1
|
Liu L, Zhang Y, Yan Y. Four levels of in-sensor computing in bionic olfaction: from discrete components to multi-modal integrations. NANOSCALE HORIZONS 2023; 8:1301-1312. [PMID: 37529878 DOI: 10.1039/d3nh00115f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Sensing and computing are two important ways in which humans attempt to perceive and understand the analog world through digital devices. Analog-to-digital converters (ADCs) discretize analog signals while the data bus transmits digital data between the components of a computer. With the increase in sensor nodes and the application of deep neural networks, the energy and time consumption limit the increment of data throughput. In-sensor computing is a computing paradigm that integrates sensing, storage, and processing in one device without ADCs and data transfer. According to the integration degree, herein, we summarize four levels of in-sensor computing in the field of artificial olfactory. In the first level, we show that different functions are conducted by using discrete components. Next, the data conversion and transfer are exempt within the in-memory computing architecture with necessary data encoding. Subsequently, in-sensor computing is integrated into a single device. Finally, multi-modal in-sensor computing is proposed to improve the quality and reliability of the classification results. At the end of this minireview, we provide an outlook on the use of metal nanoparticle devices to achieve such in-sensor computing for bionic olfaction.
Collapse
Affiliation(s)
- Lin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuchun Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Wang Z, Hu J, Lu J, Zhu X, Zhou X, Huang L, Chi L. Charge Transport Manipulation via Interface Doping: Achieving Ultrasensitive Organic Semiconductor Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8355-8366. [PMID: 36735056 DOI: 10.1021/acsami.2c20391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Organic semiconductor (OSC) gas sensors are receiving tremendous attention with the rise of wearable devices. Due to the complicated charge transport characteristics of OSCs, it is usually difficult to optimize their gas sensitivity by directly tailoring the original signals, as in many other kinds of sensors. Instead, device engineering strategies are frequently centered on enhancing the gas-film interaction. Herein, by introducing interface doping between self-assembled monolayers and triisopropylsilylethynyl-substituted pentacene films, we report a wide tuning of OSC gas sensitivity via charge transport manipulation and achieve an ultrahigh sensitivity of nearly 2000%/ppm to NO2, simultaneously resulting in a fast square-wave-like response feature. In addition, this sensor demonstrates good humidity stability and operates well in flexible devices. More importantly, we identify that charge transport manipulation tailors the gas sensibility of OSCs by means of electronic structure instead of original signal values: compared to shallow traps, the presence of proper deep traps is conducive to gaining high sensitivity and ultrafast response/recovery speeds. This approach is also effective for tuning the sensitivity to reductive gases, verifying its generality for promoting the performance of OSC gas sensors, as well as a promising strategy for other types of sensors or detectors.
Collapse
Affiliation(s)
- Zi Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
- Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou 215123, P.R. China
| | - Jing Hu
- Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, Jiangsu Province 215009, China
| | - Jie Lu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xiaofei Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xu Zhou
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
3
|
Kim J, Jeong S, Sarawut S, Kim H, Son SU, Lee S, Rabbani G, Kwon H, Lim EK, Ahn SN, Park SHK. An immunosensor based on a high performance dual-gate oxide semiconductor thin-film transistor for rapid detection of SARS-CoV-2. LAB ON A CHIP 2022; 22:899-907. [PMID: 35191444 DOI: 10.1039/d1lc01116b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the agent of an infectious disease that has led the WHO to declare its highest level (6) pandemic. The coronavirus disease 2019 (COVID-19) has spread rapidly around the world, and the number of confirmed cases has passed 246 million as of November 2021. Therefore, precise and fast virus detection protocols need to be developed to cope with the rapid spread of the virus. Here, we present a high performance dual-gate oxide semiconductor thin-film transistor (TFT)-based immunosensor for detecting SARS-CoV-2. The immunosensor has an indium tin oxide sensing membrane to which the antibody against the SARS-CoV-2 spike S1 protein can be immobilized through functionalization. The dual-gate TFT was stable under ambient conditions with near-zero hysteresis; capacitive coupling yields a 10.14 ± 0.14-fold amplification of the surface charge potential on the sensing membrane and improves the pH sensitivity to 770.1 ± 37.74 mV pH-1 above the Nernst limit. The immunosensor could rapidly detect the SARS-CoV-2 spike S1 protein and cultured SARS-CoV-2 in 0.01× PBS with high antigen selectivity and sensitivity. Our immunosensor can accurately measure the electrical changes originated from SARS-CoV-2, without the need for polymerase chain reaction tests or labeling.
Collapse
Affiliation(s)
- Jingyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Sehun Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Siracosit Sarawut
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| | - Haneul Kim
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Seong Uk Son
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Seungheon Lee
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Hyunhwa Kwon
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Saeyoung Nate Ahn
- Nano Diagnostics & Devices (NDD), Room B-312 IT, Medical Fusion Center, Gumidae-ro, 350-27, Gumi-si, Gyeongbuk, 39253, Republic of Korea
- Fuzbien Technology Institute, 12111 Parklawn Drive, Lab 130, Rockville, MD 20852, USA
| | - Sang-Hee Ko Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Li L, Li J, Fu W, Jiang D, Song Y, Yang Q, Zhu W, Zhang J. Mg-doped InSnO nanofiber field-effect transistor for methanol gas detection at room temperature. NANOTECHNOLOGY 2022; 33:205502. [PMID: 35108694 DOI: 10.1088/1361-6528/ac512d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Research on high-performance gas sensors for detecting toxic and harmful methanol gas is still a very important issue. For gas sensors, it is very important to be able to achieve low concentration detection at room temperature. In this work, we used the electrospinning method to prepare Mg-doped InSnO nanofiber field-effect transistors (FETs) methanol gas sensor. When the Mg element doping concentration is 2.3 mol.%, InSnO nanofiber FET exhibits excellent electrical properties, including higher mobility of 3.17 cm2V-1s-1, threshold voltage of 1.51 V, subthreshold swing of 0.42 V/decade, the excellent on/off current ratio is about 108and the positive bias stress stability of the InSnO nanofiber FET through Mg doping has been greatly improved. In addition, the InSnMgO nanofiber FET gas sensor exhibits acceptable gas selectivity and sensitivity to methanol gas at room temperature. In the methanol gas sensor test at room temperature, when the methanol gas concentration is 60 ppm at room temperature, the response value of the InSnMgO nanofiber FET gas sensor is 81.92; and when the methanol concentration is 5 ppm, the response value is still 1.21. This work provides an effective and novel way to build a gas sensor at room temperature and use it to detect methanol gas at room temperature.
Collapse
Affiliation(s)
- Linkang Li
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Jun Li
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| | - Wenhui Fu
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Dongliang Jiang
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Yanjie Song
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Qiuhong Yang
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Wenqing Zhu
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| |
Collapse
|
5
|
Duy LT, Kang H, Shin HC, Han S, Singh R, Seo H. Multifunctional Nanohybrid of Alumina and Indium Oxide Prepared Using the Atomic Layer Deposition Technique. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59115-59125. [PMID: 34860496 DOI: 10.1021/acsami.1c18623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing new transparent conducting materials, especially those having flexibility, is of great interest for electronic applications. Here, our study on using the ozone-assisted atomic layer deposition (ALD) technique at a low temperature of 200 °C for making an ultrathin, transparent, flexible, and highly electroconducting nanohybrid of indium and aluminum oxides is introduced. Through various characterizations, measurements, and density functional theory-based calculations, excellent electrical conductivity (∼950 S cm-1), transparency (95% in the visible region), and flexibility (bendable angle of 130° for 10 000 cycles) of our nanohybrid oxide thin film with a total layer thickness below 15 nm (2-4 nm for alumina and 10 nm for indium oxide) have been revealed and discussed. Besides, potential sensing applications of our oxide films on a flexible substrate have been demonstrated, such as strain sensors, temperature sensors (25-100 °C, resolution of 0.1 °C), and NO2 gas sensors (0.35-3.5 ppm, optimum operation at 65-75 °C). With the great potential in not only transparent conducting oxide but also sensing applications, our multifunctional nanohybrid prepared using a simple ozone-assisted ALD route opens more room for the applicability of transparent and flexible electronics.
Collapse
Affiliation(s)
- Le Thai Duy
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Hyunwoo Kang
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Hee-Cheol Shin
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Seunggik Han
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Ranveer Singh
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Hyungtak Seo
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
6
|
Vijjapu MT, Surya SG, He JH, Salama KN. Highly Selective Self-Powered Organic-Inorganic Hybrid Heterojunction of a Halide Perovskite and InGaZnO NO 2 Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40460-40470. [PMID: 34415137 DOI: 10.1021/acsami.1c06546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-powered sensors can lead to disruptive advances in self-sustainable sensing systems that are imperative for evolving human lifestyles. For the first time, we demonstrate the fabrication of a heterojunction sensor using p-type hybrid-halide perovskites (CH3NH3PbBr3) and an n-type semiconducting metal oxide thin film [InGaZnO (IGZO)] for the detection of NO2 gas and power generation. Combining the excellent photoelectric properties of perovskites and the remarkable gas-sensing properties of IGZO at room temperature, the devised sensors generate open-circuit voltage and modulate according to the ambient NO2 concentration. The major challenge in devising self-powered gas sensors is to attain harvesting capability and selectivity simultaneously, owing to perovskites reactivity in the presence of oxygen and humidity. In this work, we developed a novel approach and fabricated a heterojunction sensor using parylene-c as an additional layer to curb the cross-sensitivity and to enhance the selectivity of the sensor. Even under the low concentrations of NO2, the developed sensor exhibits remarkable sensitivity, selectivity, and repeatability. The devices are sensitive and robust even under extreme humidity conditions (80% RH) and synthetic air. The devised sensor configuration is one way to eliminate the cross-sensitivity issue of the perovskite-based devices and serves as a reference for the development of self-powered sensors.
Collapse
Affiliation(s)
- Mani Teja Vijjapu
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jr-Hau He
- Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Yen TJ, Chin A, Gritsenko V. High-Performance Top-Gate Thin-Film Transistor with an Ultra-Thin Channel Layer. NANOMATERIALS 2020; 10:nano10112145. [PMID: 33126463 PMCID: PMC7694091 DOI: 10.3390/nano10112145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/24/2020] [Accepted: 10/24/2020] [Indexed: 11/16/2022]
Abstract
Metal-oxide thin-film transistors (TFTs) have been implanted for a display panel, but further mobility improvement is required for future applications. In this study, excellent performance was observed for top-gate coplanar binary SnO2 TFTs, with a high field-effect mobility (μFE) of 136 cm2/Vs, a large on-current/off-current (ION/IOFF) of 1.5 × 108, and steep subthreshold slopes of 108 mV/dec. Here, μFE represents the maximum among the top-gate TFTs made on an amorphous SiO2 substrate, with a maximum process temperature of ≤ 400 °C. In contrast to a bottom-gate device, a top-gate device is the standard structure for monolithic integrated circuits (ICs). Such a superb device integrity was achieved by using an ultra-thin SnO2 channel layer of 4.5 nm and an HfO2 gate dielectric with a 3 nm SiO2 interfacial layer between the SnO2 and HfO2. The inserted SiO2 layer is crucial for decreasing the charged defect scattering in the HfO2 and HfO2/SnO2 interfaces to increase the mobility. Such high μFE, large ION, and low IOFF top-gate SnO2 devices with a coplanar structure are important for display, dynamic random-access memory, and monolithic three-dimensional ICs.
Collapse
Affiliation(s)
- Te Jui Yen
- Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
| | - Albert Chin
- Department of Electronics Engineering, National Chiao Tung University, Hsinchu 300, Taiwan;
- Correspondence: ; Tel.: +886-3-5731841
| | - Vladimir Gritsenko
- Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia;
- Novosibirsk State University, 630090 Novosobirsk, Russia
- Novosibirsk State Technical University, 630020 Novosibirsk, Russia
| |
Collapse
|
8
|
Jun L, Chen Q, Fu W, Yang Y, Zhu W, Zhang J. Electrospun Yb-Doped In 2O 3 Nanofiber Field-Effect Transistors for Highly Sensitive Ethanol Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38425-38434. [PMID: 32786210 DOI: 10.1021/acsami.0c12259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Enhancing the reliability and sensitivity of gas sensors based on FETs has been of extensive concern for their practical application. However, few reports are available on nanofiber FET gas sensors fabricated by the electrospinning process. In this work, ethanol gas sensors based on Yb-doped In2O3 (InYbO) nanofiber FETs are fabricated by a simple and fast electrospinning method. The optimized In2O3 nanofiber FETs with a doping concentration of 4 mol % show a better electrical performance, including a high mobility of 6.67 cm2/Vs, an acceptable threshold voltage of 3.27 V, and a suitable on/off current ratio of 107, especially the enhanced bias-stress stability. When employed in ethanol gas sensors, the gas sensors exhibit enhanced stability and improved sensitivity with a high response of 40-10 ppm, which is remarkably higher than that of previously reported ethanol gas sensors. Moreover, the InYbO nanofiber FET sensors also demonstrate a low limit of detection of 1 ppm and improved sensing performance ranging from sensitivity to the ability of selectivity. This work opens up a new prospect to achieve highly sensitive, selective, and reliable ethanol gas sensors using electrospun Yb-In2O3 nanofiber FETs with improved stability.
Collapse
Affiliation(s)
- Li Jun
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| | - Qi Chen
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Wenhui Fu
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Yaohua Yang
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Wenqing Zhu
- School of Material Science and Engineering, Shanghai University, Jiading, Shanghai 201800, People's Republic of China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Applications, Ministry of Education, Shanghai University, Shanghai 200072, People's Republic of China
| |
Collapse
|
9
|
Flexible and stretchable metal oxide nanofiber networks for multimodal and monolithically integrated wearable electronics. Nat Commun 2020; 11:2405. [PMID: 32415064 PMCID: PMC7229221 DOI: 10.1038/s41467-020-16268-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/17/2020] [Indexed: 11/08/2022] Open
Abstract
Fiber-based electronics enabling lightweight and mechanically flexible/stretchable functions are desirable for numerous e-textile/e-skin optoelectronic applications. These wearable devices require low-cost manufacturing, high reliability, multifunctionality and long-term stability. Here, we report the preparation of representative classes of 3D-inorganic nanofiber network (FN) films by a blow-spinning technique, including semiconducting indium-gallium-zinc oxide (IGZO) and copper oxide, as well as conducting indium-tin oxide and copper metal. Specifically, thin-film transistors based on IGZO FN exhibit negligible performance degradation after one thousand bending cycles and exceptional room-temperature gas sensing performance. Owing to their great stretchability, these metal oxide FNs can be laminated/embedded on/into elastomers, yielding multifunctional single-sensing resistors as well as fully monolithically integrated e-skin devices. These can detect and differentiate multiple stimuli including analytes, light, strain, pressure, temperature, humidity, body movement, and respiratory functions. All of these FN-based devices exhibit excellent sensitivity, response time, and detection limits, making them promising candidates for versatile wearable electronics.
Collapse
|
10
|
Vijjapu MT, Surya SG, Yuvaraja S, Zhang X, Alshareef HN, Salama KN. Fully Integrated Indium Gallium Zinc Oxide NO 2 Gas Detector. ACS Sens 2020; 5:984-993. [PMID: 32091191 DOI: 10.1021/acssensors.9b02318] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report an amorphous indium gallium zinc oxide (IGZO)-based toxic gas detection system. The microsystem contains an IGZO thin-film transistor (TFT) as a sensing element and exhibits remarkable selectivity and sensitivity to low concentrations of nitrogen dioxide (NO2). In contrast to existing metal oxide-based gas sensors, which are active either at high temperature or with light activation, the developed IGZO TFT sensor is operable at room temperature and requires only visible light activation to revive the sensor after exposure to NO2. Furthermore, we demonstrate air-stable sensors with an experimental limit of detection of 100 ppb. This is the first report on metal oxide TFT gas sensors without heating or continuous light activation. Unlike most existing gas sensing systems that take care of identifying the analytes alone, the developed IGZO microsystem not only quantifies NO2 gas concentration but also yields a 5-bit digital output. The compact microsystem, incorporating readout and analog-to-digital conversion modules developed using only two TFTs, paves the way for inexpensive toxic gas monitoring systems.
Collapse
Affiliation(s)
- Mani Teja Vijjapu
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sandeep G. Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Saravanan Yuvaraja
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xixiang Zhang
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N. Alshareef
- Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Khaled N. Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
11
|
Yuvaraja S, Surya SG, Chernikova V, Vijjapu MT, Shekhah O, Bhatt PM, Chandra S, Eddaoudi M, Salama KN. Realization of an Ultrasensitive and Highly Selective OFET NO 2 Sensor: The Synergistic Combination of PDVT-10 Polymer and Porphyrin-MOF. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18748-18760. [PMID: 32281789 DOI: 10.1021/acsami.0c00803] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organic field-effect transistors (OFETs) are emerging as competitive candidates for gas sensing applications due to the ease of their fabrication process combined with the ability to readily fine-tune the properties of organic semiconductors. Nevertheless, some key challenges remain to be addressed, such as material degradation, low sensitivity, and poor selectivity toward toxic gases. Appropriately, a heterojunction combination of different sensing layers with multifunctional capabilities offers great potential to overcome these problems. Here, a novel and highly sensitive receptor layer is proposed encompassing a porous 3D metal-organic framework (MOF) based on isostructural-fluorinated MOFs acting as an NO2 specific preconcentrator, on the surface of a stable and ultrathin PDVT-10 organic semiconductor on an OFET platform. Here, with this proposed combination we have unveiled an unprecedented 700% increase in sensitivity toward NO2 analyte in contrast to the pristine PDVT-10. The resultant combination for this OFET device exhibits a remarkable lowest detection limit of 8.25 ppb, a sensitivity of 680 nA/ppb, and good stability over a period of 6 months under normal laboratory conditions. Further, a negligible response (4.232 nA/%RH) toward humidity in the range of 5%-90% relative humidity was demonstrated using this combination. Markedly, the obtained results support the use of the proposed novel strategy to achieve an excellent sensing performance with an OFET platform.
Collapse
Affiliation(s)
- Saravanan Yuvaraja
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Sandeep G Surya
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Valeriya Chernikova
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mani Teja Vijjapu
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Prashant M Bhatt
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Suman Chandra
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery & Development Research Group (FMD3) Advanced Membranes & Porous Materials Center, Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Khaled N Salama
- Sensors Lab, Advanced Membranes and Porous Materials Center, Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
12
|
Tiwari N, Nirmal A, Kulkarni MR, John RA, Mathews N. Enabling high performance n-type metal oxide semiconductors at low temperatures for thin film transistors. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00038h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The review highlights low temperature activation processes for high performance n-type metal oxide semiconductors for TFTs.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Energy Research Institute @ NTU (ERI@N)
- Nanyang Technological University
- Singapore 637553
| | - Amoolya Nirmal
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| | | | - Rohit Abraham John
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
| | - Nripan Mathews
- Energy Research Institute @ NTU (ERI@N)
- Nanyang Technological University
- Singapore 637553
- School of Materials Science and Engineering
- Nanyang Technological University
| |
Collapse
|
13
|
Tang H, Li Y, Sokolovskij R, Sacco L, Zheng H, Ye H, Yu H, Fan X, Tian H, Ren TL, Zhang G. Ultra-High Sensitive NO 2 Gas Sensor Based on Tunable Polarity Transport in CVD-WS 2/IGZO p-N Heterojunction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40850-40859. [PMID: 31577407 DOI: 10.1021/acsami.9b13773] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a thin-film transistor gas sensor based on the p-N heterojunction is fabricated by stacking chemical vapor deposition-grown tungsten disulfide (WS2) with a sputtered indium-gallium-zinc-oxide (IGZO) film. To the best of our knowledge, the present device has the best NO2 gas sensor response compared to all the gas sensors based on transition-metal dichalcogenide materials. The gas-sensing response is investigated under different NO2 concentrations, adopting heterojunction device mode and transistor mode. High sensing response is obtained of p-N diode in the range of 1-300 ppm with values of 230% for 5 ppm and 18 170% for 300 ppm. On the transistor mode, the gas-sensing response can be modulated by the gate bias, and the transistor shows an ultrahigh response after exposure to NO2, with sensitivity values of 6820% for 5 ppm and 499 400% for 300 ppm. Interestingly, the transistor has a typical ambipolar behavior under dry air, while the transistor becomes p-type as the amount of NO2 increases. The assembly of these results demonstrates that the WS2/IGZO device is a promising platform for the NO2-gas detection, and its gas-modulated transistor properties show a potential application in tunable engineering for two-dimensional material heterojunction-based transistor device.
Collapse
Affiliation(s)
- Hongyu Tang
- Department of Microelectronics , Delft University of Technology , Delft 2628 CD , The Netherlands
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology (BNRist) , Tsinghua University , Beijing 100084 , China
- Changzhou Institute of Technology Research for Solid State Lighting , Changzhou 213161 , China
| | - Yutao Li
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology (BNRist) , Tsinghua University , Beijing 100084 , China
| | - Robert Sokolovskij
- Department of Microelectronics , Delft University of Technology , Delft 2628 CD , The Netherlands
- School of Microelectronics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Leandro Sacco
- Department of Microelectronics , Delft University of Technology , Delft 2628 CD , The Netherlands
| | - Hongze Zheng
- School of Microelectronics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Huaiyu Ye
- School of Microelectronics , Southern University of Science and Technology , Shenzhen 518055 , China
- Shenzhen Institute of Wide-bandgap Semiconductors , Shenzhen 518055 , China
| | - Hongyu Yu
- School of Microelectronics , Southern University of Science and Technology , Shenzhen 518055 , China
| | - Xuejun Fan
- Department of Mechanical Engineering , Lamar University , Beaumont , Texas 77710 , United States
| | - He Tian
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology (BNRist) , Tsinghua University , Beijing 100084 , China
| | - Tian-Ling Ren
- Institute of Microelectronics, Beijing National Research Center for Information Science and Technology (BNRist) , Tsinghua University , Beijing 100084 , China
| | - Guoqi Zhang
- Department of Microelectronics , Delft University of Technology , Delft 2628 CD , The Netherlands
| |
Collapse
|
14
|
Jung SH, Deshpande NG, Kim YB, Kim DS, Cho HK. Highly Improved Quasi-Two-Dimensional Oxide Transistors via Non-centrosymmetric Nitrogen Dioxide Treatment, toward Extremely Low Process Temperature and Operant Self-Aligned Coplanar Structure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28397-28406. [PMID: 31304734 DOI: 10.1021/acsami.9b06696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid degradations are typically encountered in low-temperature processed oxide thin-film transistors (TFTs) with a high indium composition and quasi-two-dimensional (Q2D) thin channel, owing to the breaking of numerous surface bonds of the Q2D oxide and the ineffectiveness of oxidation treatment. Strategically, a novel approach is proposed for the effective use of non-centrosymmetric nitrous oxide (NO2) as a reactive oxidizer gas for realizing the highly robust and rapid field-effect mobility properties of low-temperature-processed Q2D amorphous indium zinc oxide (a-IZO) TFTs. From the surface chemical analysis, it is found that NO2 stably reconstructs surface chemical bonding with NO3- ions by capturing the charged electrons and oxygen and the regions with and without NO2 treatment display extreme differences in their electrical conductivity. Thus, a new process design can be suggested for the fabrication of self-aligned coplanar Q2D transistors, with the aim of scaling down and replacing conventional hydrogen treatment or ultraviolet irradiation. This concept is tactically designed considering the problematic aging effect and impact of the NO2 treatment. The self-aligned coplanar top-gate Q2D a-IZO TFTs exhibit outstanding device performance with a field-effect mobility of 30.1 cm2 V-1 s-1 and a relatively low positive bias stress shift of 1.3 V at an extremely low process temperature of 80 °C.
Collapse
|
15
|
Sun Y, Wang Y, Wu Y, Wang X, Li X, Wang S, Xiao Y. A Chiral Organic Field-Effect Transistor with a Cyclodextrin Modulated Copper Hexadecafluorophthalocyanine Semiconductive Layer as the Sensing Unit. Anal Chem 2018; 90:9264-9271. [DOI: 10.1021/acs.analchem.8b01806] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yuwei Sun
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yong Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yifan Wu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xuepeng Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xianggao Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Shirong Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yin Xiao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|