1
|
Li C, Zhang C, Liu W, Liu J, Ma W, Lv C, Xia Z, Chen Y, Gu H, Sun W, Du J, Fan J, Peng X. Clearly fluorescent delineating ER+ breast tumor incisal edge and identifying tiny metastatic tumor foci at high resolution. J Mater Chem B 2024; 12:7135-7142. [PMID: 38952205 DOI: 10.1039/d4tb00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Fluorescence-image guided surgery (FGS) can intraoperatively provide real-time visualization of a tumor incisal edge and high-resolution identification of tumor foci to improve treatment outcomes. In this contribution, we report a fluorescent probe NB-TAM based on intramolecularly folded photoinduced electron transfer (PET), which displayed a prominent turn-on response in the near-infrared (NIR) window upon specific interaction with the estrogen receptor (ER). Significantly, NB-TAM could delineate a clear tumor incisal edge (tumor-to-normal tissue ratio > 5) in a 70-min time window, and was successfully used to guide the facile and precise resection of ER+ breast tumors in mice. To our surprise, NB-TAM was found to be capable of identifying very tiny lung metastatic ER+ breast tumor foci (0.4 × 0.3 mm), and this ultrahigh resolution was essential to effectively promote tumor resection precision and early diagnosis of tiny tumors. These results clearly elucidate the promising application of NB-TAM as a diagnostic agent for intraoperative fluorescence imaging of ER+ breast cancer.
Collapse
Affiliation(s)
- Changle Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Changyu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Wenkai Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Jia Liu
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Wanying Ma
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Chengyuan Lv
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Zhuoran Xia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Yingchao Chen
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| | - Hua Gu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
- Ningbo Institute of Dalian University of Technology, Ningbo, 315016, China.
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
2
|
Liu C, Wang X, Zhu H, Wang K, Yu M, Zhang Y, Su M, Rong X, Sheng W, Zhu B. Multifunctional Theranostic Probe Based on the Pim-1 Kinase Inhibitor with the Function of Tracking pH Fluctuations during Treatment. Anal Chem 2023; 95:11732-11740. [PMID: 37490364 DOI: 10.1021/acs.analchem.3c01818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Currently, kinase inhibitors have been applied in the diagnosis or treatment of cancer with their unique advantages. It is of great significance to develop some comprehensive theranostic reagents based on kinase inhibitors to improve the performance of reagents for biomedical applications. Besides, tracking changes in the intracellular environment (e.g., pH) during cancer development and drug delivery is also critical for cancer research and treatment. Therefore, it is an urgent desire to design some novel multifunctional reagents based on kinase inhibitor strategies that can trace changes in the microenvironment of cancer cells. In this paper, a multifunctional theranostic reagent based on Pim-1 kinase inhibitor 5-bromobenzofuran-2-carboxylic acid is proposed. The theranostic probe binds to tumor-specific Pim-1 kinase, releases strong fluorescence, and produces cytotoxicity, thus achieving cell screening and killing effects. Furthermore, the probe can specifically target lysosomes and sensitively respond to pH. It can be used to track the pH changes in the intracellular environment under conditions of autophagy and external stimulation, as a visual tool to monitor pH fluctuations during cancer treatment. In conclusion, this simple but multifunctional theranostic reagent proposed in this work is expected to provide a promising method for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Xin Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Yan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Meijun Su
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Xiaodi Rong
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| |
Collapse
|
3
|
Niu H, Liu J, O'Connor HM, Gunnlaugsson T, James TD, Zhang H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem Soc Rev 2023; 52:2322-2357. [PMID: 36811891 DOI: 10.1039/d1cs01097b] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Typical PeT-based fluorescent probes are multi-component systems where a fluorophore is connected to a recognition/activating group by an unconjugated linker. PeT-based fluorescent probes are powerful tools for cell imaging and disease diagnosis due to their low fluorescence background and significant fluorescence enhancement towards the target. This review provides research progress towards PeT-based fluorescent probes that target cell polarity, pH and biological species (reactive oxygen species, biothiols, biomacromolecules, etc.) over the last five years. In particular, we emphasise the molecular design strategies, mechanisms, and application of these probes. As such, this review aims to provide guidance and to enable researchers to develop new and improved PeT-based fluorescent probes, as well as promoting the use of PeT-based systems for sensing, imaging, and disease therapy.
Collapse
Affiliation(s)
- Huiyu Niu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Junwei Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Helen M O'Connor
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Thorfinnur Gunnlaugsson
- School of Chemistry, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Tony D James
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China. .,Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
4
|
Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Fu YX, Zhang ZY, Guo WY, Dai YJ, Wang ZY, Yang WC, Yang GF. In vivo fluorescent screening for HPPD-targeted herbicide discovery. PEST MANAGEMENT SCIENCE 2022; 78:4947-4955. [PMID: 36054619 DOI: 10.1002/ps.7117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 05/26/2023]
Abstract
BACKGROUND 4-Hydroxyphenylpyruvate dioxygenase (HPPD), playing a critical role in vitamin E and plastoquinone biosynthesis in plants, has been recognized as one of the most important targets for herbicide discovery for over 30 years. Structure-based rational design of HPPD inhibitors has received more and more research interest. However, a critical challenge in the discovery of new HPPD inhibitors is the common inconsistency between molecular-level HPPD-based bioevaluation and the weed control efficiency in fields, due to the unpredictable biological processes of absorption, distribution, metabolism, and excretion. RESULTS In this study, we developed a fluorescent-sensing platform of efficient in vivo screening for HPPD-targeted herbicide discovery. The refined sensor has good capability of in situ real-time fluorescence imaging of HPPD in living cells and zebrafish. More importantly, it enabled the direct visible monitoring of HPPD inhibition in plants in a real-time manner. CONCLUSION We developed a highly efficient in vivo fluorescent screening method for HPPD-targeted herbicide discovery. This discovery not only offers a promising tool to advance HPPD-targeted herbicide discovery, but it also demonstrates a general path to develop the highly efficient, target-based, in vivo screening for pesticide discovery. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi-Xuan Fu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Zi-Ye Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Wu-Yingzheng Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Yi-Jie Dai
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Zheng-Yu Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Wen-Chao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P. R. China
| |
Collapse
|
6
|
Yi X, Wang Z, Hu X, Yu A. Affinity probes based on small-molecule inhibitors for tumor imaging. Front Oncol 2022; 12:1028493. [PMID: 36387103 PMCID: PMC9647038 DOI: 10.3389/fonc.2022.1028493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/17/2022] [Indexed: 11/29/2022] Open
Abstract
Methods for molecular imaging of target areas, including optical imaging, radionuclide imaging, magnetic resonance imaging and other imaging technologies, are helpful for the early diagnosis and precise treatment of cancers. In addition to cancer management, small-molecule inhibitors are also used for developing cancer target probes since they act as the tight-binding ligands of overexpressed proteins in cancer cells. This review aims to summarize the structural designs of affinity probes based on small-molecule inhibitors from the aspects of the inhibitor, linker, dye and radionuclide, and discusses the influence of the modification of these structures on affinity and pharmacokinetics. We also present examples of inhibitor affinity probes in clinical applications, and these summaries will provide insights for future research and clinical translations.
Collapse
Affiliation(s)
| | | | - Xiang Hu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| | - Aixi Yu
- *Correspondence: Aixi Yu, ; Xiang Hu,
| |
Collapse
|
7
|
Xu S, Liu Y, Wang Z, He A, Jin G. Symmetry dual functional pyrimidine-BODIPY probes for imaging targeting and activity study. Front Chem 2022; 10:977008. [PMID: 36204148 PMCID: PMC9530934 DOI: 10.3389/fchem.2022.977008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
Nondestructive diagnosis of tumor has always been the goal of scientists. Fluorescent dyes have become the rising star in the field of cancer diagnosis because of their excellent characteristics. Therefore, in this work, fluorescence probes d-Y-B and dO-Y-B with anti-tumor activity were constructed by introducing pyrimidine groups with high anti-tumor activity using fluorescence dye BODIPY as parent nucleus. The modified BODIPY group in the structure had the advantage of fluorescent dye, ensuring the strong fluorescence and photosensitivity of the target compound. That ethylenediamine acts as a bridge with two -NH- groups to increase molecular hydrogen bonding, and can bind firmly to multiple proteins. Co-localization of the target compounds d-Y-B and dO-Y-B with the hoechst dye for labeling living cells showed that these compounds had high biocompatibility and photostability for localization to HeLa cells. In vivo imaging in mice can realize specific localization and real-time visualization of tumor cells. The results of cytotoxicity experiments in vitro and computer software simulating molecular docking confirmed the potential of the target compounds as an anticancer agents. The bifunctional probe realized visualization of cancer cells in mice, and can kill cancer cells by anti-proliferation, which may provide a direction for future anticancer drug development.
Collapse
Affiliation(s)
- Shuping Xu
- The People’s Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, China
| | - Ying Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, China
| | - Zhou Wang
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, China
| | - Aolin He
- Affiliated Kunshan Hospital, Jiangsu University, Suzhou, China
| | - Guofan Jin
- School of Pharmacy, Jiangsu University, Zhenjiang, China
- *Correspondence: Guofan Jin,
| |
Collapse
|
8
|
Roy R, Khan A, Dutta T, Koner AL. Red to NIR-emissive anthracene-conjugated PMI dyes with dual functions: singlet-oxygen response and lipid-droplet imaging. J Mater Chem B 2022; 10:5352-5363. [PMID: 35583595 DOI: 10.1039/d2tb00349j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The rich chemistry of solution-processable red and near-infrared (NIR) organic emitters has emerged as an attractive and progressive research field because of their particular applications in organic optoelectronics and bioimaging. Also, one can see that the research area of perylene monoimide-based red and NIR-emissive fluorophores is underexplored, which prompted us to design and synthesize three anthracene-conjugated PMI dyes exhibiting strong emission in the red and NIR window in solution. Three PMI-based fluorophores were synthesized via conjoining anthracene and donor moieties (-Ph, -N,N-PhNMe2) with a PMI core via an acetylene linkage at the peri-position, which helped to attain extensive electronic conjugation, which was reflected in red and NIR-emission in solution. The key molecular features to be highlighted here are: all three dyes are strongly emissive in solution, as unveiled by the excellent absolute fluorescence QYs; and they possess tuneable emission properties, guided by the donor strength and a profound Stokes shift (100-200 nm). The three fluorescent dyes demonstrated appreciable singlet-oxygen (1O2) sensitivity when photoirradiated with methylene blue (MB) in solution, showing a substantial blue-shift in emission in a ratiometric manner. Further, the treatment of dye-MB solution with α-tocopherol (1O2 scavenger) validated the presence of 1O2 as the only oxidizing species generated by MB in solution. Computational investigations gave insight into the twisting of donor moieties in their ground-state optimized geometries, the modulation of the FMO energy gap, and the thermodynamic feasibility of the 1O2 reaction. Finally, via taking advantage of the red and NIR-emission, we successfully utilized one of the fluorophores as a lipid-droplet marker for bioimaging in HepG2 cells.
Collapse
Affiliation(s)
- Rupam Roy
- Bionanotechnology Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| | - Aasif Khan
- Bionanotechnology Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| | - Tanoy Dutta
- Bionanotechnology Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Bionanotechnology Laboratory, Department of Chemistry Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
9
|
Indomethacin-based near-infrared photosensitizer for targeted photodynamic cancer therapy. Bioorg Chem 2022; 122:105758. [PMID: 35344895 DOI: 10.1016/j.bioorg.2022.105758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/26/2022] [Accepted: 03/21/2022] [Indexed: 11/19/2022]
Abstract
Near-IR fluorescent sensitizers based on heptamethine cyanine (Cy820 and Cy820-IMC) were synthesized and their abilities to target and abolish tumor cells via photodynamic therapy (PDT) were explored. Some hepthamethine cyanine dyes can be transported into cancer cells via the organic anion transporting polypeptides (OATPs). In this study, we aimed to enhance the target ability of the sensitizer by conjugation Cy820 with indomethacin, a non-steroidal anti-inflammatory drug (NSAID), to obtain Cy820-IMC that aimed to target cyclooxygenase-2 (COX-2) which overexpresses in cancer cells. The results showed that Cy820-IMC internalized the cancer cells faster than Cy820 which was verified to be related to COX-2 level and OATPs. Based on PDT experiments, Cy820-IMC has higher photocytotoxicity index than Cy820, >7.13 and 4.90, respectively, implying that Cy820-IMC showed better PDT property than Cy820. However, Cy820 exhibits slightly higher normal-to-cancer cell toxicity ratio than Cy820-IMC, 6.58 and 3.63, respectively. Overall, Cy820-IMC has superior cancer targetability and enhanced photocytoxicity. These characteristics can be further improved towards clinically approved sensitizers for PDT.
Collapse
|
10
|
Li H, Kim Y, Jung H, Hyun JY, Shin I. Near-infrared (NIR) fluorescence-emitting small organic molecules for cancer imaging and therapy. Chem Soc Rev 2022; 51:8957-9008. [DOI: 10.1039/d2cs00722c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We discuss recent advances made in the development of NIR fluorescence-emitting small organic molecules for tumor imaging and therapy.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Yujun Kim
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Hyoje Jung
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| | - Ji Young Hyun
- Department of Drug Discovery, Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Injae Shin
- Department of Chemistry, Yonsei University, 03722 Seoul, Republic of Korea
| |
Collapse
|
11
|
Li K, Xu S, Xiong M, Huan SY, Yuan L, Zhang XB. Molecular engineering of organic-based agents for in situ bioimaging and phototherapeutics. Chem Soc Rev 2021; 50:11766-11784. [PMID: 34570124 DOI: 10.1039/d1cs00408e] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ monitoring of the location and transportation of bioactive molecules is essential for deciphering diverse biological events in the field of biomedicine. In addition, obtaining the in situ information of lesions will provide a clear perspective for surgeons to perform precise resection in clinical surgery. Notably, delivering drugs or operating photodynamic therapy/photothermal therapy in situ by labeling the lesion regions of interest can improve treatment and reduce side effects in vivo. In various advanced imaging and therapy modalities, optical theranostic agents based on organic small molecules can be conveniently modified as needed and can be easily internalized into cells/lesions in a non-invasive manner, which are prerequisites for in situ bioimaging and precision treatment. In this tutorial review, we first summarize the in situ molecular immobilization strategies to retain small-molecule agents inside cells/lesions to prevent their diffusion in living organisms. Emphasis will be focused on introducing the application of these strategies for in situ imaging of biomolecules and precision treatment, particularly pertaining to why targeting therapy in situ is required.
Collapse
Affiliation(s)
- Ke Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Shuang-Yan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| |
Collapse
|
12
|
Confinement fluorescence effect (CFE): Lighting up life by enhancing the absorbed photon energy utilization efficiency of fluorophores. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Crystal Structure-Guided Design of Bisubstrate Inhibitors and Photoluminescent Probes for Protein Kinases of the PIM Family. Molecules 2021; 26:molecules26144353. [PMID: 34299628 PMCID: PMC8307404 DOI: 10.3390/molecules26144353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 11/23/2022] Open
Abstract
We performed an X-ray crystallographic study of complexes of protein kinase PIM-1 with three inhibitors comprising an adenosine mimetic moiety, a linker, and a peptide-mimetic (d-Arg)6 fragment. Guided by the structural models, simplified chemical structures with a reduced number of polar groups and chiral centers were designed. The developed inhibitors retained low-nanomolar potency and possessed remarkable selectivity toward the PIM kinases. The new inhibitors were derivatized with biotin or fluorescent dye Cy5 and then applied for the detection of PIM kinases in biochemical solutions and in complex biological samples. The sandwich assay utilizing a PIM-2-selective detection antibody featured a low limit of quantification (44 pg of active recombinant PIM-2). Fluorescent probes were efficiently taken up by U2OS cells and showed a high extent of co-localization with PIM-1 fused with a fluorescent protein. Overall, the developed inhibitors and derivatives represent versatile chemical tools for studying PIM function in cellular systems in normal and disease physiology.
Collapse
|
14
|
Xia W, Zhang S, Li Y, Fan J, Liu B, Wang L, Peng X. Ibuprofen-derived fluorescence inhibitor of COX-2 for breast cancer imaging, prevention and treatment. DYES AND PIGMENTS 2021; 190:109326. [DOI: 10.1016/j.dyepig.2021.109326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Yi X, Cao Z, Yuan Y, Li W, Cui X, Chen Z, Hu X, Yu A. Design and synthesis of a novel mitochondria-targeted osteosarcoma theranostic agent based on a PIM1 kinase inhibitor. J Control Release 2021; 332:434-447. [PMID: 33662457 DOI: 10.1016/j.jconrel.2021.02.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is the most common malignancy of the skeletal system, with a poor prognosis and high rate of recurrence. Adequate surgical margin and adjuvant chemotherapy improve the overall survival and limb salvage rate of osteosarcoma patients. Previous studies have showed that OS exhibits an increase in the expression of proviral integration site for Moloney murine leukemia virus 1 (PIM1) kinase, and high levels of PIM1 are also associated with poor OS prognosis and metastasis. We exploited the overexpression of proto-oncogenic PIM1 in OS towards the development of a novel near-infrared imaging and targeted therapeutic agent, namely QCAi-Cy7d by conjugating a PIM1 small molecule inhibitor and heptamethine cyanine dye, for simultaneous guiding surgery and chemotherapy. QCAi-Cy7d showed targeted imaging and anticancer activities against OS in vitro and vivo without any obvious toxicity, and its antitumoral activity was much greater than the parent PIMI inhibitor. These results demonstrated the potential of new conjugate of PIM1 inhibitor and near-infrared imaging, supporting structure-based design and development of theranostic agents for precise tumor imaging and targeted treatment.
Collapse
Affiliation(s)
- Xinzeyu Yi
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhi Cao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Ying Yuan
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wen Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xinyue Cui
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zilin Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.
| | - Xiang Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Aixi Yu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
16
|
Xia W, Zhang S, Fan J, Li Y, Peng X. Imaging and inhibiting cyclooxygenase-2 using aspirin-based fluorescent reporter for the treatment of breast cancer. SENSORS AND ACTUATORS B: CHEMICAL 2021; 329:129217. [DOI: 10.1016/j.snb.2020.129217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Xia W, Li H, Li Y, Li M, Fan J, Sun W, Li N, Li R, Shao K, Peng X. In Vivo Coinstantaneous Identification of Hepatocellular Carcinoma Circulating Tumor Cells by Dual-Targeting Magnetic-Fluorescent Nanobeads. NANO LETTERS 2021; 21:634-641. [PMID: 33264027 DOI: 10.1021/acs.nanolett.0c04180] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Circulating tumor cells (CTCs) have been considered as a potential biomarker for evaluation of cancer metastasis and prognosis, especially in hepatocellular carcinoma (HCC). However, the isolation and detection of rare CTCs in HCC patients face enormous challenges due to omittance and nonspecific binding. We previously designed a small molecular NIR fluoresent agent, named MLP, which had high affinity with a tumor cell-overexpressed enzyme, aminopeptidase N (APN). Based on that, in this work we introduced a novel strategy via coassembling the antiepithelial cell adhesion molecule (EpCAM) antibody and MLPinto theFe3O4 magnetic nanobeads (MB-MLP-EpCAM) to isolate and identify HCC-CTCs coinstantaneously. MB-MLP-EpCAM significantly improved the CTC-capture efficiency (>85%) without sacrificing cell viability (>90%). Most importantly, the advantages of precise dual-targetability, high resolution of fluorescence imaging, and prominent selectivity make our nanoplatform have great potential to achieve in vivo real-time identification and monitoring of CTCs clinically.
Collapse
Affiliation(s)
- Wenxi Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Yueqing Li
- School of Pharmaceutical Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Miao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Na Li
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, P.R. China
| | - Ruojie Li
- Interventional Therapy Department, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, P.R. China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China
| |
Collapse
|
18
|
Yang XZ, Wei XR, Sun R, Xu YJ, Ge JF. Benzoxazine-based fluorescent probes with different auxochrome groups for cysteine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117582. [PMID: 31629978 DOI: 10.1016/j.saa.2019.117582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/23/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Three 5H-benzo[a]phenoxazin-5-one-based (benzoresorufin and nile-red) Cysteine (Cys) detection probes have been comparatively designed and synthesized in this paper. The optical experiments exhibit probe 1b with a crotonoyl group has no response toward Cys; while probes 1a and 1c have the same reaction site (acryloyl group), their optical responses to Cys are quite different. The benzoresorufin-based-probe 1a shows a turn-on fluorescence response (118-fold) to Cys at 631 nm and affords a very low detection limit (DL = 19.8 nM). Compared with probe 1a, the nile-red-based probe 1c displays gradually diminishing fluorescence intensity with increased Cys concentration at 665 nm. And the notable different fluorescence response mechanisms of probes 1a and 1c toward Cys can be interpreted by HRMS and time-dependent density functional theorety (TDDFT) calculations. Furthermore, both of the two probes indicate high sensitivity and selectivity toward Cys over other similar structured amino acids including homocysteine (Hcy) and glutathione (GSH). Further cellular applications of the two probes have been successfully performed in HeLa cells.
Collapse
Affiliation(s)
- Xiu-Zhi Yang
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou, 215123, China
| | - Xue-Rui Wei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou, 215123, China.
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou, 215123, China; Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.
| |
Collapse
|
19
|
Sun W, Li M, Fan J, Peng X. Activity-Based Sensing and Theranostic Probes Based on Photoinduced Electron Transfer. Acc Chem Res 2019; 52:2818-2831. [PMID: 31538473 DOI: 10.1021/acs.accounts.9b00340] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorescent probes have become powerful tools in detection, imaging and disease diagnosis due to their high sensitivity, specificity, fast response, and technical simplicity. In the last decades, researchers have made remarkable progress in developing signaling mechanisms to design fluorescent probes such as photoinduced electron transfer (PET), intramolecular charge transfer (ICT), and fluorescence resonance energy transfer (FRET). Typical PET is composed of a multicomponent system in which a fluorophore (electron acceptor) is separately linked with a recognition group (electron donor) via a short spacer. PET probes normally feature a low fluorescence background and significant fluorescence enhancement in response to targets. Recent research revealed that PET probes have also been used as theranostic agents, whose fluorescence and toxicity can be simultaneously activated by cancer-specific parameters. In this Account, we highlight the recent advances of rational design and applications of PET probes, focusing primarily on studies from our research group. For example, different from the case of the traditional single-atom electron donor (O, S, N, Se, Te, etc.) in typical PET, we used more a electron-rich pyrrole ring to "switch off" the fluorescence of the fluorophore more efficiently through an "enhanced PET" effect which provided a lower background fluorescence and higher signal-to-noise ratio. Furthermore, normal PET represents the main principle behind the design of small molecule "off-on" fluorescent sensors. We developed new PET platform through intramolecular space folding (folding PET) to overcome the difficulty of designing PET enzyme-targeting probes. Therefore, based on typical PET and these new PET concepts, we, for instance, reported PET probes for the detection of Zn2+ without proton interference, a BODIPY-based d-PET probe for reporting local hydrophilicity within lysosomes, and an "enhanced PET" fluorescent probe for imaging HClO in cancer cells. We also developed COX-2-specific probe for identifying cancer cells and quantifying cancer-related events, and a KIAA1363-sensitive probe for tracking solid tumors in living mice. Furthermore, we first applied an aminopeptidase N (APN)-sensitive probe based on PET for cancer diagnosis and therapy. We anticipate that further development of PET fluorescent probes providing more sensitivity and selectivity to analytes of interest will be equipped with more functions and play indispensable roles in the studies of pathology, diagnostics, and cancer therapies.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Miao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
20
|
Chen J, Tang G. PIM-1 kinase: a potential biomarker of triple-negative breast cancer. Onco Targets Ther 2019; 12:6267-6273. [PMID: 31496730 PMCID: PMC6690594 DOI: 10.2147/ott.s212752] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/30/2019] [Indexed: 01/10/2023] Open
Abstract
Triple-negative breast cancer is associated with a poor prognosis, and effective biomarkers for targeted diagnosis and treatment are lacking. The tumorigenicity of the provirus integration site for Moloney murine leukemia virus 1 (PIM-1) gene has been studied for many years. However, its significance in breast cancer remains unclear. In this review we briefly summarized the physiological characteristics and regulation of PIM-1 kinase, and subsequently focused on the role of PIM-1 in tumors, especially breast cancer. Oncogene PIM-1 was found to be upregulated in breast cancer, especially in triple-negative breast cancer. Moreover, it is involved in tumorigenesis and the development of drug resistance, and linked to poor prognosis. A highly selective probe targeting PIM-1 for imaging has emerged, suggesting that PIM-1 may be a potential biomarker for the accurate diagnosis and targeted therapy of triple-negative breast cancer.
Collapse
Affiliation(s)
- Jieying Chen
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Guangyu Tang
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
21
|
Du J, Xu N, Fan J, Sun W, Peng X. Carbon Dots for In Vivo Bioimaging and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805087. [PMID: 30779301 DOI: 10.1002/smll.201805087] [Citation(s) in RCA: 248] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/20/2019] [Indexed: 05/21/2023]
Abstract
Carbon dots (CDs), a kind of carbon material discovered accidentally, exhibit unexpected advantages in fluorescence imaging/sensing such as photostability, biocompatibility, and low toxicity. For emerging theranostics, an interdiscipline created by integrating therapy and diagnostics, CDs are good candidates when they are combined with targeted chemo/gene/photodynamic/photothermal therapeutic moieties. Here, the development of CDs in nanomedicine is reviewed from their use as original imaging agents and/or drug carriers to multifunctional theranostic systems. Finally, the challenges and prospects of the next-generation of CD-based theranostics for clinical applications are also discussed.
Collapse
Affiliation(s)
- Jianjun Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Ning Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
- Research Institute of Dalian University of Technology in Shenzhen, Gaoxin South fourth Road, Nanshan District, Shenzhen, 518057, China
| |
Collapse
|
22
|
Gurram B, Li M, Fan J, Wang J, Peng X. Near-infrared fluorescent probe for fast track of cyclooxygenase-2 in Golgi apparatus in cancer cells. Front Chem Sci Eng 2019. [DOI: 10.1007/s11705-019-1796-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, Filli MS, Aquib M, Joelle MMB, Farooq MA, Mavlyanova R, Raza F, Bavi R, Wang B. Carbon dots: Applications in bioimaging and theranostics. Int J Pharm 2019; 564:308-317. [PMID: 31015004 DOI: 10.1016/j.ijpharm.2019.04.055] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/23/2023]
Abstract
Carbon dots are a carbonaceous nanomaterial that were discovered accidentally and are now drawing significant attention as a new quantum-sized fluorescent nanoparticle. Carbon dots are biocompatible, non-toxic, photostable, and easily functionalized with good photoluminescence and water solubility. Due to these unique properties, they are used broadly in live cell imaging, catalysis, electronics, biosensing, power, targeted drug delivery, and other biomedical applications. Here, we review the recent development of carbon dots in nanomedicine from their use in drug carriers to imaging agents to multifunctional theranostic systems. Finally, we discuss the challenges and views on next-generation carbon dot-based theranostics for clinical applications.
Collapse
Affiliation(s)
- Kofi Oti Boakye-Yiadom
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Samuel Kesse
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yaw Opoku-Damoah
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China; Australian Institute for Bioengineering & Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Mensura Sied Filli
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Md Aquib
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Mily Maviah Bazezy Joelle
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rukhshona Mavlyanova
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Faisal Raza
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Rohit Bavi
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Wang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
24
|
Gurram B, Zhang S, Li M, Li H, Xie Y, Cui H, Du J, Fan J, Wang J, Peng X. Celecoxib Conjugated Fluorescent Probe for Identification and Discrimination of Cyclooxygenase-2 Enzyme in Cancer Cells. Anal Chem 2018; 90:5187-5193. [PMID: 29587478 DOI: 10.1021/acs.analchem.7b05337] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cyclooxygenase-2 (COX-2) is an enzyme overexpressed in most types of cancers and has been used for an excellent targetable biomarker. Celecoxib is an effective inhibitor of COX-2, used in anti-inflammation. Herein we report a one and two-photon fluorescence probe (NP-C6-CXB) for COX-2, based on the conjugation of naphthalamide with Celecoxib, by using flexible hexylene linker. NP-C6-CXB is nonfluorescent in buffer solution and normal cells, while it shows bright fluorescence in solutions and cancer cells in the presence of COX-2 with an excellent selectivity. Interestingly, NP-C6-CXB can discriminate cancer cells (MCF-7) from normal cells (COS-7) in the single culture medium under confocal microscopy. Due to the selective binding affinity of NP-C6-CXB with a COX-2 enzyme, the intensity is proportional to the level of COX-2 enzyme in cancer cells. In vivo and in vitro experiments proved that NP-C6-CXB is a potential tool for identification of tumor and might be used in surgical resection of COX-2 expressed tumors.
Collapse
Affiliation(s)
- Bhaskar Gurram
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Shuangzhe Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Miao Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Haidong Li
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Yahui Xie
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Hongyan Cui
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Jingyun Wang
- Department School of Life Science and Biotechnology , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , 2 Linggong Road , High-Tech District, Dalian 116024 , China
| |
Collapse
|
25
|
Liu HW, Chen L, Xu C, Li Z, Zhang H, Zhang XB, Tan W. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem Soc Rev 2018; 47:7140-7180. [DOI: 10.1039/c7cs00862g] [Citation(s) in RCA: 515] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of recent advances in small-molecule enzymatic fluorescent probes for cancer imaging, including design strategies and cancer imaging applications.
Collapse
Affiliation(s)
- Hong-Wen Liu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Lanlan Chen
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Chengyan Xu
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Zhe Li
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Haiyang Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL)
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Collaborative Innovation Center for Chemistry and Molecular Medicine
- Hunan University
| |
Collapse
|