1
|
Functionalized Self-Assembled Monolayers: Versatile Strategies to Combat Bacterial Biofilm Formation. Pharmaceutics 2022; 14:pharmaceutics14081613. [PMID: 36015238 PMCID: PMC9415113 DOI: 10.3390/pharmaceutics14081613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections due to biofilms account for up to 80% of bacterial infections in humans. With the increased use of antibiotic treatments, indwelling medical devices, disinfectants, and longer hospital stays, antibiotic resistant infections are sharply increasing. Annual deaths are predicted to outpace cancer and diabetes combined by 2050. In the past two decades, both chemical and physical strategies have arisen to combat biofilm formation on surfaces. One such promising chemical strategy is the formation of a self-assembled monolayer (SAM), due to its small layer thickness, strong covalent bonds, typically facile synthesis, and versatility. With the goal of combating biofilm formation, the SAM could be used to tether an antibacterial agent such as a small-molecule antibiotic, nanoparticle, peptide, or polymer to the surface, and limit the agent’s release into its environment. This review focuses on the use of SAMs to inhibit biofilm formation, both on their own and by covalent grafting of a biocidal agent, with the potential to be used in indwelling medical devices. We conclude with our perspectives on ongoing challenges and future directions for this field.
Collapse
|
2
|
Nanoarchitectonics of Electrically Activable Phosphonium Self-Assembled Monolayers to Efficiently Kill and Tackle Bacterial Infections on Demand. Int J Mol Sci 2022; 23:ijms23042183. [PMID: 35216303 PMCID: PMC8879818 DOI: 10.3390/ijms23042183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Prosthetic implants are widely used in dentistry and orthopedics and, as a result, infections can occur which cause their removal. Therefore, it is essential to propose methods of eradicating the bacteria that remain on the prosthesis during treatment. For this purpose, it is necessary to develop surfaces whose antibacterial activity can be controlled. Herein, we designed innovative and smart phosphonium self-assembled monolayer (SAM) interfaces that can be electrically activated on demand for controlling bacterial contaminations on solid surfaces. Upon electroactivation with a low potential (0.2 V for 60 min., conditions determined through a DOE), a successful stamping out of Gram-positive and Gram-negative bacterial strains was obtained with SAM-modified titanium surfaces, effectively killing 95% of Staphylococcus aureus and 90% Klebsiellapneumoniae. More importantly, no toxicity towards eukaryotic cells was observed which further enhances the biocompatible character of these novel surfaces for further implementation.
Collapse
|
3
|
Montefusco-Pereira CV, Formicola B, Goes A, Re F, Marrano CA, Mantegazza F, Carvalho-Wodarz C, Fuhrmann G, Caneva E, Nicotra F, Lehr CM, Russo L. Coupling quaternary ammonium surfactants to the surface of liposomes improves both antibacterial efficacy and host cell biocompatibility. Eur J Pharm Biopharm 2020; 149:12-20. [PMID: 32007589 DOI: 10.1016/j.ejpb.2020.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/11/2020] [Accepted: 01/25/2020] [Indexed: 12/15/2022]
Abstract
By functionalizing the surface of PEG-liposomes with linkers bearing quaternary ammonium compounds (QACs), we generated novel bacteria disruptors with anti-adhesive properties and reduced cytotoxicity compared to free QACs. Furthermore, QAC-functionalized liposomes are a promising platform for future drug encapsulation. The QAC (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide (MTAB) was attached to maleimide-functionalized liposomes (DSPE-PEG) via thiol linker. The MTAB-functionalized liposomes were physicochemically characterized and their biological activity, in terms of anti-adherence activity and biofilm prevention in Escherichia coli were assessed. The results showed that MTAB-functionalized liposomes inhibit bacterial adherence and biofilm formation while reducing MTAB toxicity.
Collapse
Affiliation(s)
- Carlos V Montefusco-Pereira
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| | - Beatrice Formicola
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Adriely Goes
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany.
| | - Francesca Re
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Claudia A Marrano
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Francesco Mantegazza
- School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca (UNIMIB), Via Raoul Follereau 3, 20854 Vedano al Lambro (MB), Italy.
| | - Cristiane Carvalho-Wodarz
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany.
| | - Gregor Fuhrmann
- Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany; Biogenic Nanotherapeutics Group (BION), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany.
| | - Enrico Caneva
- UNITECH COSPECT: Comprehensive Substances characterization via advanced sPECTtrometry, 20133 Milan, Italy.
| | - Francesco Nicotra
- Bio Organic Chemistry Laboratory, Department of Biotechnology and Biosciences, University of Milan - Bicocca (UNIMIB), Piazza della Scienza 2, 20126 Milan, Italy.
| | - Claus-Michael Lehr
- Department of Drug Delivery (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Campus E8.1, Saarbrücken 66123, Germany; Department of Pharmacy, Saarland University, 66123 Saarbrücken, Germany.
| | - Laura Russo
- Bio Organic Chemistry Laboratory, Department of Biotechnology and Biosciences, University of Milan - Bicocca (UNIMIB), Piazza della Scienza 2, 20126 Milan, Italy.
| |
Collapse
|
4
|
Zhang W, Yu W, Ding X, Yin C, Yan J, Yang E, Guo F, Sun D, Wang W. Self-assembled thermal gold nanorod-loaded thermosensitive liposome-encapsulated ganoderic acid for antibacterial and cancer photochemotherapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2019; 47:406-419. [PMID: 30724609 DOI: 10.1080/21691401.2018.1559177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/21/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
A novel nanoparticle (Au-LTSL-GA.A) uses the thermosensitive liposome (LTSL) to encapsulate ganoderic acid A (GA.A), which successfully transforms the polarity of GA.A and has excellent water solubility. The multifunctional Au-LTSL-GA.A, a self-assembled thermal nanomaterial, was used in antibacterial and anticancer applications in combination with near-infrared (NIR) irradiation. The designed Au-LTSL-GA.A nanoparticle was used as a nano-photosensitizer to achieve synergistic photochemotherapy based on the phototherapy sensitization property of Au nanorods (NRs) and antitumour activity of GA.A. In the antibacterial experiments, the Au-LTSL-GA.A + NIR irradiation had a broad-spectrum antibacterial effect, exhibiting a strong antibacterial activity against drug-resistant Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) compared with the raw GA.A and LTSL-GA.A. In the anticancer experiments, Au-LTSL-GA.A + NIR irradiation, which combined phototherapy sensitization property of Au NRs with antitumour activity of GA.A, exhibited high anticancer activity against MCF-7 cells. The IC50 value of Au-LTSL-GA.A + NIR irradiation (12.1 ± 1.3 μg/mL) was almost similar to cisplatin in MCF-7 cells. The evaluation of the potential in vivo toxicity of Au-LTSL-GA.A revealed no toxicity in mice. The results of this study suggest that Au-LTSL-GA.A has a wide range of potential industrial and clinical applications, such as in antibacterial treatment and cancer photochemotherapy.
Collapse
Affiliation(s)
- Weiwei Zhang
- a School of Life Sciences , Anhui Agricultural University , Hefei , China
| | - Wenwen Yu
- a School of Life Sciences , Anhui Agricultural University , Hefei , China
| | - Xiaoyuan Ding
- a School of Life Sciences , Anhui Agricultural University , Hefei , China
| | - Chenyang Yin
- a School of Life Sciences , Anhui Agricultural University , Hefei , China
| | - Jing Yan
- a School of Life Sciences , Anhui Agricultural University , Hefei , China
| | - Endong Yang
- a School of Life Sciences , Anhui Agricultural University , Hefei , China
| | - Feng Guo
- a School of Life Sciences , Anhui Agricultural University , Hefei , China
| | - Dongdong Sun
- a School of Life Sciences , Anhui Agricultural University , Hefei , China
| | - Weiyun Wang
- a School of Life Sciences , Anhui Agricultural University , Hefei , China
| |
Collapse
|
5
|
Abstract
The interactions of adherent cells with their insoluble extracellular matrices are complex and challenging to study in the laboratory. Approaches from interface science have been important to preparing models of the biological matrix wherein discreet ligands are immobilized and interact with cellular receptors. A recent theme has been to develop dynamic substrates, where the activities of immobilized ligands can be modulated in real-time during cell culture. This short opinion reviews the strategies to manipulate ligand activity, highlights recent work that has advanced the field and discusses the applications that have been enabled. This work suggests that dynamic substrates will continue to find important uses in basic and applied biointerfaces.
Collapse
Affiliation(s)
- Pradeep Bugga
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208 United States
| | - Milan Mrksich
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208 United States
| |
Collapse
|