1
|
Chai Z, Gu T, Beau A, Bolze F, Gros CP, Liang X, Shi D, Xu H. Thieno[3,2- b]thiophene-based bridged BODIPY dimers: synthesis, electrochemistry, and one- and two-photon photophysical properties. Dalton Trans 2025; 54:674-682. [PMID: 39564774 DOI: 10.1039/d4dt02655a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Four BODIPY dyes (6a-6d) with electron-donating or electron-withdrawing groups at the meso-position were synthesized by the Sonogashira coupling reaction of 2,5-diethynylthieno[3,2-b]thiophene with mono-iodo-BODIPY moieties. All compounds were fully characterized by 1H NMR and MALDI-TOF MS. Their photophysical and electrochemical properties were studied by UV-visible absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy, two-photon excitation spectroscopy and cyclic voltammetry. These conjugated dyes exhibit interesting photophysical properties such as a high molar extinction coefficient, large Stokes shift and high two-photon absorption cross section σ2.
Collapse
Affiliation(s)
- Zhiyong Chai
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Tingting Gu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Annaelle Beau
- ChémoBiologie Synthétique et Thérapeutique (UMR 7199 CNRS-University of Strasbourg), Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France.
| | - Frédéric Bolze
- ChémoBiologie Synthétique et Thérapeutique (UMR 7199 CNRS-University of Strasbourg), Faculté de Pharmacie, 74 route du Rhin, 67401 Illkirch, France.
| | - Claude P Gros
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne, 9 Avenue Alain Savary, 21000 Dijon, France.
| | - Xu Liang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Donghai Shi
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, Key Laboratory of Forestry Genetics & Biotechnology of Ministry of Education, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453002, China
| |
Collapse
|
2
|
Das S, Rout Y, Poddar M, Alsaleh AZ, Misra R, D'Souza F. Novel Benzothiadiazole-based Donor-Acceptor Systems: Synthesis, Ultrafast Charge Transfer and Separation Dynamics. Chemistry 2024; 30:e202401959. [PMID: 38975973 DOI: 10.1002/chem.202401959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Near-infrared (NIR) absorbing electron donor-acceptor (D-A) chromophores have been at the forefront of current energy research owing to their facile charge transfer (CT) characteristics, which are primitive for photovoltaic applications. Herein, we have designed and developed a new set of benzothiadiazole (BTD)-based tetracyanobutadiene (TCBD)/dicyanoquinodimethane (DCNQ)-embedded multimodular D-A systems (BTD1-BTD6) and investigated their inherent photo-electro-chemical responses for the first time having identical and mixed terminal donors of variable donicity. Apart from poor luminescence, the appearance of broad low-lying optical transitions extendable even in the NIR region (>1000 nm), particularly in the presence of the auxiliary acceptors, are indicative of underlying nonradiative excited state processes leading to robust intramolecular CT and subsequent charge separation (CS) processes in these D-A constructs. While electrochemical studies identify the moieties involved in these photo-events, orbital delocalization and consequent evidence for the low-energy CT transitions have been achieved from theoretical calculations. Finally, the spectral and temporal responses of different photoproducts are obtained from femtosecond transient absorption studies, which, coupled with spectroelectrochemical data, identify broad NIR signals as CS states of the compounds. All the systems are found to be susceptible to ultrafast (~ps) CT and CS before carrier recombination to the ground state, which is, however, significantly facilitated after incorporation of the secondary TCBD/DCNQ acceptors, leading to faster and thus efficient CT processes, particularly in polar solvents. These findings, including facile CT/CS and broad and intense panchromatic absorption over a wide window of the electromagnetic spectrum, are likely to expand the horizons of BTD-based multimodular CT systems to revolutionize the realm of solar energy conversion and associated photonic applications.
Collapse
Affiliation(s)
- Somnath Das
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| | - Yogajivan Rout
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Madhurima Poddar
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Ajyal Z Alsaleh
- Chemistry Department, Science College, Imam Abdulrahman bin Faisal University, Dammam, 34212, Saudi Arabia
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology-Indore, Indore, 453552, India
| | - Francis D'Souza
- Department of Chemistry, University of North Texas, 1155 Union Circle, #305070, Denton, TX, 76203-5017, USA
| |
Collapse
|
3
|
Rajagopalan R, Shankar S S, Balasubramaniyan N, Mahaan R, John Bosco A, Sharma GD. Halogenation Strategy: Simple Wide Band Gap Nonfullerene Acceptors with the BODIPY-Thiophene-Backboned Polymer Donor for Enhanced Outdoor and Indoor Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45265-45274. [PMID: 39151106 DOI: 10.1021/acsami.4c08769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
Researchers have been motivated to develop photovoltaic systems that can efficiently convert artificial light into power with the growing use of indoor electrical devices for the Internet of Things. Understanding the impact of molecular design strategies involving morphological optimization through the terminal group of the non-fullerene acceptors (NFAs) is crucial. This is critically important to enhancing the photovoltaic efficiency of organic photovoltaic devices under diverse irradiation conditions. Halogenation of terminal groups proves to be a standout approach for adjusting energy levels, refining light-harvesting capabilities, crystallinity, and bolstering the intermolecular stacking in NFAs. Herein, we have designed two simple NFAs, DICTF-4F and DICTF-4Cl, to explore the dihalogenation (F and Cl) effect on the terminal group on the optical and electrochemical properties. After combining with the BODIPY-thiophene-backboned donor polymer P(BdP-HT), the organic solar cells (OSCs) using an optimized active layer with P(BdP-HT):DICTF-4F and P(BdP-HT):DICTF-4Cl attained a power conversion efficiency (PCE) of about 8.03 and 14.16%, respectively, under 1 sun illumination. Moreover, the OSC-based P(BdP-HT):DICTF-4Cl active layer showed a PCE approaching 24% under 1000 lx indoor conditions.
Collapse
Affiliation(s)
- Raman Rajagopalan
- Advanced Organic Chemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Shyam Shankar S
- Department of Physics, the LNM Institute of Information Technology, Jamdoli, Jaipur 302031, Rajasthan, India
| | - Natarajan Balasubramaniyan
- Advanced Organic Chemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ramalingam Mahaan
- Advanced Materials Chemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Aruljothy John Bosco
- Advanced Materials Chemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ganesh D Sharma
- Department of Physics, the LNM Institute of Information Technology, Jamdoli, Jaipur 302031, Rajasthan, India
- Department of Electronic and Communication Engineering, the LNM Institute of Information Technology, Jamdoli, Jaipur 302031, Rajasthan, India
| |
Collapse
|
4
|
Yang L, Yan W, Yang N, Wang G, Bi Y, Tian C, Liu H, Zhu X. Regulating π-Conjugation in sp 2 -Carbon-Linked Covalent Organic Frameworks for Efficient Metal-Free CO 2 Photoreduction with H 2 O. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208118. [PMID: 36965021 DOI: 10.1002/smll.202208118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The development of sp2 -carbon-linked covalent organic frameworks (sp2 c-COFs) as artificial photocatalysts for solar-driven conversion of CO2 into chemical feedstock has captured growing attention, but catalytic performance has been significantly limited by their intrinsic organic linkages. Here, a simple, yet efficient approach is reported to improve the CO2 photoreduction on metal-free sp2 c-COFs by rationally regulating their intrinsic π-conjugation. The incorporation of ethynyl groups into conjugated skeletons affords a significant improvement in π-conjugation and facilitates the photogenerated charge separation and transfer, thereby boosting the CO2 photoreduction in a solid-gas mode with only water vapor and CO2 . The resultant CO production rate reaches as high as 382.0 µmol g-1 h-1 , ranking at the top among all additive-free CO2 photoreduction catalysts. The simple modulation approach not only enables to achieve enhanced CO2 reduction performance but also simultaneously gives a rise to extend the understanding of structure-property relationship and offer new possibilities for the development of new π-conjugated COF-based artificial photocatalysts.
Collapse
Affiliation(s)
- Lan Yang
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenkai Yan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Na Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, 215000, P. R. China
| | - Guofeng Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, 215000, P. R. China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Chengcheng Tian
- School of Resources and Environment Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiang Zhu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Suzhou, 215000, P. R. China
| |
Collapse
|
5
|
Rajagopalan R, Shankar S S, Balasubramaniyan N, Sharma GD. Simple and Efficient Acceptor-Donor-Acceptor-Type Non-fullerene Acceptors for a BODIPY-Thiophene-Backboned Polymer Donor for High-Performance Indoor Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:13405-13414. [PMID: 36857615 DOI: 10.1021/acsami.2c23048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Herein, simple acceptor-donor-acceptor (A-D-A)-type small molecules denoted as DICTF and DRCTF with modification in terminal units were synthesized and used as electron acceptors. With the tuning of the electron-withdrawing units in electron acceptors, their photovoltaic properties were investigated when combined with low-band-gap BODIPY-thiophene-backboned donor material, named P(BdP-HT). The P(BdP-HT):DICTF-based organic solar cells (OSCs) displayed excellent efficiency of around 11.94%, which is superior to the P(BdP-HT):DRCTF counterpart (8.78%). Although the open-circuit voltage (VOC) of the P(BdP-HT):DRCTF-based OSC is greater than that for the P(BdP-HT):DICTF counterpart, the rise in the short-circuit current density (JSC) may be attributed to the fact that the P(BdP-HT):DICTF blend displayed impressive panchromatic absorption compared to P(BdP-HT):DRCTF. The improved fill factor (FF) is responsible for the balanced transport of charges in the P(BdP-HT):DICTF-based device. Moreover, the P(BdP-HT):DRCTF- and P(BdP-HT):DICTF-based OSCs showed 17.68 and 21.84%, respectively, under indoor illumination (1000 lx). To the best of our observation, this might be the first report on BODIPY-based donors with power conversion efficiency (PCE) of 21.84% under indoor illumination conditions.
Collapse
Affiliation(s)
- Raman Rajagopalan
- Advanced Organic Chemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Shyam Shankar S
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur, Rajasthan 302031, India
| | - Natarajan Balasubramaniyan
- Advanced Organic Chemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ganesh D Sharma
- Department of Physics, The LNM Institute of Information Technology, Jamdoli, Jaipur, Rajasthan 302031, India
- Department of Electronic and Communication Engineering, The LNM Institute of Information Technology, Jamdoli, Jaipur, Rajasthan 302031, India
| |
Collapse
|
6
|
Song X, Xu Y, Tao X, Gao X, Wu Y, Yu R, He Y, Tao Y. BODIPY Cored A-D-A'-D-A Type Nonfused-Ring Electron Acceptor for Efficient Polymer Solar Cells. Macromol Rapid Commun 2022; 43:e2100828. [PMID: 35032076 DOI: 10.1002/marc.202100828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/05/2022] [Indexed: 11/11/2022]
Abstract
In this work, boron dipyrromethene (BODIPY) is for the first time employed as electron-deficient core (A') to construct an A-D-A'-D-A type nonfused-ring electron acceptor (NFREA) for polymer solar cells (PSCs). Among, cyclopentadithiophene (CPDT) and fluorinated dicyanoindanone (DFIC) are involved as electron-donating (D) bridges and terminal A groups, respectively. Bearing with the steric BODIPY core, tMBCIC exhibits twisted configuration with dihedral angles >45o between BODIPY and CPDT bridges. Thus, compared with the BODIPY-free planar A-D-D-A structured bCIC, reduced aggregation, weakened intramolecular D-A interactions with up-shifted LUMO by 0.4 eV as well as blue-shifted absorption by up to 150 nm is observed in tMBCIC. Moreover, owing to the intrinsic large molar extinction coefficient from BODIPY, promoted light-harvest ability is achieved for tMBCIC, particularly in its blend films. Therefore, PSCs by using PBDB-T as donor, tMBCIC as NFREA afford superior power conversion efficiency (PCE) of 9.22% and higher open-circuit voltage (Voc ) of 0.954 V compared to 4.47% and 0.739 V from bCIC-devices. Moreover, compared to other BODIPY-flanked electron acceptors (<5%) reported so far, BODIPY-cored tMBCIC realizes a remarkable progress in PCE. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiaochen Song
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yuanyuan Xu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xianwang Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yijing Wu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruitao Yu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yinming He
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
7
|
Miao J, Wang Y, Liu J, Wang L. Organoboron molecules and polymers for organic solar cell applications. Chem Soc Rev 2021; 51:153-187. [PMID: 34851333 DOI: 10.1039/d1cs00974e] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Organic solar cells (OSCs) are emerging as a new photovoltaic technology with the great advantages of low cost, light-weight, flexibility and semi-transparency. They are promising for portable energy-conversion products and building-integrated photovoltaics. Organoboron chemistry offers an important toolbox to design novel organic/polymer optoelectronic materials and to tune their optoelectronic properties for OSC applications. At present, organoboron small molecules and polymers have become an important class of organic photovoltaic materials. Power conversion efficiencies (PCEs) of 16% and 14% have been realized with organoboron polymer electron donors and electron acceptors, respectively. In this review, we summarize the research progress in various kinds of organoboron photovoltaic materials for OSC applications, including organoboron small molecular electron donors, organoboron small molecular electron acceptors, organoboron polymer electron donors and organoboron polymer electron acceptors. This review also discusses how to tune their opto-electronic properties and active layer morphology for enhancing OSC device performance. We also offer our insight into the opportunities and challenges in improving the OSC device performance of organoboron photovoltaic materials.
Collapse
Affiliation(s)
- Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Yinghui Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China. .,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
8
|
Li R, Yuan Y, Liang L, Lu J, Cui CX, Niu H, Wu Z, Liu G, Hu Z, Xie R, Huang F, Zhang Y. Cu( ii)-Porphyrin based near-infrared molecules: synthesis, characterization and photovoltaic application. NEW J CHEM 2021. [DOI: 10.1039/d0nj04800c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Three novel Cu(ii)-porphyrin-based near-infrared non-fullerene acceptors were developed, which show strong intramolecular charge transfer absorption spectra.
Collapse
|
9
|
Li F, Yu Y, Lv H, Cai G, Zhang Y. Synthesis of thermo-sensitive polymers with super narrow molecular weight distributions: PET-RAFT polymerization of N-isopropyl acrylamide mediated by cross-linked zinc porphyrins with high active site loadings. Polym Chem 2021. [DOI: 10.1039/d0py01643h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To overcome the aggregation of porphyrins and realize heterogeneous photo-catalysis with high active site loadings, twisted ZnTHP–Me2Si and layered ZnTHP–Ph2Si are prepared through cross-linking zinc porphyrins by different chlorosilanes.
Collapse
Affiliation(s)
- Fanfan Li
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yi Yu
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Hanyu Lv
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Guiting Cai
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yanwu Zhang
- School of Chemical Engineering
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
10
|
Lu P, Chung KY, Stafford A, Kiker M, Kafle K, Page ZA. Boron dipyrromethene (BODIPY) in polymer chemistry. Polym Chem 2021. [DOI: 10.1039/d0py01513j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present review provides both a summary and outlook on the exciting field of BODIPYs in polymer chemistry.
Collapse
Affiliation(s)
- Pengtao Lu
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Kun-You Chung
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Alex Stafford
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Meghan Kiker
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Kristina Kafle
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | |
Collapse
|
11
|
Architectures and Applications of BODIPY-Based Conjugated Polymers. Polymers (Basel) 2020; 13:polym13010075. [PMID: 33375479 PMCID: PMC7795016 DOI: 10.3390/polym13010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Conjugated polymers generally contain conjugated backbone structures with benzene, heterocycle, double bond, or triple bond, so that they have properties similar to semiconductors and even conductors. Their energy band gap is very small and can be adjusted via chemical doping, allowing for excellent photoelectric properties. To obtain prominent conjugated materials, numerous well-designed polymer backbones have been reported, such as polyphenylenevinylene, polyphenylene acetylene, polycarbazole, and polyfluorene. 4,4'-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based conjugated polymers have also been prepared owing to its conjugated structure and intriguing optical properties, including high absorption coefficients, excellent thermal/photochemical stability, and high quantum yield. Most importantly, the properties of BODIPYs can be easily tuned by chemical modification on the dipyrromethene core, which endows the conjugated polymers with multiple functionalities. In this paper, BODIPY-based conjugated polymers are reviewed, focusing on their structures and applications. The forms of BODIPY-based conjugated polymers include linear, coiled, and porous structures, and their structure-property relationship is explored. Also, typical applications in optoelectronic materials, sensors, gas/energy storage, biotherapy, and bioimaging are presented and discussed in detail. Finally, the review provides an insight into the challenges in the development of BODIPY-based conjugated polymers.
Collapse
|
12
|
Sakura Y, Yumioka F, Funaki T, Ono K. Synthesis and Photovoltaic Properties of Boron β-Ketoiminate Dyes Forming a Linear Donor-π-Acceptor Structure. Chem Asian J 2020; 15:1982-1989. [PMID: 32394647 DOI: 10.1002/asia.202000448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/10/2020] [Indexed: 01/07/2023]
Abstract
Organoboron complexes are of interest as chromophores for dye sensitizers owing to their light-harvesting and carrier-transporting properties. In this study, compounds containing boron β-ketoiminate (BKI) as a chromophore were synthesized and used as dye sensitizers in dye-sensitized solar cells. The new dyes were orange or red crystals and showed maximum absorptions in the 410-450 nm wavelength region on titanium dioxide substrates. These electrodes exhibited maximum efficiencies of over 80% in incident photon-to-current conversion efficiency spectra, suggesting that the continuous process of light absorption-excitation-electron injection was effectively performed. Open-circuit photovoltages were relatively high owing to the large dipole moments of the BKI dyes with a linear molecular structure. Thus, a maximum power conversion efficiency of 5.3% was successfully observed. Comparison of BKI dyes with boron β-diketonate dyes revealed certain differences in solution stability, spectral properties, and photovoltaic characteristics.
Collapse
Affiliation(s)
- Yuki Sakura
- Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Fumina Yumioka
- Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Takashi Funaki
- National Institute of Advanced Industrial Science and Technology Higashi, Tsukuba, 305-8565, Japan
| | - Katsuhiko Ono
- Graduate School of Engineering, Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| |
Collapse
|
13
|
Zając D, Sołoducho J, Cabaj J. Organic Triads for Solar Cells Application: A Review. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200311151421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The need to find alternative sources of energy and environmental protection has
resulted in the significant development of organic photovoltaics. The synthesis of organic
compounds that will ensure the efficiency of the cells has become a key issue. In this
work, we present an overview of materials based on donor-linker-acceptor structural motifs,
and summarize the current state of research which can help in the design of new, effective
photovoltaic materials.
Collapse
Affiliation(s)
- Dorota Zając
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Jadwiga Sołoducho
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Joanna Cabaj
- Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
14
|
Wang Y, Miao J, Dou C, Liu J, Wang L. BODIPY bearing alkylthienyl side chains: a new building block to design conjugated polymers with near infrared absorption for organic photovoltaics. Polym Chem 2020. [DOI: 10.1039/d0py00868k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new benzene-fused BODIPY unit for designing polymer donors with near-infrared absorption for organic photovoltaics.
Collapse
Affiliation(s)
- Yinghui Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Junhui Miao
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Chuandong Dou
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
15
|
Triplet BODIPY and AzaBODIPY Derived Donor‐acceptor Dyads: Competitive Electron Transfer versus Intersystem Crossing upon Photoexcitation. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900189] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Ho D, Ozdemir R, Kim H, Earmme T, Usta H, Kim C. BODIPY-Based Semiconducting Materials for Organic Bulk Heterojunction Photovoltaics and Thin-Film Transistors. Chempluschem 2018; 84:18-37. [PMID: 31950740 DOI: 10.1002/cplu.201800543] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/22/2018] [Indexed: 12/31/2022]
Abstract
The rapid emergence of organic (opto)electronics as a promising alternative to conventional (opto)electronics has been achieved through the design and development of novel π-conjugated systems. Among various semiconducting structural platforms, 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) π-systems have recently attracted attention for use in organic thin-films transistors (OTFTs) and organic photovoltaics (OPVs). This Review article provides an overview of the developments in the past 10 years on the structural design and synthesis of BODIPY-based organic semiconductors and their application in OTFT/OPV devices. The findings summarized and discussed here include the most recent breakthroughs in BODIPYs with record-high charge carrier mobilities and power conversion efficiencies (PCEs). The most up-to-date design rationales and discussions providing a strong understanding of structure-property-function relationships in BODIPY-based semiconductors are presented. Thus, this review is expected to inspire new research for future materials developments/applications in this family of molecules.
Collapse
Affiliation(s)
- Dongil Ho
- Department of Chemical and Biomolecular Engineering, Sogang University Mapo-gu, Seoul, 04107, Republic of Korea
| | - Resul Ozdemir
- Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Hyungsug Kim
- Department of Chemical and Biomolecular Engineering, Sogang University Mapo-gu, Seoul, 04107, Republic of Korea
| | - Taeshik Earmme
- Department of Chemical Engineering, Hongik University Mapo-gu, Seoul, 04066, Republic of Korea
| | - Hakan Usta
- Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, Kayseri, 38080, Turkey
| | - Choongik Kim
- Department of Chemical and Biomolecular Engineering, Sogang University Mapo-gu, Seoul, 04107, Republic of Korea
| |
Collapse
|
17
|
Hadmojo WT, Lee UH, Yim D, Kim HW, Jang WD, Yoon SC, Jung IH, Jang SY. High-Performance Near-Infrared Absorbing n-Type Porphyrin Acceptor for Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41344-41349. [PMID: 30387983 DOI: 10.1021/acsami.8b14577] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
While the outstanding charge transport and sunlight-harvesting properties of porphyrin molecules are highly attractive as active materials for organic photovoltaic (OPV) devices, the development of n-type porphyrin-based electron acceptors has been challenging. In this work, we developed a high-performance porphyrin-based electron acceptor for OPVs by substitution of four naphthalene diimide (NDI) units at the perimeter of a Zn-porphyrin (PZn) core using ethyne linkage. Effective π-conjugation between four NDI wings and the PZn core significantly broadened Q-band absorption to the near infrared region, thereby achieving the narrow band gap of 1.33 eV. Employing a windmill-structured tetra-NDI substituted PZn-based acceptor ( PZn-TNDI) and mid-band gap polymer donor (PTB7-Th), the bulk heterojunction OPV devices achieved a power conversion efficiency (PCE) of 8.15% with an energy loss of 0.61 eV. The PCE of our PZn-TNDI-based device was the highest among the reported OPVs using porphyrin-based acceptors. Notably, the amorphous characteristic of PZn-TNDI enabled optimization of the device performance without using any additive, which should make industrial fabrication simpler and cheaper.
Collapse
Affiliation(s)
- Wisnu Tantyo Hadmojo
- Department of Chemistry , Kookmin University , 77 Jeongneung-ro , Seongbuk-gu, Seoul 02707 , Republic of Korea
| | - Un-Hak Lee
- Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeong-ro , Yuseong-gu, Daejeon 34114 , Republic of Korea
| | - Dajeong Yim
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| | - Hyun Woo Kim
- Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeong-ro , Yuseong-gu, Daejeon 34114 , Republic of Korea
| | - Woo-Dong Jang
- Department of Chemistry , Yonsei University , 50 Yonsei-ro , Seodaemun-gu, Seoul 03722 , Republic of Korea
| | - Sung Cheol Yoon
- Korea Research Institute of Chemical Technology (KRICT) , 141 Gajeong-ro , Yuseong-gu, Daejeon 34114 , Republic of Korea
| | - In Hwan Jung
- Department of Chemistry , Kookmin University , 77 Jeongneung-ro , Seongbuk-gu, Seoul 02707 , Republic of Korea
| | - Sung-Yeon Jang
- Department of Chemistry , Kookmin University , 77 Jeongneung-ro , Seongbuk-gu, Seoul 02707 , Republic of Korea
| |
Collapse
|
18
|
Lei H, Juvenal F, Karsenti PL, Fortin D, Harvey PD. Cross Conjugated Organometallic Polymers Exhibiting Ultrafast Excitation Energy Channeling: Drastic Effect of the Connectivity. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hu Lei
- Département de chimie; Université de Sherbrooke; Sherbrooke PQ, J1K 2R1 Canada
| | - Frank Juvenal
- Département de chimie; Université de Sherbrooke; Sherbrooke PQ, J1K 2R1 Canada
| | | | - Daniel Fortin
- Département de chimie; Université de Sherbrooke; Sherbrooke PQ, J1K 2R1 Canada
| | - Pierre D. Harvey
- Département de chimie; Université de Sherbrooke; Sherbrooke PQ, J1K 2R1 Canada
| |
Collapse
|
19
|
Yang J, Rousselin Y, Bucher L, Desbois N, Bolze F, Xu HJ, Gros CP. Two-Photon Absorption Properties and Structures of BODIPY and Its Dyad, Triad and Tetrad. Chempluschem 2018; 83:838-844. [DOI: 10.1002/cplu.201800361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jian Yang
- College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 China
- Université de Bourgogne Franche-Comté; ICMUB (UMR CNRS 6302); 9, Avenue A. Savary, BP 47870 21078 Dijon Cedex France
| | - Yoann Rousselin
- Université de Bourgogne Franche-Comté; ICMUB (UMR CNRS 6302); 9, Avenue A. Savary, BP 47870 21078 Dijon Cedex France
| | - Léo Bucher
- Université de Bourgogne Franche-Comté; ICMUB (UMR CNRS 6302); 9, Avenue A. Savary, BP 47870 21078 Dijon Cedex France
| | - Nicolas Desbois
- Université de Bourgogne Franche-Comté; ICMUB (UMR CNRS 6302); 9, Avenue A. Savary, BP 47870 21078 Dijon Cedex France
| | - Frédéric Bolze
- Faculté de Pharmacie; Université de Strasbourg; UMR 7199, Conception et Applications des Molécules Bioactives; 74 route du Rhin 67401 Illkirch France
| | - Hai-Jun Xu
- College of Chemical Engineering; Nanjing Forestry University; Nanjing 210037 China
| | - Claude P. Gros
- Université de Bourgogne Franche-Comté; ICMUB (UMR CNRS 6302); 9, Avenue A. Savary, BP 47870 21078 Dijon Cedex France
| |
Collapse
|
20
|
Liu Y, Niu LY, Liu XL, Chen PZ, Yao YS, Chen YZ, Yang QZ. Synthesis of N,O,B-Chelated Dipyrromethenes through an Unexpected Intramolecular Cyclisation: Enhanced Near-Infrared Emission in the Aggregate/Solid State. Chemistry 2018; 24:13549-13555. [PMID: 29952087 DOI: 10.1002/chem.201802157] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/26/2018] [Indexed: 11/09/2022]
Abstract
The first example of the synthesis of mono-N,O-B-chelated dipyrromethene (BODIPY) derivatives through an unexpected intramolecular nucleophilic displacement of the fluorine by alkenols in the presence of boron trifluoride as Lewis acid is reported. The chlorine in the indacene core allowed for further structural modifications through nucleophilic substitutions or palladium-catalysed coupling reactions to afford new fluorophores with tuneable photophysical properties. Their expanded conjugation structure resulted in distinct red-shifted absorption and emission spectra in organic solutions. Furthermore, the twisted steric hindrance of the benzene substitution patterns suppressed aggregation-induced quenching, leading to an enhanced NIR emission in the aggregate/solid state, which was rarely observed for BODIPY dyes. Nanoparticles of the fluorophores formed by the assembly with the polymeric surfactant F127 were successfully used for bioimaging of living cells and for tumour-targeted imaging in a tumour-bearing mouse model.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Li-Ya Niu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Xue-Liang Liu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.,Analysis and Testing Laboratory, Xinxiang Medical University, Jinsui Road 601, Xinxiang, Henan, 453003, P.R. China
| | - Peng-Zhong Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Yi-Shan Yao
- Beijing Institute of pharmacology and Toxicology, Beijing, 100850, P.R. China
| | - Yu-Zhe Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Qing-Zheng Yang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| |
Collapse
|
21
|
Gao D, Aly SM, Karsenti PL, Harvey PD. Is π-Stacking Prone To Accelerate Singlet-Singlet Energy Transfers? Inorg Chem 2018; 57:4291-4300. [PMID: 29570293 DOI: 10.1021/acs.inorgchem.7b03050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
π-Stacking is the most common structural feature that dictates the optical and electronic properties of chromophores in the solid state. Herein, a unidirectional singlet-singlet energy-transfer dyad has been designed to test the effect of π-stacking of zinc(II) porphyrin, [Zn2], as a slipped dimer acceptor using a BODIPY unit, [bod], as the donor, bridged by the linker C6H4C≡CC6H4. The rate of singlet energy transfer, kET(S1), at 298 K ( kET(S1) = 4.5 × 1010 s-1) extracted through the change in fluorescence lifetime, τF, of [bod] in the presence (27.1 ps) and the absence of [Zn2] (4.61 ns) from Streak camera measurements, and the rise time of the acceptor signal in femtosecond transient absorption spectra (22.0 ps), is faster than most literature cases where no π-stacking effect exists (i.e., monoporphyrin units). At 77 K, the τF of [bod] increases to 45.3 ps, indicating that kET(S1) decreases by 2-fold (2.2 × 1010 s-1), a value similar to most values reported in the literature, thus suggesting that the higher value at 298 K is thermally promoted at a higher temperature.
Collapse
Affiliation(s)
- Di Gao
- Département de Chimie , Université de Sherbrooke , Sherbrooke , Quebec J1K 2R1 , Canada
| | - Shawkat M Aly
- Département de Chimie , Université de Sherbrooke , Sherbrooke , Quebec J1K 2R1 , Canada
| | - Paul-Ludovic Karsenti
- Département de Chimie , Université de Sherbrooke , Sherbrooke , Quebec J1K 2R1 , Canada
| | - Pierre D Harvey
- Département de Chimie , Université de Sherbrooke , Sherbrooke , Quebec J1K 2R1 , Canada
| |
Collapse
|