1
|
Wang Y, Villalobos LF, Liang L, Zhu B, Li J, Chen C, Bai Y, Zhang C, Dong L, An QF, Meng H, Zhao Y, Elimelech M. Scalable weaving of resilient membranes with on-demand superwettability for high-performance nanoemulsion separations. SCIENCE ADVANCES 2024; 10:eadn3289. [PMID: 38924410 PMCID: PMC11204282 DOI: 10.1126/sciadv.adn3289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 06/28/2024]
Abstract
This study leverages the ancient craft of weaving to prepare membranes that can effectively treat oil/water mixtures, specifically challenging nanoemulsions. Drawing inspiration from the core-shell architecture of spider silk, we have engineered fibers, the fundamental building blocks for weaving membranes, that feature a mechanically robust core for tight weaving, coupled with a CO2-responsive shell that allows for on-demand wettability adjustments. Tightly weaving these fibers produces membranes with ideal pores, achieving over 99.6% separation efficiency for nanoemulsions with droplets as small as 20 nm. They offer high flux rates, on-demand self-cleaning, and can switch between sieving oil and water nanodroplets through simple CO2/N2 stimulation. Moreover, weaving can produce sufficiently large membranes (4800 cm2) to assemble a module that exhibits long-term stability and performance, surpassing state-of-the-art technologies for nanoemulsion separations, thus making industrial application a practical reality.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Luis Francisco Villalobos
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, USA
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, P. R. China
| | - Bo Zhu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
| | - Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Chen Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Quan-Fu An
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hong Meng
- State Key Laboratory of Chemistry and Utilization of Carbon-based Energy Resources Institution, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yue Zhao
- Département de Chimie, Université de Sherbrooke; Sherbrooke, QC J1K 2R1, Canada
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Yang L, Sun Y, Yu R, Huang P, Zhou Q, Yang H, Lin S, Zeng H. Urchin-like CO 2-responsive magnetic microspheres for highly efficient organic dye removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134101. [PMID: 38522196 DOI: 10.1016/j.jhazmat.2024.134101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
CO2-responsive materials have emerged as promising adsorbents for the remediation of refractory organic dyes-contaminated wastewater without the formation of byproducts or causing secondary pollution. However, realizing the simultaneous adsorption-separation or complete removal of both anionic and cationic dyes, as well as achieving deeper insights into their adsorption mechanism, still remains a challenge for most reported CO2-responsive materials. Herein, a novel type of urchin-like CO2-responsive Fe3O4 microspheres (U-Fe3O4 @P) has been successfully fabricated to enable ultrafast, selective, and reversible adsorption of anionic dyes by utilizing CO2 as a triggering gas. Meanwhile, the CO2-responsive U-Fe3O4 @P microspheres exhibit the capability to initiate Fenton degradation of non-adsorbable cationic dyes. Our findings reveal exceptionally rapid adsorption equilibrium, achieved within a mere 5 min, and an outstanding maximum adsorption capacity of 561.2 mg g-1 for anionic dye methyl orange upon CO2 stimulation. Moreover, 99.8% of cationic dye methylene blue can be effectively degraded through the Fenton reaction. Furthermore, the long-term unresolved interaction mechanism of organic dyes with CO2-responsive materials is deciphered through a comprehensive experimental and theoretical study by density functional theory. This work provides a novel paradigm and guidance for designing next-generation eco-friendly CO2-responsive materials for highly efficient purification of complex dye-contaminated wastewater in environmental engineering.
Collapse
Affiliation(s)
- Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Ruiquan Yu
- Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, PR China
| | - Pan Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Qi Zhou
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Haoyu Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Shaojian Lin
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
3
|
Huang J, Ran X, Sun L, Bi H, Wu X. Recent advances in membrane technologies applied in oil-water separation. DISCOVER NANO 2024; 19:66. [PMID: 38619656 PMCID: PMC11018733 DOI: 10.1186/s11671-024-04012-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024]
Abstract
Effective treatment of oily wastewater, which is toxic and harmful and causes serious environmental pollution and health risks, has become an important research field. Membrane separation technology has emerged as a key area of investigation in oil-water separation research due to its high separation efficiency, low costs, and user-friendly operation. This review aims to report on the advances in the research of various types of separation membranes around emulsion permeance, separation efficiency, antifouling efficiency, and stimulus responsiveness. Meanwhile, the challenges encountered in oil-water separation membranes are examined, and potential research avenues are identified.
Collapse
Affiliation(s)
- Jialu Huang
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Xu Ran
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Collaborative Innovation Center for Micro/Nano Fabrication, Device and System, Southeast University, Nanjing, 210096, China
| | - Hengchang Bi
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| | - Xing Wu
- In Situ Devices Center, School of Integrated Circuits, East China Normal University, Dongchuan Road, Shanghai, 200241, China.
| |
Collapse
|
4
|
Karatum O, Steiner SA, Plata DL. Developing aerogel surfaces via switchable-hydrophilicity tertiary amidine coating for improved oil recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163062. [PMID: 36966829 DOI: 10.1016/j.scitotenv.2023.163062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 05/27/2023]
Abstract
Blanket aerogels (i.e., Cabot™ Thermal Wrap® (TW) and Aspen™ Spaceloft® (SL)) with surfaces that have controllable wettability are promising advanced materials for oil recovery applications, where high oil uptake during deployment could be coupled with high oil release to enable reusability of recovered oil. The study presented here details the preparation of CO2-switchable aerogel surfaces through the application of switchable tertiary amidine (i.e., tributylpentanamidine (TBPA)) onto aerogel surfaces using drop casting, dip coating, and physical vapor deposition techniques. TBPA is synthesized via two step processes: (1) synthesis of N, N-dibutylpentanamide, (2) synthesis of N, N-tributylpentanamidine. The deposition of TBPA is confirmed by X-ray photoelectron spectroscopy. Our experiments revealed that surface coating of TBPA onto aerogel blankets was partially successful within limited set of process conditions (e.g., 290 ppm CO2 and 5500 ppm humidity for PVD, 106 ppm CO2 and 700 ppm humidity for drop casting and dip coating), but that the post-aerogel modification strategies yielded poor, heterogeneous reproducibility. Overall, more than 40 samples were tested for their switchability in the presence of CO2 and water vapor, respectively, and the success rate was 6.25 %, 11.7 % and 18 % for PVD, drop casting, and dip coating, respectively. The most likely reasons for unsuccessful coating onto aerogel surfaces are: (1) the heterogeneous fiber structure of the aerogel blankets, (2) poor distribution of the TBPA over the aerogel blanket surface.
Collapse
Affiliation(s)
- Osman Karatum
- Department of Chemical and Environmental Engineering, Mason Laboratory, Yale University, New Haven, CT 06511, USA.
| | | | - Desiree L Plata
- Department of Chemical and Environmental Engineering, Mason Laboratory, Yale University, New Haven, CT 06511, USA; Department of Civil and Environmental Engineering, 15 Vassar Street, Bldg 48, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Huang T, Su Z, Hou K, Zeng J, Zhou H, Zhang L, Nunes SP. Advanced stimuli-responsive membranes for smart separation. Chem Soc Rev 2023. [PMID: 37184537 DOI: 10.1039/d2cs00911k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Membranes have been extensively studied and applied in various fields owing to their high energy efficiency and small environmental impact. Further conferring membranes with stimuli responsiveness can allow them to dynamically tune their pore structure and/or surface properties for efficient separation performance. This review summarizes and discusses important developments and achievements in stimuli-responsive membranes. The most commonly utilized stimuli, including light, pH, temperature, ions, and electric and magnetic fields, are discussed in detail. Special attention is given to stimuli-responsive control of membrane pore structure (pore size and porosity/connectivity) and surface properties (wettability, surface topology, and surface charge), from the perspective of determining the appropriate membrane properties and microstructures. This review also focuses on strategies to prepare stimuli-responsive membranes, including blending, casting, polymerization, self-assembly, and electrospinning. Smart applications for separations are also reviewed as well as a discussion of remaining challenges and future prospects in this exciting field. This review offers critical insights for the membrane and broader materials science communities regarding the on-demand and dynamic control of membrane structures and properties. We hope that this review will inspire the design of novel stimuli-responsive membranes to promote sustainable development and make progress toward commercialization.
Collapse
Affiliation(s)
- Tiefan Huang
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Zhixin Su
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Kun Hou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Jianxian Zeng
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Hu Zhou
- Functional Membrane Materials Engineering Research Center of Hunan Province, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China.
| | - Lin Zhang
- Engineering Research Center of Membrane and Water Treatment of MOE, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.
- Academy of Ecological Civilization, Zhejiang University, Hangzhou, 310058, China
| | - Suzana P Nunes
- King Abdullah University of Science and Technology (KAUST), Nanostructured Polymeric Membranes Laboratory, Advanced Membranes and Porous Materials Center, Biological and Environmental Science and Engineering Division (BESE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
6
|
Jansen-van Vuuren RD, Naficy S, Ramezani M, Cunningham M, Jessop P. CO 2-responsive gels. Chem Soc Rev 2023; 52:3470-3542. [PMID: 37128844 DOI: 10.1039/d2cs00053a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CO2-responsive materials undergo a change in chemical or physical properties in response to the introduction or removal of CO2. The use of CO2 as a stimulus is advantageous as it is abundant, benign, inexpensive, and it does not accumulate in a system. Many CO2-responsive materials have already been explored including polymers, latexes, surfactants, and catalysts. As a sub-set of CO2-responsive polymers, the study of CO2-responsive gels (insoluble, cross-linked polymers) is a unique discipline due to the unique set of changes in the gels brought about by CO2 such as swelling or a transformed morphology. In the past 15 years, CO2-responsive gels and self-assembled gels have been investigated for a variety of emerging potential applications, reported in 90 peer-reviewed publications. The two most widely exploited properties include the control of flow (fluids) via CO2-triggered aggregation and their capacity for reversible CO2 absorption-desorption, leading to applications in Enhanced Oil Recovery (EOR) and CO2 sequestration, respectively. In this paper, we review the preparation, properties, and applications of these CO2-responsive gels, broadly classified by particle size as nanogels, microgels, aerogels, and macrogels. We have included a section on CO2-induced self-assembled gels (including poly(ionic liquid) gels).
Collapse
Affiliation(s)
- Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, Centre for Excellence in Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, NSW 2006, Australia
| | - Maedeh Ramezani
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| | - Michael Cunningham
- Department of Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Philip Jessop
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| |
Collapse
|
7
|
Wang Y, Yang S, Zhang J, Chen Z, Zhu B, Li J, Liang S, Bai Y, Xu J, Rao D, Dong L, Zhang C, Yang X. Scalable and switchable CO 2-responsive membranes with high wettability for separation of various oil/water systems. Nat Commun 2023; 14:1108. [PMID: 36849553 PMCID: PMC9970982 DOI: 10.1038/s41467-023-36685-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023] Open
Abstract
Smart membranes with responsive wettability show promise for controllably separating oil/water mixtures, including immiscible oil-water mixtures and surfactant-stabilized oil/water emulsions. However, the membranes are challenged by unsatisfactory external stimuli, inadequate wettability responsiveness, difficulty in scalability and poor self-cleaning performance. Here, we develop a capillary force-driven confinement self-assembling strategy to construct a scalable and stable CO2-responsive membrane for the smart separation of various oil/water systems. In this process, the CO2-responsive copolymer can homogeneously adhere to the membrane surface by manipulating the capillary force, generating a membrane with a large area up to 3600 cm2 and excellent switching wettability between high hydrophobicity/underwater superoleophilicity and superhydrophilicity/underwater superoleophobicity under CO2/N2 stimulation. The membrane can be applied to various oil/water systems, including immiscible mixtures, surfactant-stabilized emulsions, multiphase emulsions and pollutant-containing emulsions, demonstrating high separation efficiency (>99.9%), recyclability, and self-cleaning performance. Due to robust separation properties coupled with the excellent scalability, the membrane shows great implications for smart liquid separation.
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Shaokang Yang
- School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Jingwei Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Bo Zhu
- Key Laboratory of Eco-textiles, Ministry of Education, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Shijing Liang
- National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Yunxiang Bai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, P. R. China
| | - Dewei Rao
- School of Materials Science and Engineering, Jiangsu University, 212013, Zhenjiang, P. R. China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China.
| | - Chunfang Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, P. R. China
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Ye X, Zhou J, Zhang C, Wang Y. Controlled biomolecules separation by CO2-responsive block copolymer membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Gong Z, Wang Y, Yan Q. Polymeric partners breathe together: using gas to direct polymer self-assembly via gas-bridging chemistry. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Zhang C, Zhou J, Ye X, Li Z, Wang Y. CO2-responsive membranes prepared by selective swelling of block copolymers and their behaviors in protein ultrafiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.119928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Sun Y, Liu Y, Zhang X, Zhang W, Wang X, Yue Y, Guo J, Yu Y. A CO2-stimulus responsive PVDF/PVDF-g-PDEAEMA blend membrane capable of cleaning protein foulants by alternate aeration of N2/CO2. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Yang L, Zhan Y, Yu R, Lan J, Shang J, Dou B, Liu H, Zou R, Lin S. Facile and Scalable Fabrication of Antibacterial CO 2-Responsive Cotton for Ultrafast and Controllable Removal of Anionic Dyes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:2694-2709. [PMID: 33400496 DOI: 10.1021/acsami.0c19750] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel CO2-responsive cotton as an eco-friendly adsorbent derived from poly(4-acryloyloxybenzophenone-co-2-(dimethylamino) ethyl methacrylate) and cotton was fabricated via a facile and fast dip-coating method. As expected, upon CO2 stimulation, the protonated cotton presented CO2-induced "on-off" selective adsorption behaviors toward anionic dyes owing to electrostatic interactions. The adsorption isotherms and kinetics of the CO2-responsive cotton toward anionic dyes obeyed the Langmuir isotherm and pseudo-second-order kinetics models, respectively. It is noteworthy that the CO2-responsive cotton exhibited high adsorption capacity and ultrafast adsorption rate toward anionic dyes with the maximum adsorption capacities of 1785.71 mg g-1 for methyl orange (MO), 1108.65 mg g-1 for methyl blue (MB), and 1315.79 mg g-1 for naphthol green B (NGB), following the adsorption equilibrium times of 5 min for MO, 3 min for MB, and 4 min for NGB. Moreover, the CO2-responsive cotton also exhibited high removal efficiency toward anionic dyes in synthetic dye effluent. Additionally, the CO2-responsive cotton could be facilely regenerated via heat treatment under mild conditions and presented stable adsorption properties even after 15 cycles. Finally, the as-prepared CO2-responsive cotton exhibited outstanding antibacterial activity against E. coli and S. aureus. In summary, this novel CO2-responsive cotton can be viewed as a promising eco-friendly adsorbent material for potential scalable application in dye-contaminated wastewater remediation.
Collapse
Affiliation(s)
- Lin Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yifei Zhan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Ruiquan Yu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jiaojiao Shang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| | - Baojie Dou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Hongyu Liu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Rui Zou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
13
|
A CO2-responsive PAN/PAN-co-PDEAEMA membrane capable of cleaning protein foulant without the aid of chemical agents. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
He N, Chen X, Wen J, Cao Q, Li Y, Wang L. Carbon Dioxide and Nitrogen-Modulated Shape Transformation of Chitosan-Based Composite Nanogels. ACS OMEGA 2019; 4:21018-21026. [PMID: 31867493 PMCID: PMC6921259 DOI: 10.1021/acsomega.9b02325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/18/2019] [Indexed: 05/20/2023]
Abstract
Chitosan/poly[N-(3-(dimethylamino)propyl)methacrylamide]/poly(acrylic acid) (CS/PDMAPMA/PAA) composite nanogels (CPACNGs) were fabricated in the solution of chitosan by surfactant-free emulsion polymerization. N-(3-(Dimethylamino)propyl)methacrylamide (DMAPMA) and acrylic acid (AA) were initiated by 2,2'-azobis-2-methyl-propanimidamide to graft from the backbone of chitosan. Nanogels were formed by noncovalent forces, including of hydrogen bonds, hydrophobic, and electrostatic interaction. Nanogels were characterized by transmission electron microscopy, scanning electron microscope dynamic light scattering, X-ray photoelectron spectroscopy, Fourier transform infrared spectrometer spectra, and 1H NMR. Spherical nanoparticles were observed in the latex system. Nanogels exhibited an excellent CO2 responsivity and CO2/N2 reversible response and switchability and had a faster response rate. The morphological shape transformation of nanogels was modulated by bubbling with CO2 and N2. The responsive mechanism was explored by determining the pH and electrical conductivity. In addition, nanogels were successfully emulsified by bubbling with CO2, and then a phase transition was achieved by bubbling with N2 in the organic solvent/water mixture.
Collapse
Affiliation(s)
- Naipu He
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Xiunan Chen
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Jing Wen
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Qi Cao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Yuhong Li
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Li Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| |
Collapse
|
15
|
Tang J, Cao S, Wang J. CO 2-switchable Pickering emulsions: efficient and tunable interfacial catalysis for alcohol oxidation in biphasic systems. Chem Commun (Camb) 2019; 55:11079-11082. [PMID: 31460528 DOI: 10.1039/c9cc04947a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CO2-responsive Pickering emulsions were fabricated on the basis of polymeric nanoaggregates with adjustable surface wettability. The static Pickering emulsion system provides an efficient and sustainable platform for in situ separation and reuse of catalysts in biphasic reactions.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shixiong Cao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang Province Key Laboratory of Biofuel, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
16
|
Jiang B, Zhang Y, Huang X, Kang T, Severtson SJ, Wang WJ, Liu P. Tailoring CO2-Responsive Polymers and Nanohybrids for Green Chemistry and Processes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b02433] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bingxue Jiang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Yuchen Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Xiaodong Huang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Ting Kang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| | - Steven J. Severtson
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, 2004 Folwell Avenue, St. Paul, Minnesota 55108, United States
| | - Wen-Jun Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Pingwei Liu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
- Institute of Zhejiang University - Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
17
|
Tang J, Zhou X, Cao S, Zhu L, Xi L, Wang J. Pickering Interfacial Catalysts with CO 2 and Magnetic Dual Response for Fast Recovering in Biphasic Reaction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:16156-16163. [PMID: 30964259 DOI: 10.1021/acsami.9b00821] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pickering interfacial catalysis provides an excellent platform for biphasic reactions, but the separation and recycling of nanocatalysts is a challenge because of high adsorption energy of nanocatalysts at the liquid-liquid interface. In this work, we represent a new type of versatile Pickering emulsion based on magnetic and CO2-responsive nanohybrids Fe3O4@SiO2@P(TMA-DEA). The smart nanoparticles can stabilize the water-in-oil Pickering emulsion in the biphasic system and achieve the subsequent demulsification by bubbling CO2 ascribed to their reversible switching surface. In the absence of energy barrier, the nanohybrids can be easily captured in situ by magnetic field in 2 min and showed excellent recyclability. In the Anelli system for alcohol oxidation, the nanocatalyst exhibited threefold enhancement in catalytic efficiency in comparison with an unemulsified two-phase and little loss on activity after five cycles. The conceptually novel dual-responsive system offers a green and energy-saving strategy for effective recycling of the nanocatalyst and intensification of biphasic reaction.
Collapse
Affiliation(s)
- Jun Tang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Xue Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Shixiong Cao
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Lingyu Zhu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Lingling Xi
- Department of Chemistry , Zhejiang University , Xixi Campus , Hangzhou 310028 , China
| | - Jianli Wang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Biodiesel Laboratory of China Petroleum and Chemical Industry Federation, Zhejiang Province Key Laboratory of Biofuel, College of Chemical Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| |
Collapse
|
18
|
Li Y, Zhu L, Grishkewich N, Tam KC, Yuan J, Mao Z, Sui X. CO 2-Responsive Cellulose Nanofibers Aerogels for Switchable Oil-Water Separation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:9367-9373. [PMID: 30735345 DOI: 10.1021/acsami.8b22159] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cellulose nanofibers (CNFs) aerogels with controllable surface wettability were prepared by grafting poly( N, N-dimethylamino-2-ethyl methacrylate) (PDMAEMA) polymer brushes via surface-initiated atom-transfer radical polymerization. After grafting PDMAEMA polymer, the surface of the aerogel was hydrophobic. However, in the presence of CO2, the surface of the aerogel gradually changes from hydrophobic to hydrophilic. The porous structure and CO2-responsiveness of PDMAEMA brushes within the CNFs aerogels allowed for the on-off switching of the oil-water mixture separation process. These CNFs aerogels were recyclable and displayed attractive separation efficiency for oil-water mixture and surfactant-stabilized emulsions. Furthermore, the switchable surface wettability holds an advantage of avoiding oil-fouling, which will greatly improve its recyclability.
Collapse
Affiliation(s)
- Yingzhan Li
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | | | - Nathan Grishkewich
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Kam C Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , ON N2L 3G1 , Canada
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics & Engineering Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | | | | |
Collapse
|
19
|
Lin S, Shang J, Theato P. Facile Fabrication of CO 2-Responsive Nanofibers from Photo-Cross-Linked Poly(pentafluorophenyl acrylate) Nanofibers. ACS Macro Lett 2018; 7:431-436. [PMID: 35619338 DOI: 10.1021/acsmacrolett.8b00115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CO2-responsive nanofibers were facilely prepared from photo-cross-linked poly(pentafluorophenyl acrylate) (PPFPA) nanofibers via "amine-active ester" chemical modification. Photo-cross-linked PPFPA nanofibers were modified with histamine under mild conditions to generate cross-linked poly(histamine acrylamide) (PHAAA) nanofibers featuring a CO2 responsiveness. As expected, the prepared cross-linked PHAAA nanofibers can exhibit a CO2-responsive behavior to induce a reversible transition from hydrophobic to hydrophilic upon alternating addition and removal of CO2 on the surface of nanofibrous membranes. Based on this finding, we could demonstrate that cross-linked PHAAA nanofibers can be employed for reversible absorption and release of protein using bovine serum albumin (BSA) as a model.
Collapse
Affiliation(s)
- Shaojian Lin
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Jiaojiao Shang
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146 Hamburg, Germany
- Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Engesser Str. 18, D-76131 Karlsruhe, Germany
| |
Collapse
|