1
|
Stramaglia F, Panchal G, Nolting F, Vaz CAF. Fully Magnetically Polarized Ultrathin La 0.8Sr 0.2MnO 3 Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4138-4149. [PMID: 38216138 PMCID: PMC10811626 DOI: 10.1021/acsami.3c14031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
We report the observation of fully magnetically polarized ultrathin La0.8Sr0.2MnO3 films by using LaMnO3 and La0.45Sr0.55MnO3 buffer layers grown epitaxially on SrTiO3(001) substrates by molecular beam epitaxy. Specifically, we show that La0.8Sr0.2MnO3 films grown on 12-unit-cell LaMnO3 have bulk-like magnetic moments starting from a single unit cell thickness, while for the 15-unit-cell La0.45Sr0.55MnO3 buffer layer, the La0.8Sr0.2MnO3 transitions from an antiferromagnetic state to a fully spin-polarized ferromagnetic state at 4 unit cells. The magnetic results are confirmed by X-ray magnetic circular dichroism, while linear dichroic measurements carried out for the La0.8Sr0.2MnO3/La0.45Sr0.55MnO3 series show the presence of an orbital reorganization at the transition from the antiferromagnetic to ferromagnetic state corresponding to a change from a preferred in-plane orbital hole occupancy, characteristic of the A-type antiferromagnetic state of La0.45Sr0.55MnO3, to preferentially out of plane. We interpret our findings in terms of the different electronic charge transfers between the adjacent layers, confined to the unit cell in the case of insulating LaMnO3 and extended to a few unit cells in the case of conducting La0.45Sr0.55MnO3. Our work demonstrates an approach to growing ultrathin mixed-valence manganite films that are fully magnetically polarized from the single unit cell, paving the way to fully exploring the unique electronic properties of this class of strongly correlated oxide materials.
Collapse
Affiliation(s)
| | - Gyanendra Panchal
- Swiss Light Source, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Frithjof Nolting
- Swiss Light Source, Paul Scherrer Institut, Villigen 5232, Switzerland
| | - Carlos A. F. Vaz
- Swiss Light Source, Paul Scherrer Institut, Villigen 5232, Switzerland
| |
Collapse
|
2
|
De Luca G, Spring J, Kaviani M, Jöhr S, Campanini M, Zakharova A, Guillemard C, Herrero-Martin J, Erni R, Piamonteze C, Rossell MD, Aschauer U, Gibert M. Top-Layer Engineering Reshapes Charge Transfer at Polar Oxide Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203071. [PMID: 35841137 DOI: 10.1002/adma.202203071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Charge-transfer phenomena at heterointerfaces are a promising pathway to engineer functionalities absent in bulk materials but can also lead to degraded properties in ultrathin films. Mitigating such undesired effects with an interlayer reshapes the interface architecture, restricting its operability. Therefore, developing less-invasive methods to control charge transfer will be beneficial. Here, an appropriate top-interface design allows for remote manipulation of the charge configuration of the buried interface and concurrent restoration of the ferromagnetic trait of the whole film. Double-perovskite insulating ferromagnetic La2 NiMnO6 (LNMO) thin films grown on perovskite oxide substrates are investigated as a model system. An oxygen-vacancy-assisted electronic reconstruction takes place initially at the LNMO polar interfaces. As a result, the magnetic properties of 2-5 unit cell LNMO films are affected beyond dimensionality effects. The introduction of a top electron-acceptor layer redistributes the electron excess and restores the ferromagnetic properties of the ultrathin LNMO films. Such a strategy can be extended to other interfaces and provides an advanced approach to fine-tune the electronic features of complex multilayered heterostructures.
Collapse
Affiliation(s)
- Gabriele De Luca
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Jonathan Spring
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Moloud Kaviani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, 3012, Switzerland
| | - Simon Jöhr
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Marco Campanini
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Anna Zakharova
- Swiss Light Source, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Charles Guillemard
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290, Spain
| | - Javier Herrero-Martin
- ALBA Synchrotron Light Source, Carrer de la Llum 2-26, Cerdanyola del Vallès, 08290, Spain
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | | | - Marta D Rossell
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, 8600, Switzerland
| | - Ulrich Aschauer
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern, 3012, Switzerland
| | - Marta Gibert
- Department of Physics, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
3
|
Chen B, Jovanovic Z, Abel S, Le PTP, Halisdemir U, Smithers M, Diaz-Fernandez D, Spreitzer M, Fompeyrine J, Rijnders G, Koster G. Integration of Single Oriented Oxide Superlattices on Silicon Using Various Template Techniques. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42925-42932. [PMID: 32842731 PMCID: PMC7517711 DOI: 10.1021/acsami.0c10579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
To benefit from the diverse functionalities of perovskite oxides in silicon-based complementary metal oxide semiconductor (CMOS) technology, integrating oxides into a silicon platform has become one of the major tasks for oxide research. Using the deposition of LaMnO3/SrTiO3 (STO) superlattices (SLs) as a case study, we demonstrate that (001) single oriented oxide SLs can be integrated on Si using various template techniques, including a single-layer buffer of STO prepared by molecular beam epitaxy (MBE) and pulsed laser deposition, a multilayer buffer of Y-stabilized zirconia/CeO2/LaNiO3/STO, and STO-coated two-dimensional nanosheets of Ca2Nb3O10 (CNO) and reduced graphene oxide. The textured SL grown on STO-coated CNO nanosheets shows the highest crystallinity, owing to the small lattice mismatch between CNO and STO as well as less clamping from a Si substrate. The epitaxial SL grown on STO buffer prepared by MBE suffers the largest thermal strain, giving rise to a strongly suppressed saturation magnetization but an enhanced coercive field, as compared to the reference SL grown on an STO single crystal. These optional template techniques used for integrating oxides on Si are of significance to fulfill practical applications of oxide films in different fields.
Collapse
Affiliation(s)
- Binbin Chen
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Zoran Jovanovic
- Advanced
Materials Department, Jožef Stefan
Institute, 1000 Ljubljana, Slovenia
- Laboratory
of Physics, Vinca Institute of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia
| | - Stefan Abel
- IBM
Research-Zurich, 8803 Rüschlikon, Switzerland
- Lumiphase
AG, 8003 Zürich, Switzerland
| | - Phu Tran Phong Le
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Ufuk Halisdemir
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Mark Smithers
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | | | - Matjaž Spreitzer
- Advanced
Materials Department, Jožef Stefan
Institute, 1000 Ljubljana, Slovenia
| | - Jean Fompeyrine
- IBM
Research-Zurich, 8803 Rüschlikon, Switzerland
- Lumiphase
AG, 8003 Zürich, Switzerland
| | - Guus Rijnders
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Gertjan Koster
- MESA+
Institute for Nanotechnology, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
4
|
Sha H, Liang S, Liu L, Cheng Z, Zhu J, Yu R. Surface termination and stoichiometry of LaAlO 3(001) surface studied by HRTEM. Micron 2020; 137:102919. [PMID: 32763838 DOI: 10.1016/j.micron.2020.102919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/17/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
As an important topic of condensed matter physics, metal oxide surfaces often exhibit exotic properties such as high catalytic activity, enhanced ferroelectricity and electronic phase transition, originating from the different local symmetry with respect to the bulk. As the structure determination of oxide surfaces presents challenges to conventional surface science techniques like scanning tunneling microscopy, aberration-corrected transmission electron microscopy (TEM) has been increasingly used to solve structures of oxide surfaces. In this work, the (001) surface of LaAlO3, one of the most used components of oxide heterostructures, has been investigated. Our TEM experiments and extensive image simulations show that the La-O terminated LaAlO3(001) surface undergoes significant reconstructions, forming La vacancies on the surface layer. Energetically, the LaAlO3(001) surface is stable with the reconstructed La-O termination in a wide range of oxygen chemical potentials. Polarity compensation, reduced density of states at the Fermi level and bond enhancement of subsurface oxygen anions all contribute to the stabilization of the reconstructed surface.
Collapse
Affiliation(s)
- Haozhi Sha
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shiyou Liang
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Linhan Liu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhiying Cheng
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Zhu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Rong Yu
- National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials of Ministry of Education of China, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
5
|
Liu C, Zhang B, Yu X, Wu X, Chen P, Yang P, Yu X, Ding J, Chen J, Chow GM. Magnetoelectric Coupling Induced Orbital Reconstruction and Ferromagnetic Insulating State in PbZr 0.52Ti 0.48O 3/La 0.67Sr 0.33MnO 3 Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35588-35597. [PMID: 32614572 DOI: 10.1021/acsami.0c07319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Novel phenomena at the ferromagnetic/ferroelectric interface have generated much interest. Here, a ferromagnetic insulating state with the Curie temperature about 268-286 K in PbZr0.52Ti0.48O3/La0.67Sr0.33MnO3 heterostructures is induced and modulated by varying the PbZr0.52Ti0.48O3 thickness. An abnormally enlarged c/a ratio in La0.67Sr0.33MnO3 by strain-based coupling effect leads to d3z2-r2 orbital preferable occupancy. This orbital reconstruction modulates effective electron transfer and finally leads to a ferromagnetic insulating state. Valence change induced by charge-based coupling effect could be partially responsible for change in the Curie temperature in the strongly correlated electron system of La1-xSrxMnO3. This work provides a deeper understanding of strain effects near the ferromagnetic/ferroelectric interface, especially in a PbZr1-yTiyO3/La1-xSrxMnO3 heterostructure system.
Collapse
Affiliation(s)
- Chao Liu
- Department of Materials Science & Engineering, National University of Singapore, 117575 Singapore
| | - Bangmin Zhang
- Department of Materials Science & Engineering, National University of Singapore, 117575 Singapore
- School of Physics, Sun Yat-Sen University, Guangzhou, Guangdong 510275, China
| | - Xiaoqian Yu
- Department of Materials Science & Engineering, National University of Singapore, 117575 Singapore
| | - Xiaohan Wu
- Department of Materials Science & Engineering, National University of Singapore, 117575 Singapore
| | - Pingfan Chen
- Department of Materials Science & Engineering, National University of Singapore, 117575 Singapore
| | - Ping Yang
- Singapore Synchrotron Light Source, National University of Singapore, 117603 Singapore
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 117603 Singapore
| | - Jun Ding
- Department of Materials Science & Engineering, National University of Singapore, 117575 Singapore
| | - Jingsheng Chen
- Department of Materials Science & Engineering, National University of Singapore, 117575 Singapore
| | - Gan Moog Chow
- Department of Materials Science & Engineering, National University of Singapore, 117575 Singapore
| |
Collapse
|
6
|
Strain effect on orbital and magnetic structures of Mn ions in epitaxial Nd 0.35Sr 0.65MnO 3/SrTiO 3 films using X-ray diffraction and absorption. Sci Rep 2019; 9:5160. [PMID: 30914713 PMCID: PMC6435741 DOI: 10.1038/s41598-019-41433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/08/2019] [Indexed: 11/08/2022] Open
Abstract
This study probes the temperature-dependent strain that is strongly correlated with the orbital and magnetic structures of epitaxial films of Nd0.35Sr0.65MnO3 (NSMO) that are fabricated by pulsed laser deposition with two thicknesses, 17 (NS17) and 103 nm (NS103) on SrTiO3 (STO) substrate. This investigation is probed using X-ray diffraction (XRD) and absorption-based techniques, X-ray linear dichroism (XLD) and the X-ray magnetic circular dichroism (XMCD). XRD indicates a significant shift in the (004) peak position that is associated with larger strain in NS17 relative to that of NS103 at both 30 and 300 K. Experimental and atomic multiplet simulated temperature-dependent Mn L3,2-edge XLD results reveal that the stronger strain in a thinner NS17 film causes less splitting of Mn 3d eg state at low temperature, indicating an enhancement of orbital fluctuations in the band above the Fermi level. This greater Mn 3d orbital fluctuation can be the cause of both the enhanced ferromagnetism (FM) as a result of spin moments and the reduced Néel temperature of C-type antiferromagnetism (AFM) in NS17, leading to the FM coupling of the canted-antiferromagnetism (FM-cAFM) state in NSMO/STO epitaxial films at low temperature (T = 30 K). These findings are also confirmed by Mn L3,2-edge XMCD measurements.
Collapse
|
7
|
Wu L, Li C, Ma J, Nan C, Wang XR. The role of strain and polar discontinuity in magnetism in LaMnO 3/SrTiO 3/LaAlO 3 (0 0 1) heterostructures. Sci Bull (Beijing) 2018; 63:949-951. [PMID: 36658889 DOI: 10.1016/j.scib.2018.06.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/24/2018] [Accepted: 06/01/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Liang Wu
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Changjian Li
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Jing Ma
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Cewen Nan
- School of Materials Science and Engineering, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - X Renshaw Wang
- School of Physical and Mathematical Sciences & School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 637371, Singapore.
| |
Collapse
|