMID: 38554914 DOI: 10.1016/j.ijbiomac.2024.131194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Gene therapy is the most effective treatment option for diseases, but its effectiveness is affected by the choice and design of gene carriers. The genes themselves have to pass through multiple barriers in order to enter the cell and therefore require additional vectors to carry them inside the cell. In gene therapy, peptides have unique properties and potential as gene carriers, which can effectively deliver genes into specific cells or tissues, protect genes from degradation, improve gene transfection efficiency, and enhance gene targeting and biological responsiveness. This paper reviews the research progress of peptides and their derivatives in the field of gene delivery recently, describes the obstacles encountered by foreign materials to enter the interior of the cell, and introduces the following classes of functional peptides that can carry materials into the interior of the cell, and assist in transmembrane translocation of carriers, thus breaking through endosomal traps to enable successful entry of genetic materials into the nucleus of the cell. The paper also discusses the combined application of peptide vectors with other vectors to enhance its transfection ability, explores current challenges encountered by peptide vectors, and looks forward to future developments in the field.
Collapse
Affiliation(s)
- Kai Xiang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bio nanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
4
|
Li C, Xu Q, Meng X, Duo X, Feng Y. Amphiphilic multi-targeting copolymer micelles efficiently deliver pZNF580 to promote endothelial cell proliferation and migration. J Mater Chem B 2024; 12:2843-2854. [PMID: 38412450 DOI: 10.1039/d3tb02849f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Cationic copolymers are widely used in gene delivery as a non-viral gene vector, but their applications are limited by low transfection efficiency and high cytotoxicity. In order to enhance the transfection efficiency of copolymer micelles to endothelial cells (HUVECs) and reduce their cytotoxicity, this study synthesized an amphipathic multi-targeted copolymer micelle delivery system PCLMD-PPEGMA-NLS-TAT-REDV (TCMs). Gel test results showed that TCMs showed good pZNF580 binding ability and could effectively load the pZNF580 plasmid. The CCK-8 results show that when the concentration of TCMs is greater than 60 μg mL-1, it will affect cell viability and have low cytotoxicity. We found that the multi-targeted copolymer micelles can be effectively taken up by HUVECs in vitro. The transfection efficiency of TCMs@pZNF580 (w/wpZNF580 = 3) to HUVECs was comparable to that of the positive control group lip2000@pZNF580, and WB also showed the same trend. In addition, the TCMs@pZNF580 complex also significantly enhanced the proliferation and migration of HUVECs. The experimental results on blood vessel formation showed that TCMs@pZNF580 accelerated the vascularization of HUVECs. This experiment provided a new technology platform for targeted gene therapy, especially for endothelialization and vascularization. The research results have important reference value for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Chen Li
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007, P. R. China.
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining, Qinghai 810007, P. R. China
| | - Qirong Xu
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007, P. R. China.
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining, Qinghai 810007, P. R. China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - Xinghong Duo
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining, Qinghai 810007, P. R. China.
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining, Qinghai 810007, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Xu Q, Li C, Meng X, Duo X, Feng Y. Polyethylenimine-modified graphene quantum dots promote endothelial cell proliferation. Regen Biomater 2024; 11:rbae013. [PMID: 38525325 PMCID: PMC10960926 DOI: 10.1093/rb/rbae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 03/26/2024] Open
Abstract
Endothelial cell proliferation plays an important role in angiogenesis and treatment of related diseases. The aim of this study was to evaluate the effect of polyethylenimine (PEI)-modified graphene quantum dots (GQDs) gene vectors on endothelial cell proliferation. The GQDs-cationic polymer gene vectors were synthesized by amidation reaction, and used to deliver pZNF580 gene to Human umbilical vein endothelial cells (HUVECs) for promoting their proliferation. The chemical modification of GQDs can adjust gene vectors' surface properties and charge distribution, thereby enhancing their interaction with gene molecules, which could effectively compress the pZNF580 gene. The CCK-8 assay showed that the cell viability was higher than 80% at higher vector concentration (40 μg/mL), demonstrating that the GQDs-cationic polymer gene vectors and their gene complex nanoparticles (NPs) having low cytotoxicity. The results of the live/dead cell double staining assay were consistent with those of the CCK-8 assay, in which the cell viability of the A-GQDs/pZNF580 (94.38 ± 6.39%), C-GQDs-PEI- polylactic acid-co-polyacetic acid (PLGA)/pZNF580 (98.65 ± 6.60%) and N-GQDs-PEI-PLGA/pZNF580 (90.08 ± 1.60%) groups was significantly higher than that of the Lipofectamine 2000/pZNF580 (71.98 ± 3.53%) positive treatment group. The results of transfection and western blot experiments showed that the vector significantly enhanced the delivery of plasmid to HUVECs and increased the expression of pZNF580 in HUVECs. In addition, the gene NPs better promote endothelial cell migration and proliferation. The cell migration rate and proliferation ability of C-GQDs-PEI-PLGA/pZNF580 and N-GQDs-PEI-PLGA/pZNF580 treatment groups were higher than those of Lipofectamine 2000/pDNA treatment group. Modified GQDs possess the potential to serve as efficient gene carriers. They tightly bind gene molecules through charge and other non-covalent interactions, significantly improving the efficiency of gene delivery and ensuring the smooth release of genes within the cell. This innovative strategy provides a powerful means to promote endothelial cell proliferation.
Collapse
Affiliation(s)
- Qirong Xu
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, PR China
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining 810007, PR China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, PR China
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining 810007, PR China
| | - Xiangyan Meng
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, PR China
| | - Xinghong Duo
- School of Chemistry and Chemical Engineering, Qinghai University for Nationalities, Xining 810007, PR China
- Key Laboratory of National Ethnic Affairs Commission of Resource Chemistry and Ecological Environment Protection on Qinghai-Tibet Plateau, Xining 810007, PR China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
6
|
Cheng Q, Wang T, Zhang J, Tian L, Zeng C, Meng Z, Zhang C, Meng Q. Multifunctional gene delivery vectors containing different liver-targeting fragments for specifically transfecting hepatocellular carcinoma (HCC) cells. J Mater Chem B 2023; 11:9721-9731. [PMID: 37791430 DOI: 10.1039/d3tb01866k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Gene therapy is a promising strategy for HCC treatment, but it commonly faces the problem of low specificity in gene transfection. In this study, we designed and synthesized a series of peptide-based gene delivery vectors (H-01 to H-18) containing varied HCC cell-targeting fragments for specifically binding different receptors highly expressed on HCC cell membranes. The physicochemical properties of peptide vectors or peptide/DNA complexes were characterized, and the gene delivery abilities of peptide vectors were evaluated in HepG2 cell lines. The results showed that peptide vectors H-02 and H-09, which contained targeted fragments for ACE2 and c-Met receptors, respectively, could specifically transfect HCC cells in a highly -efficient manner in vitro. Furthermore, the liver-targeting function in vivo of Cy5.5 labeled H-02 (H-17) and H-09 (H-18) was investigated by fluorescence imaging.
Collapse
Affiliation(s)
- Qin Cheng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Taoran Wang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Jing Zhang
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Long Tian
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Chunlan Zeng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhao Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Changhao Zhang
- Key laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, 133002, China.
| | - Qingbin Meng
- State Key laboratory of Toxicology and Medical Countermeasures, Beijing institute of Pharmacology and Toxicology, Beijing, 100850, China.
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
7
|
Shtykalova S, Deviatkin D, Freund S, Egorova A, Kiselev A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life (Basel) 2023; 13:903. [PMID: 37109432 PMCID: PMC10142071 DOI: 10.3390/life13040903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Over the past decades, non-viral DNA and RNA delivery systems have been intensively studied as an alternative to viral vectors. Despite the most significant advantage over viruses, such as the lack of immunogenicity and cytotoxicity, the widespread use of non-viral carriers in clinical practice is still limited due to the insufficient efficacy associated with the difficulties of overcoming extracellular and intracellular barriers. Overcoming barriers by non-viral carriers is facilitated by their chemical structure, surface charge, as well as developed modifications. Currently, there are many different forms of non-viral carriers for various applications. This review aimed to summarize recent developments based on the essential requirements for non-viral carriers for gene therapy.
Collapse
Affiliation(s)
- Sofia Shtykalova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Dmitriy Deviatkin
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Svetlana Freund
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
- Faculty of Biology, Saint-Petersburg State University, Universitetskaya Embankment 7-9, 199034 Saint-Petersburg, Russia
| | - Anna Egorova
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| | - Anton Kiselev
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia
| |
Collapse
|
8
|
Gao B, Wang X, Wang M, Liu W, Li Y, Xia S, Zhang W, Feng Y. "Intercellular Mass Transport" Mimic Enables ASO Entry Completely into the Cell Nucleus for Enhanced Ischemia Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12777-12786. [PMID: 36854063 DOI: 10.1021/acsami.2c21691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, the development of a new therapeutic technology is focused on antisense oligonucleotides (ASOs), where ASOs are used to complementarily pair with DNA, messenger RNA, or long noncoding RNA (lncRNA) to regulate the cell behavior by inhibiting the target gene expression. However, the targeted regulation toward nuclear genes still faces great challenges in ASO delivery for clinical applications, i.e., two essential criteria (high nuclear entry and delivery vehicle safety/simplification) generally compromise each other and are not simultaneously satisfactory. Herein, for the first time, inspired by "intercellular-mass-transport", we report an important discovery that the cell membrane of endothelial cells (ECs) serving as the biointerface enables ASOs to rapidly and completely enter the EC nucleus. Thereby, we innovatively fabricate a nanosystem only by sequential self-assembly of natural/off-the-shelf biomaterials to well overcome the above-mentioned contradiction. The efficacy is strikingly superior to that of the previous delivery vehicles. Furthermore, our technology is applied to successfully silence lncRNA MEG3 in the EC nucleus, significantly augmenting EC morphogenesis. More importantly, this nanosystem is applicable for in vivo intramuscular injection to enhance the therapeutic outcome in a critical limb ischemia mouse model. This work brings a new hope for the technological innovation of ASO nuclear delivery and opens a new avenue to explore natural/off-the-shelf materials for cargo delivery into subcellular compartments.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Meiyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Wen Liu
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Ying Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People's Armed Police Force, Tianjin 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
9
|
Yang Y, Liu Z, Ma H, Cao M. Application of Peptides in Construction of Nonviral Vectors for Gene Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12224076. [PMID: 36432361 PMCID: PMC9693978 DOI: 10.3390/nano12224076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 05/29/2023]
Abstract
Gene therapy, which aims to cure diseases by knocking out, editing, correcting or compensating abnormal genes, provides new strategies for the treatment of tumors, genetic diseases and other diseases that are closely related to human gene abnormalities. In order to deliver genes efficiently to abnormal sites in vivo to achieve therapeutic effects, a variety of gene vectors have been designed. Among them, peptide-based vectors show superior advantages because of their ease of design, perfect biocompatibility and safety. Rationally designed peptides can carry nucleic acids into cells to perform therapeutic effects by overcoming a series of biological barriers including cellular uptake, endosomal escape, nuclear entrance and so on. Moreover, peptides can also be incorporated into other delivery systems as functional segments. In this review, we referred to the biological barriers for gene delivery in vivo and discussed several kinds of peptide-based nonviral gene vectors developed for overcoming these barriers. These vectors can deliver different types of genetic materials into targeted cells/tissues individually or in combination by having specific structure-function relationships. Based on the general review of peptide-based gene delivery systems, the current challenges and future perspectives in development of peptidic nonviral vectors for clinical applications were also put forward, with the aim of providing guidance towards the rational design and development of such systems.
Collapse
Affiliation(s)
- Yujie Yang
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Zhen Liu
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Hongchao Ma
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Meiwen Cao
- State Key Laboratory of Heavy Oil Processing, Department of Biological and Energy Chemical Engineering, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| |
Collapse
|
10
|
Rational Discovery of Antimicrobial Peptides by Means of Artificial Intelligence. MEMBRANES 2022; 12:membranes12070708. [PMID: 35877911 PMCID: PMC9320227 DOI: 10.3390/membranes12070708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022]
Abstract
Antibiotic resistance is a worldwide public health problem due to the costs and mortality rates it generates. However, the large pharmaceutical industries have stopped searching for new antibiotics because of their low profitability, given the rapid replacement rates imposed by the increasingly observed resistance acquired by microorganisms. Alternatively, antimicrobial peptides (AMPs) have emerged as potent molecules with a much lower rate of resistance generation. The discovery of these peptides is carried out through extensive in vitro screenings of either rational or non-rational libraries. These processes are tedious and expensive and generate only a few AMP candidates, most of which fail to show the required activity and physicochemical properties for practical applications. This work proposes implementing an artificial intelligence algorithm to reduce the required experimentation and increase the efficiency of high-activity AMP discovery. Our deep learning (DL) model, called AMPs-Net, outperforms the state-of-the-art method by 8.8% in average precision. Furthermore, it is highly accurate to predict the antibacterial and antiviral capacity of a large number of AMPs. Our search led to identifying two unreported antimicrobial motifs and two novel antimicrobial peptides related to them. Moreover, by coupling DL with molecular dynamics (MD) simulations, we were able to find a multifunctional peptide with promising therapeutic effects. Our work validates our previously proposed pipeline for a more efficient rational discovery of novel AMPs.
Collapse
|
11
|
Del Genio V, Bellavita R, Falanga A, Hervé-Aubert K, Chourpa I, Galdiero S. Peptides to Overcome the Limitations of Current Anticancer and Antimicrobial Nanotherapies. Pharmaceutics 2022; 14:1235. [PMID: 35745807 PMCID: PMC9230615 DOI: 10.3390/pharmaceutics14061235] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
Biomedical research devotes a huge effort to the development of efficient non-viral nanovectors (NV) to improve the effectiveness of standard therapies. NVs should be stable, sustainable and biocompatible and enable controlled and targeted delivery of drugs. With the aim to foster the advancements of such devices, this review reports some recent results applicable to treat two types of pathologies, cancer and microbial infections, aiming to provide guidance in the overall design of personalized nanomedicines and highlight the key role played by peptides in this field. Additionally, future challenges and potential perspectives are illustrated, in the hope of accelerating the translational advances of nanomedicine.
Collapse
Affiliation(s)
- Valentina Del Genio
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Rosa Bellavita
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples “Federico II”, Via Università 100, 80055 Naples, Italy;
| | - Katel Hervé-Aubert
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes, University of Tours, UFR Pharmacie, 31 Avenue Monge, 37200 Tours, France;
| | - Stefania Galdiero
- Department of Pharmacy, University of Naples “Federico II”, Via Domenico Montesano 49, 80138 Naples, Italy; (V.D.G.); (R.B.)
| |
Collapse
|
12
|
Bovine serum albumin-based biomimetic gene complexes with specificity facilitate rapid re-endothelialization for anti-restenosis. Acta Biomater 2022; 142:221-241. [PMID: 35151926 DOI: 10.1016/j.actbio.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/06/2022] [Indexed: 11/22/2022]
Abstract
Re-endothelialization is a critical problem to inhibit postoperative restenosis, and gene delivery exhibits great potential in rapid endothelialization. Unfortunately, the therapeutic effect is enormously limited by inefficient specificity, poor biocompatibility and in vivo stability owing largely to the complicated in vivo environment. Herein, we developed a series of platelet membrane (PM) cloaked gene complexes based on natural bovine serum albumin (BSA) and polyethyleneimine (PEI). The gene complexes aimed to accelerate re-endothelialization for anti-restenosis via pcDNA3.1-VEGF165 (VEGF) plasmid delivery. Based on BSA and PM coating, these gene complexes exhibited good biocompatibility, stability with serum and robust homing to endothelium-injured site inherited from platelets. Besides, they enhanced the expression of VEGF protein by their high internalization and nucleus accumulation efficiency, and also substantially promoted migration and proliferation of vascular endothelial cells. The biological properties were further optimized via altering PEI and PM content. Finally, rapid recovery of endothelium in a carotid artery injured mouse model (79% re-endothelialization compared with model group) was achieved through two weeks' treatment by the PM cloaked gene complexes. High level of expressed VEGF in vivo was also realized by the gene complexes. Moreover, neointimal hyperplasia (IH) was significantly inhibited by the gene complexes according to in vivo study. The results verified the great potential of the PM cloaked gene complexes in re-endothelialization for anti-restenosis. STATEMENT OF SIGNIFICANCE: Rapid re-endothelialization is a major challenge to inhibit postoperative restenosis. Herein, a series of biodegradable and biocompatible platelet membrane (PM) cloaked gene complexes were designed to accelerate re-endothelialization for anti-restenosis via pcDNA3.1-VEGF165 (VEGF) plasmid delivery. The PM cloaked gene complexes provided high VEGF expression in vascular endothelial cells (VECs), rapid migration and proliferation of VECs and robust homing to endothelium-injured site. In a carotid artery injured mouse model, PM cloaked gene complexes significantly promoted VEGF expression in vivo, accelerated re-endothelialization and inhibited neointimal hyperplasia due to their good biocompatibility and superior specificity. Overall, the optimized PM cloaked gene complexes overcomes multiple obstacles in gene delivery for re-endothelialization and can be a promising candidate for gene delivery and therapy of postoperative restenosis.
Collapse
|
13
|
Wu ZY, Shen JM, Lang H, Yue T, Sun C. pH/Enzyme dual sensitive and nucleus-targeting dendrimer nanoparticles to enhance the antitumour activity of doxorubicin. Pharm Dev Technol 2022; 27:357-371. [PMID: 35350969 DOI: 10.1080/10837450.2022.2055569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zi-Yan Wu
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen 518001, China
| | - Jian-Min Shen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen 518001, China
| | - Hao Lang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ting Yue
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Shenzhen Luohu Hospital Group Luohu People's Hospital, Shenzhen 518001, China
| | - Chan Sun
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
14
|
Hernando S, Nikolakopoulou P, Voulgaris D, Hernandez RM, Igartua M, Herland A. Dual effect of TAT functionalized DHAH lipid nanoparticles with neurotrophic factors in human BBB and microglia cultures. Fluids Barriers CNS 2022; 19:22. [PMID: 35300705 PMCID: PMC8928663 DOI: 10.1186/s12987-022-00315-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Background Neurodegenerative diseases (NDs) are an accelerating global health problem. Nevertheless, the stronghold of the brain- the blood–brain barrier (BBB) prevents drug penetrance and dwindles effective treatments. Therefore, it is crucial to identify Trojan horse-like drug carriers that can effectively cross the blood–brain barrier and reach the brain tissue. We have previously developed polyunsaturated fatty acids (PUFA)-based nanostructured lipid carriers (NLC), namely DHAH-NLC. These carriers are modulated with BBB-permeating compounds such as chitosan (CS) and trans-activating transcriptional activator (TAT) from HIV-1 that can entrap neurotrophic factors (NTF) serving as nanocarriers for NDs treatment. Moreover, microglia are suggested as a key causative factor of the undergoing neuroinflammation of NDs. In this work, we used in vitro models to investigate whether DHAH-NLCs can enter the brain via the BBB and investigate the therapeutic effect of NTF-containing DHAH-NLC and DHAH-NLC itself on lipopolysaccharide-challenged microglia. Methods We employed human induced pluripotent stem cell-derived brain microvascular endothelial cells (BMECs) to capitalize on the in vivo-like TEER of this BBB model and quantitatively assessed the permeability of DHAH-NLCs. We also used the HMC3 microglia cell line to assess the therapeutic effect of NTF-containing DHAH-NLC upon LPS challenge. Results TAT-functionalized DHAH-NLCs successfully crossed the in vitro BBB model, which exhibited high transendothelial electrical resistance (TEER) values (≈3000 Ω*cm2). Specifically, the TAT-functionalized DHAH-NLCs showed a permeability of up to 0.4% of the dose. Furthermore, using human microglia (HMC3), we demonstrate that DHAH-NLCs successfully counteracted the inflammatory response in our cultures after LPS challenge. Moreover, the encapsulation of glial cell-derived neurotrophic factor (GNDF)-containing DHAH-NLCs (DHAH-NLC-GNDF) activated the Nrf2/HO-1 pathway, suggesting the triggering of the endogenous anti-oxidative system present in microglia. Conclusions Overall, this work shows that the TAT-functionalized DHAH-NLCs can cross the BBB, modulate immune responses, and serve as cargo carriers for growth factors; thus, constituting an attractive and promising novel drug delivery approach for the transport of therapeutics through the BBB into the brain. Supplementary Information The online version contains supplementary material available at 10.1186/s12987-022-00315-1.
Collapse
Affiliation(s)
- Sara Hernando
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.,NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029, Madrid, Spain.,Bioaraba, NanoBioCel Research Group, 01006, Vitoria-Gasteiz, Spain
| | - Polyxeni Nikolakopoulou
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Dimitrios Voulgaris
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden.,Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.,Division of Micro and Nanosystems, KTH Royal Institute of Technology, 171 77, Stockholm, Sweden
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029, Madrid, Spain.,Bioaraba, NanoBioCel Research Group, 01006, Vitoria-Gasteiz, Spain
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), 01006, Vitoria-Gasteiz, Spain. .,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029, Madrid, Spain. .,Bioaraba, NanoBioCel Research Group, 01006, Vitoria-Gasteiz, Spain.
| | - Anna Herland
- Center for the Advancement of Integrated Medical and Engineering Sciences (AIMES), Karolinska Institutet and KTH Royal Institute of Technology, 171 77, Stockholm, Sweden. .,Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden. .,Division of Nanobiotechnology, Department of Protein Science, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
15
|
van Hees M, Slott S, Hansen AH, Kim HS, Ji HP, Astakhova K. New approaches to moderate CRISPR-Cas9 activity: Addressing issues of cellular uptake and endosomal escape. Mol Ther 2022; 30:32-46. [PMID: 34091053 PMCID: PMC8753288 DOI: 10.1016/j.ymthe.2021.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/15/2021] [Accepted: 05/27/2021] [Indexed: 02/09/2023] Open
Abstract
CRISPR-Cas9 is rapidly entering molecular biology and biomedicine as a promising gene-editing tool. A unique feature of CRISPR-Cas9 is a single-guide RNA directing a Cas9 nuclease toward its genomic target. Herein, we highlight new approaches for improving cellular uptake and endosomal escape of CRISPR-Cas9. As opposed to other recently published works, this review is focused on non-viral carriers as a means to facilitate the cellular uptake of CRISPR-Cas9 through endocytosis. The majority of non-viral carriers, such as gold nanoparticles, polymer nanoparticles, lipid nanoparticles, and nanoscale zeolitic imidazole frameworks, is developed with a focus toward optimizing the endosomal escape of CRISPR-Cas9 by taking advantage of the acidic environment in the late endosomes. Among the most broadly used methods for in vitro and ex vivo ribonucleotide protein transfection are electroporation and microinjection. Thus, other delivery formats are warranted for in vivo delivery of CRISPR-Cas9. Herein, we specifically revise the use of peptide and nanoparticle-based systems as platforms for CRISPR-Cas9 delivery in vivo. Finally, we highlight future perspectives of the CRISPR-Cas9 gene-editing tool and the prospects of using non-viral vectors to improve its bioavailability and therapeutic potential.
Collapse
Affiliation(s)
- Maja van Hees
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Sofie Slott
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | - Heon Seok Kim
- School of Medicine, Stanford University, Stanford, CA 94350, USA
| | - Hanlee P. Ji
- School of Medicine, Stanford University, Stanford, CA 94350, USA
| | - Kira Astakhova
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark,Corresponding author: Kira Astakhova, Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
16
|
Zhou J, Wang M, Wei T, Bai L, Zhao J, Wang K, Feng Y. Endothelial Cell-Mediated Gene Delivery for In Situ Accelerated Endothelialization of a Vascular Graft. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16097-16105. [PMID: 33787204 DOI: 10.1021/acsami.1c01869] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an urgently needed device for vascular diseases, the small-diameter vascular graft is limited by high thrombogenicity in clinical applications. Rapid endothelialization is a promising approach to construct an antithrombogenic inner surface of the vascular graft. The main bottleneck for rapid endothelialization is the adhesion, migration, and proliferation of endothelial cells (ECs) in situ of the small-diameter vascular graft. Herein, we innovatively fabricated an intelligent gene delivery small-caliber vascular graft based on electrospun poly(lactic acid-co-caprolactone) and gelatin for rapid in situ endothelialization. The graft surface was co-modified with EC adhesive peptide of Arg-Glu-Asp-Val (REDV) and responsive gene delivery system. REDV can selectively adhere ECs onto the graft surface; subsequently, the overexpressed matrix metalloproteinase by ECs can effectively cleave the linker peptide GPQGIWGQ-C; and finally, the gene complexes were intelligently and enzymatically released from the graft surface, and thereby, the gene can efficiently transfect ECs. Importantly, this enzymatically releasing gene surface has been proven to be safe and temporarily stable in blood flow owing to the biotin-avidin interaction to immobilize gene complexes on the inner surface of vascular grafts through the GPQGIWGQ-C peptide linker. It has the advantage of specifically adhering the ECs to the surface and smartly transfecting them with high transfection efficiency. The co-modified surface has been demonstrated to accelerate the luminal endothelialization in vivo, which might be attributed to the synergistic effect of REDV and effective gene transfection. Particularly, the intelligent and responsive gene release surface will open a new avenue to enhance the endothelialization of blood-contacting devices.
Collapse
Affiliation(s)
- Jiaying Zhou
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Meiyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Tingting Wei
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lingchuang Bai
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Kai Wang
- Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
17
|
Zhao J, Ullah I, Gao B, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Agmatine-grafted bioreducible poly(l-lysine) for gene delivery with low cytotoxicity and high efficiency. J Mater Chem B 2021; 8:2418-2430. [PMID: 32115589 DOI: 10.1039/c9tb02641j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Bioreducible cationic polymers have gained considerable attention in gene delivery due to their low cytotoxicity and high efficiency. In the present work, we reported a cationic polymer, poly(disulfide-l-lysine)-g-agmatine (denoted as SSL-AG), and evaluated its ability to transfer pEGFP-ZNF580 plasmid (pZNF580) into human umbilical vein endothelial cells (HUVECs). This SSL-AG polymeric carrier efficiently condensed pZNF580 into positively charged particles (<200 nm) through electrostatic interaction. This carrier also exhibited excellent buffering capacity in the physiological environment, good pDNA protection against enzymatic degradation and rapid pDNA release in a highly reducing environment mainly because of the responsive cleavage of disulfide bonds in the polymer backbone. The hemolysis assay and in vitro cytotoxicity assay suggested that the SSL-AG carrier and corresponding gene complexes possessed both good hemocompatibility and great cell viability in HUVECs. The cellular uptake of the SSL-AG/Cy5-oligonucleotide group was 3.6 times that of the poly(l-lysine)/Cy5-oligonucleotide group, and its mean fluorescence intensity value was even higher than that of the PEI 25 kDa/Cy5-oligonucleotide group. Further, the intracellular trafficking results demonstrated that the SSL-AG/Cy5-oligonucleotide complexes exhibited a high nucleus co-localization rate (CLR) value (36.0 ± 2.8%, 3.4 times that of the poly (l-lysine)/Cy5-oligonucleotide group, 1.6 times that of the poly(disulfide-l-lysine)-g-butylenediamine/Cy5-oligonucleotide group) at 24 h, while the endo/lysosomal CLR value was relatively low. This suggested that SSL-AG successfully delivered plasmid into HUVECs with high cellular uptake, rapid endosomal escape and efficient nuclear accumulation owing to the structural advantages of the bioreducible and agmatine groups. In vitro transfection assay also verified the enhanced transfection efficiency in the SSL-AG/pZNF580 group. Furthermore, the results of CCK-8, cell migration and in vitro/vivo angiogenesis assays revealed that pZNF580 delivered by SSL-AG could effectively enhance the proliferation, migration and vascularization of HUVECs. In a word, the SSL-AG polymer has great potential as a safe and efficient gene carrier for gene therapy.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China. and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Muhammad K, Zhao J, Gao B, Feng Y. Polymeric nano-carriers for on-demand delivery of genes via specific responses to stimuli. J Mater Chem B 2021; 8:9621-9641. [PMID: 32955058 DOI: 10.1039/d0tb01675f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polymeric nano-carriers have been developed as a most capable and feasible technology platform for gene therapy. As vehicles, polymeric nano-carriers are obliged to possess high gene loading capability, low immunogenicity, safety, and the ability to transfer various genetic materials into specific sites of target cells to express therapeutic proteins or block a process of gene expression. To this end, various types of polymeric nano-carriers have been prepared to release genes in response to stimuli such as pH, redox, enzymes, light and temperature. These stimulus-responsive nano-carriers exhibit high gene transfection efficiency and low cytotoxicity. In particular, dual- and multi-stimulus-responsive polymeric nano-carriers can respond to a combination of signals. Markedly, these combined responses take place either simultaneously or in a sequential manner. These dual-stimulus-responsive polymeric nano-carriers can control gene delivery with high gene transfection both in vitro and in vivo. In this review paper, we highlight the recent exciting developments in stimulus-responsive polymeric nano-carriers for gene delivery applications.
Collapse
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China. and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China and Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, P. R. China
| |
Collapse
|
19
|
Recent advances in peptide-targeted micelleplexes: Current developments and future perspectives. Int J Pharm 2021; 597:120362. [PMID: 33556489 DOI: 10.1016/j.ijpharm.2021.120362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/27/2021] [Accepted: 02/03/2021] [Indexed: 12/11/2022]
Abstract
The decoding of the human genome revolutionized the understanding of how genetics influence the interplay between health and disease, in a multidisciplinary perspective. Thus, the development of exogenous nucleic acids-based therapies has increased to overcome hereditary or acquired genetic-associated diseases. Gene drug delivery using non-viral systems, for instance micelleplexes, have been recognized as promising options for gene-target therapies. Micelleplexes are core-shell structures, at a nanometric scale, designed using amphiphilic block copolymers. These can self-assemble in an aqueous medium, leading to the formation of a hydrophilic and positively charged corona - that can transport nucleic acids, - and a hydrophobic core - which can transport poor water-soluble drugs. However, the performance of these types of carriers usually is hindered by several in vivo barriers. Fortunately, due to a significant amount of research, strategies to overcome these shortcomings emerged. With a wide range of structural features, good stability against proteolytic degradation, affordable characteristic, easy synthesis, low immunogenicity, among other advantages, peptides have increasingly gained popularity as target ligands for non-viral carriers. Hence, this review addresses the use of peptides with micelleplexes illustrating, through the analysis of in vitro and in vivo studies, the potential and future perspectives of this combination.
Collapse
|
20
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
21
|
Wang X, Gao B, Zhou J, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Unexpected Amplification of Synergistic Gene Expression to Boom Vascular Flow in Advantageous Dual-Gene Co-expression Plasmid Delivery Systems over Physically Mixed Strategy. ACS APPLIED BIO MATERIALS 2020; 3:7228-7235. [PMID: 35019381 DOI: 10.1021/acsabm.0c01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene therapy exerts powerful potential in the treatment of various diseases, such as overexpressing pro-angiogenic gene to accelerate angiogenesis and restore vascular flow of ischemic tissue. Tremendous efforts have been invested in developing gene carriers for high transfection efficiency, while little research has been devoted to synergistically expressing functional proteins via optimizing therapeutic genes. Actually, the amplified gene expression is the ultimate goal of gene delivery. Dual-gene co-delivery and coordinate expression become a "breach" of strengthened gene expression. Herein, we explored the synergistic effects on gene expression and pro-angiogenesis by two typical dual-gene delivery strategies to determine which one is more efficient. The physical mixing method used ZNF580 and VEGF165 plasmids with a 1/1 weight ratio (p1:1), and the other strategy involved chemically inserting ZNF580 and VEGF165 genes into one plasmid as a dual-gene co-expression plasmid (pZNF-VEGF). p1:1 and pZNF-VEGF were loaded by REDV-TAT-NLS-H12 carrier, a promising peptide carrier, to form corresponding dual-gene delivery systems. Both systems exhibited approximately similar size and zeta potential, guaranteeing almost the same cellular uptake. We comprehensively evaluated two delivery systems through gene expression at mRNA and protein levels and angiogenesis-related activities in vitro and in vivo. Interestingly, the pZNF-VEGF group showed a remarkably amplified synergistic effect in the expression of ZNF580 and VEGF165 genes in comparison with the p1:1 group. More importantly, the unexpected amplified synergistic effect of dual-gene co-expression plasmid was further verified for proliferation, migration, and angiogenesis in vitro and in vivo. Accordingly, we believed that the co-delivery of dual genes via constructing co-expression plasmids offers a better option for gene therapy, which can more effectively enhance the synergistic expression of target genes than the physical mixing method.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Jiaying Zhou
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.,Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.,Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, P. R. China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Chenglin Road 220, Tianjin 300162, P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, P. R. China.,Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, P. R. China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
22
|
Sarvari R, Nouri M, Agbolaghi S, Roshangar L, Sadrhaghighi A, Seifalian AM, Keyhanvar P. A summary on non-viral systems for gene delivery based on natural and synthetic polymers. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1825081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Raana Sarvari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Laila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhouman Sadrhaghighi
- Department of Orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alexander M. Seifalian
- Nanotechnology and Regenerative Medicine Commercialization Centre (Ltd), The London Innovation Bio Science Centre, London, UK
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
- ARTAN110 Startup Accelerator, Tabriz, Iran
| |
Collapse
|
23
|
Hao X, Gai W, Wang L, Zhao J, Sun D, Yang F, Jiang H, Feng Y. 5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111553. [PMID: 33321617 DOI: 10.1016/j.msec.2020.111553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Strong specificity for cancer cells is still the main challenge to deliver drugs for the therapy of cancer. Herein, we developed a convenient strategy to prepare a series of 5-boronopicolinic acid (BA) modified tumor-targeting drug delivery systems (T-DDSs) with strong tumor targeting function. An anti-tumor drug of camptothecin (CPT) was encapsulated into poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-PEI) to form drug-loaded nanoparticles (NP/CPT). Then, the surface of NP/CPT was coated by BA with different polymer and BA molar ratios of 1:1, 1:5, 1:10 and 1:20 via electrostatic interaction to obtain T-DDSs with enhanced biocompatibility and specificity for tumor cells. The introduced BA can endow drug-loaded NPs with high targeting ability to tumor cells because of the overexpression of sialic acids (SA) in tumor cells, which possessed strong interaction with BA. Those T-DDSs exhibited good biocompatibility according to the results of MTT assay, hemolysis test and cellular uptake. Moreover, they were capable of decreasing the viability of breast cancer cell line 4T1 and MCF-7 cells with no obvious cytotoxicity for endothelial cells. Especially, T-DDS with 1:20 molar ratio displayed much higher cellular uptake than other groups, and also exhibited highly efficient in vivo anti-tumor effect. The significantly high targeting function and biocompatibility of T-DDSs improved their drug delivery efficiency and achieved good anti-tumor effect. The BA decorated T-DDSs provides a simple and robust strategy for the design and preparation of DDSs with good biocompatibility and strong tumor-specificity to promote drug delivery efficiency.
Collapse
Affiliation(s)
- Xuefang Hao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Weiwei Gai
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Lina Wang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Jiadi Zhao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Fan Yang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Haixia Jiang
- Analysis and Testing Center of Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
24
|
Bai L, Zhao J, Wang M, Feng Y, Ding J. Matrix-Metalloproteinase-Responsive Gene Delivery Surface for Enhanced in Situ Endothelialization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40121-40132. [PMID: 32805861 DOI: 10.1021/acsami.0c11971] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although blood-contacting medical devices have been widely used in the biomedical field, their low endothelialization seriously limits their treatment success. Gene transfection can enhance the proliferation and migration of endothelial cells (ECs) in culture, yet using this technology to realize surface endothelialization still faces great challenges. Herein, we developed a matrix metalloproteinase (MMP) responsive gene delivery surface for in situ smart release of genes from the biomaterial surface upon EC attachment and adhesion. The released genes induced by ECs can, in turn, effectively transfect ECs and enhance the surface endothelialization. An MMP-responsive gene delivery surface (Au-MCP@NPs) was constructed by immobilizing gene complex nanoparticles (NPs) onto a Au surface with MMP-cleavable peptide (MCP) grafted via biotin-avidin interaction. The Au-MCP@NP surface was demonstrated to responsively release NPs under the action of MMPs. More importantly, ECs were effectively transfected on this surface, leading to enhanced proliferation/migration in vitro. The in situ surface endothelialization was evaluated via implanting Au-MCP@NPs into rat aortas. The in vivo results demonstrated that this smart Au-MCP@NP surface could lead to the localized upregulation of ZNF580 protein and accelerate in situ endothelialization. This smart MMP-responsive gene delivery surface provided a promising and powerful strategy for enhanced in situ endothelialization of blood-contacting medical devices.
Collapse
Affiliation(s)
- Lingchuang Bai
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Jing Zhao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Meiyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
25
|
Cheng TM, Li R, Kao YCJ, Hsu CH, Chu HL, Lu KY, Changou CA, Chang CC, Chang LH, Tsai ML, Mi FL. Synthesis and characterization of Gd-DTPA/fucoidan/peptide complex nanoparticle and in vitro magnetic resonance imaging of inflamed endothelial cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111064. [DOI: 10.1016/j.msec.2020.111064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/25/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
|
26
|
Muhammad K, Zhou J, Ullah I, Zhao J, Muhammad A, Xia S, Zhang W, Feng Y. Bioreducible cationic random copolymer for gene delivery. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Khan Muhammad
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jiaying Zhou
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Ihsan Ullah
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jing Zhao
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Ayaz Muhammad
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine Affiliated Hospital LogisticsUniversity of People's Armed Police Force Tianjin China
| | - Wencheng Zhang
- Department of Physiology and PathophysiologyLogistics University of People's Armed Police Force Tianjin China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- Chemical EngineeringCollaborative Innovation Center of Chemical Science Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin China
| |
Collapse
|
27
|
Duo X, Bai L, Wang J, Guo J, Ren X, Xia S, Zhang W, Domb A, Feng Y. Multifunctional peptide conjugated amphiphilic cationic copolymer for enhancing ECs targeting, penetrating and nuclear accumulation. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1919-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Wang X, Su B, Gao B, Zhou J, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Cascaded bio-responsive delivery of eNOS gene and ZNF580 gene to collaboratively treat hindlimb ischemia via pro-angiogenesis and anti-inflammation. Biomater Sci 2020; 8:6545-6560. [DOI: 10.1039/d0bm01573c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The cascaded, bio-responsively delivered eNOS gene and ZNF580 gene overcome transfection bottlenecks and collaboratively exert anti-ischemic function via promoting angiogenesis and alleviating inflammation.
Collapse
Affiliation(s)
- Xiaoyu Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Bin Su
- Department of Clinical Research
- Characteristic Medical Center of Chinese People's Armed Police Force
- Tianjin 300162
- P. R. China
| | - Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
| | - Jiaying Zhou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- P. R. China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of People's Armed Police Force
- Tianjin 300162
- P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
29
|
Dowaidar M, Nasser Abdelhamid H, Hällbrink M, Langel Ü, Zou X. Chitosan enhances gene delivery of oligonucleotide complexes with magnetic nanoparticles-cell-penetrating peptide. J Biomater Appl 2019; 33:392-401. [PMID: 30223733 DOI: 10.1177/0885328218796623] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gene-based therapies, including the delivery of oligonucleotides, offer promising methods for the treatment of cancer cells. However, they have various limitations including low efficiency. Herein, cell-penetrating peptides (CPPs)-conjugated chitosan-modified iron oxide magnetic nanoparticles (CPPs-CTS@MNPs) with high biocompatibility as well as high efficiency were tested for the delivery of oligonucleotides such as plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA. A biocompatible nanocomposite, in which CTS@MNPs was incorporated in non-covalent complex with CPPs-oligonucleotide, is developed. Modifying the surface of magnetic nanoparticles with cationic chitosan-modified iron oxide improved the performance of magnetic nanoparticles-CPPs for oligonucleotide delivery. CPPs-CTS@MNPs complexes enhance oligonucleotide transfection compared to CPPs@MNPs or CPPs. The hydrophilic character of CTS@MNPs improves complexation with plasmid pGL3, splice correction oligonucleotides, and small-interfering RNA payload, which consequently resulted in not only strengthening the colloidal stability of the constructed complex but also improving their biocompatibility. Transfection using PF14-splice correction oligonucleotides-CTS@MNPs showed sixfold increase of the transfection compared to splice correction oligonucleotides-PF14 that showed higher transfection than the commercially available lipid-based vector Lipofectamine™ 2000. Nanoscaled CPPs-CTS@MNPs comprise a new family of biomaterials that can circumvent some of the limitations of CPPs or magnetic nanoparticles.
Collapse
Affiliation(s)
- Moataz Dowaidar
- 1 Department of Biochemistry and Biophysics, Stockholm University
| | - Hani Nasser Abdelhamid
- 2 Department of Chemistry, Faculty of Science, Assuit University Assuit, Egypt.,3 Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Ülo Langel
- 1 Department of Biochemistry and Biophysics, Stockholm University
| | - Xiaodong Zou
- 3 Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
30
|
Li Q, Hao X, Wang H, Guo J, Ren XK, Xia S, Zhang W, Feng Y. Multifunctional REDV-G-TAT-G-NLS-Cys peptide sequence conjugated gene carriers to enhance gene transfection efficiency in endothelial cells. Colloids Surf B Biointerfaces 2019; 184:110510. [PMID: 31561046 DOI: 10.1016/j.colsurfb.2019.110510] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/20/2019] [Accepted: 09/15/2019] [Indexed: 01/31/2023]
Abstract
Rapid endothelialization on small diameter artificial blood vessels is an effective strategy to facilitate long-term patency and inhibit thrombosis. The gene delivery can enhance the proliferation and migration of endothelial cells (ECs), which is beneficial for rapid endothelialization. REDV-G-TAT-G-NLS-Cys (abbreviated as TP-G) peptide could weakly condense pEGFP-ZNF580 (pZNF580) and transfect ECs, but its transfection efficiency was still very low because of its low positive charge, low stability and weak endosome escape ability. In order to develop more stable and efficient gene carriers with low cytotoxicity, in the present study, we conjugated different amounts of TP-G peptide onto poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-g-PEI) amphiphilic copolymers via a hetero-poly(ethylene glycol) spacer (OPSS-PEG-NHS). The TP-G peptide and PEI could cooperatively and strongly condense pZNF580. The carrier's cytotoxicity was reduced by the introduction of poly(ethylene glycol) spacer. They condensed pZNF580 to form gene complexes (PPP-TP-G/pZNF580) with suitable size and positive zeta potential for gene delivery. The transfected ECs promoted their migration ability as demonstrated by cell migration assay. The results of cellular uptake and confocal laser scanning microscopy showed significantly high internalization efficiency, endosomal/lysosomal escape and nucleus location of pZNF580 by this multifunctional TP-G peptide sequence conjugated gene delivery system. Furthermore, several inhibitors were used to study the cellular uptake pathways of PPP-TP-G/pZNF580 complexes. The results showed that PPP-TP-G2/Cy5-oligonucleotide complexes exhibited the optimized endocytosis pathways which facilitated for cellular uptake. In conclusion, the multifunctional TP-G peptide conjugated gene carriers could promote the transfection efficiency due to the multifunction of REDV, cell-penetrating peptide and nuclear localization signal in the peptide sequence, which could be a suitable gene carrier for endothelialization.
Collapse
Affiliation(s)
- Qian Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Huaning Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Xiang-Kui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People's Armed Police Force, Tianjin 300162, China.
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of People's Armed Police Force, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
31
|
Gao B, Zhang Q, Muhammad K, Ren X, Guo J, Xia S, Zhang W, Feng Y. A progressively targeted gene delivery system with a pH triggered surface charge-switching ability to drive angiogenesis in vivo. Biomater Sci 2019; 7:2061-2075. [PMID: 30855618 DOI: 10.1039/c9bm00132h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
For clinical application of therapeutic gene delivery, it is urgent to develop safe and in vivo efficient delivery systems. Nowadays, gene delivery carriers based on functional peptides have attracted much attention due to their excellent biocompatibility, biodegradability and biological multifunctionality. In the present study, a star-shaped integrated functional peptide, polyhedral oligomeric silsesquioxane (POSS-(C-G-NLS-G-TAT)16, abbreviated as PP1), was synthesized through "thiol-ene" click chemistry between the TAT-G-NLS-G-C multifunctional peptide sequence and inorganic octa-diallyl POSS. Cationic PP1 was mixed with the pZNF580 plasmid to obtain stable binary gene complexes (BCPs) with membrane penetrating and nucleus targeting functions. In order to improve BCPs' biocompatibility, cellular uptake, and endosome escape, they were further modified using an anionic polymer of PLL-g-CAGW21%-g-Acon (n = 47%, 57% and 64%) having an EC targeting ligand (CAGW peptide) and a charge reversal moiety (cis-aconitic amide) through electrostatic absorption to obtain ternary gene complexes (TCPs). By adjusting the weight ratio of PP1/pZNF580 plasmid/PLL-g-CAGW21%-g-Acon to 5/1/1.25, TCPs-1 with n = 47%, TCPs-2 with n = 57% and TCPs-3 with n = 64% exhibited a neutral zeta potential and suitable particle size; thus they were used for further biological evaluation. Compared with BCPs (5/1 weight ratio of PP1/pZNF580 plasmid), TCPs exhibited high hemocompatibility and cytocompatibility; more interestingly, they also showed significantly enhanced gene delivery efficiency. The TCP groups achieved perfect transfection effects in the proliferation and migration of human umbilical vein endothelial cells (HUVECs), and especially high neovascularization in vitro and in vivo. Our results demonstrated that the high graft ratio of cis-aconitic amide provided benefits of high biocompatibility and gene delivery efficiency, and the TCPs-3 group showed the optimized transfection efficiency among the three groups. Importantly, HUVECs transfected with TCPs-3 exhibited an outstanding ability to enhance angiogenesis in vivo. In brief, this multifunctional ternary gene system with the EC targeting ligand and membrane penetrating, charge reversal and nucleus targeting functions is a promising platform for the transfection of HUVECs, and may be useful for the treatment of cardiovascular diseases in clinical applications.
Collapse
Affiliation(s)
- Bin Gao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ye W, Chen Y, Tang W, Zhang N, Li Z, Liu Z, Yu B, Xu FJ. Reduction-Responsive Nucleic Acid Delivery Systems To Prevent In-Stent Restenosis in Rabbits. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28307-28316. [PMID: 31356048 DOI: 10.1021/acsami.9b08544] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cardiovascular and cerebrovascular ischemic diseases seriously affect human health. Endovascular stent placement is an effective treatment but always leads to in-stent restenosis (ISR). Gene-eluting stent, which combines gene therapy with stent implantation, is a potential method to prevent ISR. In this study, an efficient gene-eluting stent was designed on the basis of one new nucleic acid delivery system to decrease the possibility of ISR. The reduction-responsive branched nucleic acid vector (SKP) with low cytotoxicity was first synthesized via ring-opening reaction. The impressive in vitro transfection performances of SKP were proved using luciferase reporter, enhanced green fluorescent protein plasmid, and vascular endothelial growth factor plasmid (pVEGF). Subsequently, SKP/pVEGF complexes were coated on the surfaces of pretreated clinical stents to construct gene-eluting stents (S-SKP/pVEGF). Antirestenosis performance of S-SKP/pVEGF was evaluated via implanting stents into rabbit aortas. S-SKP/pVEGF could lead to the localized upregulation of VEGF proteins, improve the progress of re-endothelialization, and inhibit the development of ISR in vivo. Such efficient pVEGF-eluting stent with responsive nucleic acid delivery systems is very promising to prevent in-stent restenosis of cerebrovascular diseases.
Collapse
Affiliation(s)
- Weijie Ye
- Department of Neurology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Yiming Chen
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Wenxiong Tang
- Department of Neurology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Na Zhang
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zhonghao Li
- Department of Neurology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Zunjing Liu
- Department of Neurology , China-Japan Friendship Hospital , Beijing 100029 , China
| | - Bingran Yu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
33
|
Sousa Â, Almeida AM, Faria R, Konate K, Boisguerin P, Queiroz JA, Costa D. Optimization of peptide-plasmid DNA vectors formulation for gene delivery in cancer therapy exploring design of experiments. Colloids Surf B Biointerfaces 2019; 183:110417. [PMID: 31408780 DOI: 10.1016/j.colsurfb.2019.110417] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022]
Abstract
The field of gene therapy still attracts great interest due to its potential therapeutic effect towards the most deadly diseases, such as cancer. For cancer gene therapy to be feasible and viable in a clinical setting, the design and development of a suitable gene delivery system is imperative. Peptide based vectors, in particular, reveal to be promising for therapeutic gene release. Following this, two different peptides, RALA and WRAP5, have been investigated mainly regarding their ability to form complexes with a p53 encoding plasmid (pDNA) with suitable properties for gene delivery. To address this issue, and after an initial screening study focused on the dependence of pDNA complexation capacity with the nitrogen to phosphate groups (N/P) ratio, a design of experiments (DoE) tool has been employed. For each peptide/pDNA system, parameters such as, the buffer pH and the N/P ratio were considered the DoE inputs and the vector size, zeta potential and pDNA complexation capacity (CC) were monitored as DoE outputs. The main goal was to find the optimal experimental conditions to minimize particle sizes, as well as, to maximize the positive surface charges of the formulated nanosystems and maximize the pDNA CC. Through the DoE method applied, the optimal RALA/pDNA and WRAP5/pDNA formulations were revealed and show interesting features related to peptide structure and pDNA complexation ability. This work illustrates the great utility of experimental design tools in optimizing the formulation of peptide/pDNA vectors in a minimum number of experiments providing relevant knowledge for the development of more suitable and efficient gene delivery systems. The new insights achieved on these carriers clearly instigate deeper research on gene therapy.
Collapse
Affiliation(s)
- Ângela Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ana M Almeida
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Rúben Faria
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Karidia Konate
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Prisca Boisguerin
- Centre de Recherche en Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - João A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
34
|
Xu J, Khan AR, Fu M, Wang R, Ji J, Zhai G. Cell-penetrating peptide: a means of breaking through the physiological barriers of different tissues and organs. J Control Release 2019; 309:106-124. [PMID: 31323244 DOI: 10.1016/j.jconrel.2019.07.020] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 07/15/2019] [Indexed: 12/24/2022]
Abstract
The selective infiltration of cell membranes and tissue barriers often blocks the entry of most active molecules. This natural defense mechanism prevents the invasion of exogenous substances and limits the therapeutic value of most available molecules. Therefore, it is particularly important to find appropriate ways of membrane translocation and therapeutic agent delivery to its target site. Cell penetrating peptides (CPPs) are a group of short peptides harnessed in this condition, possessing a significant capacity for membrane transduction and could be exploited to transfer various biologically active cargoes into the cells. Since their discovery, CPPs have been employed for delivery of a wide variety of therapeutic molecules to treat various disorders including cranial nerve involvement, ocular inflammation, myocardial ischemia, dermatosis and cancer. The promising results of CPPs-derived therapeutics in various tumor models demonstrated a potential and worthwhile scope of CPPs in chemotherapy. This review describes the detailed description of CPPs and CPPs-assisted molecular delivery against various tissues and organs disorders. An emphasis is focused on summarizing the novel insights and achievements of CPPs in surmounting the natural membrane barriers during the last 5 years.
Collapse
Affiliation(s)
- Jiangkang Xu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Abdur Rauf Khan
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Manfei Fu
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Rujuan Wang
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Jianbo Ji
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Key Laboratory of Chemical Biology, Ministry of Education, Shandong University, Jinan 250012, China.
| |
Collapse
|
35
|
Duo X, Bai L, Wang J, Ji H, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. CAGW and TAT‐NLS peptides functionalized multitargeting gene delivery system with high transfection efficiency. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xinghong Duo
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- School of Chemistry and Chemical EngineeringQinghai University for Nationalities Xining Qinghai China
| | - Lingchuang Bai
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jun Wang
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Hao Ji
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Jintang Guo
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
| | - Xiangkui Ren
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin China
| | - Changcan Shi
- School of Ophthalmology & OptometryEye Hospital, School of Biomedical Engineering, Wenzhou Medical University Wenzhou Zhejiang China
- CNITECH, CASWenzhou Institute of Biomaterials and Engineering Wenzhou Zhejiang China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated HospitalLogistics University of People's Armed Police Force Tianjin China
| | - Wencheng Zhang
- Department of Physiology and PathophysiologyLogistics University of Chinese People's Armed Police Force Tianjin China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Tianjin China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin China
| |
Collapse
|
36
|
Wu H, You C, Chen F, Jiao J, Gao Z, An P, Sun B, Chen R. Enhanced cellular uptake of near-infrared triggered targeted nanoparticles by cell-penetrating peptide TAT for combined chemo/photothermal/photodynamic therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109738. [PMID: 31349475 DOI: 10.1016/j.msec.2019.109738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/13/2019] [Accepted: 05/08/2019] [Indexed: 12/21/2022]
Abstract
Recently, the emergence of cell-penetrating peptides (CPPs) like TAT has greatly improved the efficiency of cancer therapy by enhancing cellular uptake of nanomaterials. Here, we designed a near-infrared (NIR) triggered TAT-based targeted nanoplatform (cRGD@TAT-DINPs), which co-delivered anticancer drug doxorubicin (DOX) and biocompatible dye indocyanine green (ICG) to realize combined chemo/photothermal/photodynamic therapy of cancer in vitro. The resulting nanoparticles showed favorable monodispersity and colloidal stability. Impressively, the DOX could be released in a promoted manner once the nanoparticles were exposed to NIR light. Confocal laser scanning microscopy (CLSM) and flow cytometry analysis demonstrated an immensely enhanced cellular accumulation of DOX after the simultaneous introduction of targeted ligand cRGD and CPP TAT. In addition, the obtained nanoparticles exhibited explosive temperature elevation and reactive oxygen species (ROS) generation mediated by encapsulated ICG under NIR irradiation, and in vitro cytotoxicity assay confirmed the cRGD@TAT-DINPs had an increasing cytotoxicity and excellent synergistic inhibition capacity. Thus, TAT-based nanosystems provide a high-efficient drug delivery strategy for optimizing combined therapy efficiency of cancer.
Collapse
Affiliation(s)
- Hongshuai Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chaoqun You
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Fanghui Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jia Jiao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhiguo Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Peijing An
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Renjie Chen
- Affiliated Hospital 2, Nanjing Medical University, Nanjing 210011, PR China.
| |
Collapse
|
37
|
Li Q, Hao X, Guo J, Ren X, Xia S, Zhang W, Feng Y. Multifunctional Gene Carriers Labeled by Perylene Diimide Derivative as Fluorescent Probe for Tracking Gene Delivery. Macromol Rapid Commun 2019; 40:e1800916. [DOI: 10.1002/marc.201800916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/24/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Qian Li
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
| | - Xuefang Hao
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
| | - Jintang Guo
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
| | - Xiang‐Kui Ren
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin 300072 China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic MedicineAffiliated HospitalLogistics University of People's Armed Police Force 220 Chenglin Road Tianjin 300162 China
| | - Wencheng Zhang
- Department of Physiology and PathophysiologyLogistics University of Chinese People's Armed Police Force Tianjin 300309 China
| | - Yakai Feng
- School of Chemical Engineering and TechnologyTianjin University Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Tianjin 300350 China
- Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin University Tianjin 300072 China
| |
Collapse
|
38
|
Ullah I, Zhao J, Rukh S, Muhammad K, Guo J, Ren XK, Xia S, Zhang W, Feng Y. A PEG-b-poly(disulfide-l-lysine) based redox-responsive cationic polymer for efficient gene transfection. J Mater Chem B 2019; 7:1893-1905. [PMID: 32255052 DOI: 10.1039/c8tb03226b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Gene therapy is concerned with the transfer of complement genes to functionally defective cells in a safe and directed manner for the treatment of the most challenging diseases. But safety issues and low transfection efficiency of the gene vectors are the major challenges, which need to be overcome. Recently, redox-responsive bioreducible polymers containing disulfide linkages have been considered as efficient gene vectors, owing to the selective degradation of the disulfide bond in the reducing environment of the cells. This enables spatiotemporal release of pDNA with no or minimum toxicity. Herein, we reported a bioreducible poly(ethyleneglycol)-b-poly(disulfide-l-lysine) cationic polymer (denoted as PEG-SSL) via a Michael addition reaction of poly(ethyleneglycol)tetraacrylate PEG(Ac)4 and the terminal amine group of poly(disulfide-l-lysine). PEG-SSL efficiently condensed the plasmid ZNF580 gene (pZNF580) forming nano-sized polyplexes (155 ± 4 to 285 ± 3 nm) with zeta potentials of 1.9 ± 0.1 to 26.7 ± 0.4 mV. PEG-SSL successfully retarded pZNF580 at a small polymer/pDNA weight ratio of 10/1 and higher. When exposed to a reducing environment of 5 mM DTT, it rapidly released genes even at higher weight ratios of the PEG-SSL polymer in the PEG-SSL/pDNA complexes. The PEG-SSL/pZNF580 complexes exhibited good stability when exposed to DNase I and efficiently protected pDNA from degradation. In vitro transfection and cytotoxicity were investigated in EA.hy926 cells. The results showed that PEG-SSL successfully delivered pZNF580 into the cells with less cytotoxicity compared to PEI25kDa. The flow cytometry and confocal scanning laser microscopy results indicated that PEG-SSL polyplexes exhibited good cellular uptake and nuclear co-localization rates. All these results implied that PEG-SSL had the potential as a non-viral vector for gene transfection.
Collapse
Affiliation(s)
- Ihsan Ullah
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Gene therapy as a strategy for disease treatment requires safe and efficient gene delivery systems that encapsulate nucleic acids and deliver them to effective sites in the cell.
Collapse
Affiliation(s)
- Ziyao Kang
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Qingbin Meng
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures
- Beijing Institute of Pharmacology and Toxicology
- Beijing
- China
| |
Collapse
|
40
|
Zhang Q, Gao B, Muhammad K, Zhang X, Ren XK, Guo J, Xia S, Zhang W, Feng Y. Multifunctional gene delivery systems with targeting ligand CAGW and charge reversal function for enhanced angiogenesis. J Mater Chem B 2019; 7:1906-1919. [DOI: 10.1039/c8tb03085e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A charge reversible polyanion with a targeting peptide was assembled onto binary gene complexes to enhance their endosomal escape and transfection efficiency.
Collapse
Affiliation(s)
- Qiaoping Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Bin Gao
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Khan Muhammad
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xubin Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
| | - Xiang-kui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine
- Affiliated Hospital
- Logistics University of People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300309
- China
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300350
- China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
| |
Collapse
|
41
|
Han H, Yang J, Chen W, Li Q, Yang Y, Li Q. A comprehensive review on histone-mediated transfection for gene therapy. Biotechnol Adv 2018; 37:132-144. [PMID: 30472306 DOI: 10.1016/j.biotechadv.2018.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 01/18/2023]
Abstract
Histone has been considered to be an effective carrier in non-viral gene delivery due to its unique properties such as efficient DNA binding ability, direct translocation to cytoplasm and favorable nuclear localization ability. Meanwhile, the rapid development of genetic engineering techniques could facilitate the construction of multifunctional fusion proteins based on histone molecules to further improve the transfection efficiency. Remarkably, histone has been demonstrated to achieve gene transfection in a synergistic manner with cationic polymers, affording to a significant improvement of transfection efficiency. In the review, we highlighted the recent developments and future trends in gene delivery mediated by histones or histone-based fusion proteins/peptides. This review also discussed the mechanism of histone-mediated gene transfection and provided an outlook for future therapeutic opportunities in the viewpoint of transfection efficacy and biosafety.
Collapse
Affiliation(s)
- Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqi Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Qing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yan Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
42
|
Li N, Yang X, Liu W, Xi G, Wang M, Liang B, Ma Z, Feng Y, Chen H, Shi C. Tannic Acid Cross-linked Polysaccharide-Based Multifunctional Hemostatic Microparticles for the Regulation of Rapid Wound Healing. Macromol Biosci 2018; 18:e1800209. [PMID: 30238611 DOI: 10.1002/mabi.201800209] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/26/2018] [Indexed: 12/20/2022]
Abstract
Hemostatic microparticles (HMs) have been widely used in surgery. To improve the comprehensive performance of HMs, multifunctional HMs named HM15 and HM15 ' are prepared from starch, carboxymethyl chitosan, hyaluronic acid, and tannic acid. Herein, tannic acid is used as an effective cross-linker. A 3D network structure for cell growth and wound repair can be formed by secondary cross-linking. Through synergistic effect of these natural materials, the process of wound healing can be regulated controllably. HM15 and HM15 ' have the ability of rapid hemostasis. Moreover, HM15 ' shows excellent properties in antibacteria and wound healing acceleration. Blood clotting time treated with different HMs is shortened obviously from 436.8 s to 126 s. Compared with Celox, HM15 and HM15 ' exhibited better broad spectrum antibacterial activity against both Escherichia coli and Staphylococcus aureus. Notably, the wound can be repaired rapidly by HM15 ' in 14 days. These multifunctional HMs might have an important prospect in clinical application.
Collapse
Affiliation(s)
- Na Li
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| | - Xiao Yang
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Wen Liu
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| | - Guanghui Xi
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| | - Mingshan Wang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Bin Liang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhaipu Ma
- College of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Yakai Feng
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Chen
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering, Ningbo Institute of Industrial Tehcnology (CNITECH), Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences (CAS), Wenzhou, Zhejiang, 325011, China
| |
Collapse
|
43
|
Hao X, Li Q, Wang H, Muhammad K, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. Red-blood-cell-mimetic gene delivery systems for long circulation and high transfection efficiency in ECs. J Mater Chem B 2018; 6:5975-5985. [PMID: 32254717 DOI: 10.1039/c8tb01789a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, the red blood cell (RBC) membrane has been used as a mimetic nanocoating for nanoparticles for drug delivery systems to promote their biocompatibility. In the present study, the nano-sized RBC membrane was coated on the surface of gene complexes through electrostatic interactions to prepare biomimetic gene delivery systems so as to improve their biocompatibility and prolong their circulation time in vivo. The structure of the biomimetic gene delivery systems was determined by transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). They exhibited low cytotoxicity and high transfection efficiency in endothelial cells (ECs), which could improve the migration ability of ECs. Besides, the biomimetic gene delivery systems exhibited strong immune evasion and long in vivo circulation time. The phagocytic rate of these biomimetic gene delivery systems reduced 52% compared with that of the PLGA-PEI/pZNF580 control group (without RBC membrane modification). Their circulation time in vivo was more than 2 times higher than that of the control group. Consequently, we provide a simple method for the preparation of camouflaged gene delivery systems, which can further facilitate the development of a gene delivery platform for the therapy of vascular diseases via enhancing EC transfection. This strategy will open up a new avenue for gene delivery systems by RBC membrane camouflage.
Collapse
Affiliation(s)
- Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Hao X, Li Q, Ali H, Zaidi SSA, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. POSS-cored and peptide functionalized ternary gene delivery systems with enhanced endosomal escape ability for efficient intracellular delivery of plasmid DNA. J Mater Chem B 2018; 6:4251-4263. [PMID: 32254599 DOI: 10.1039/c8tb00786a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Biocompatibility, stability and high efficiency profiles are critical points for promoting the practical applications of gene delivery systems. The incorporation of cell-penetrating peptides (CPPs), REDV, and a nuclear localization signal (NLS) peptide sequence has been considered to be a promising strategy for developing efficient gene carriers to transfect vascular endothelial cells (ECs). However, these integrated multifunctional peptide carriers are usually limited by their inefficient targeting function and weak endosomal escape ability. Aiming to develop more efficient gene carriers, the integrated multifunctional REDV-G-TAT-G-NLS-C sequence was conjugated to polyhedral oligomeric silsesquioxane (POSS) by heterobifunctional poly(ethylene glycol) in the current study. This star-shaped polymer carrier complexed with the pZNF580 plasmid to form gene complexes, and then the histidine-rich peptide of REDV-TAT-NLS-H12 (TP-H12) was incorporated into their surface to obtain ternary gene delivery systems with enhanced endosomal escape ability. These ternary gene delivery systems exhibited low cytotoxicity towards ECs and possessed high REDV-mediated cellular uptake, excellent internalization efficiency, rapid endosomal escape and high nucleus translocation capacity. The endosomal escape of the ternary complexes was improved due to the pH buffering capacity of the histidine residue in TP-H12 and the optimized macropinocytosis internalization pathway. Moreover, these CPP-based ternary gene delivery systems have high gene delivery efficiency and could improve the migration of ECs as demonstrated by gene expression and transwell assay. These systems may serve as a promising candidate for gene delivery and transfection in ECs, which is advantageous for EC migration and endothelialization on the biomaterial surface.
Collapse
Affiliation(s)
- Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Hao X, Li Q, Wang H, Muhammad K, Guo J, Ren X, Shi C, Xia S, Zhang W, Feng Y. CAGW Modified Polymeric Micelles with Different Hydrophobic Cores for Efficient Gene Delivery and Capillary-like Tube Formation. ACS Biomater Sci Eng 2018; 4:2870-2878. [DOI: 10.1021/acsbiomaterials.8b00529] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xuefang Hao
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Qian Li
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Huaning Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Khan Muhammad
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Changcan Shi
- School of Ophthalmology & Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325011, China
- Wenzhou Institute of Biomaterials and Engineering, CNITECH, Chinese Academy of Science, Wenzhou, Zhejiang 325011, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, Tianjin 300309, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
46
|
Wang J, Zaidi SSA, Hasnain A, Guo J, Ren X, Xia S, Zhang W, Feng Y. Multitargeting Peptide-Functionalized Star-Shaped Copolymers with Comblike Structure and a POSS-Core To Effectively Transfect Endothelial Cells. ACS Biomater Sci Eng 2018; 4:2155-2168. [DOI: 10.1021/acsbiomaterials.8b00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jun Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Syed Saqib Ali Zaidi
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Ali Hasnain
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
| | - Jintang Guo
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
| | - Shihai Xia
- Department of Hepatopancreatobiliary and Splenic Medicine, Affiliated Hospital, Logistics University of People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology, Logistics University of Chinese People’s Armed Police Force, 220 Chenglin Road, Tianjin 300162, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|