1
|
Li J, Hao Y, Wang H, Zhang M, He J, Ni P. Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51876-51898. [PMID: 39311719 DOI: 10.1021/acsami.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.
Collapse
Affiliation(s)
- Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Babanyinah GK, Bhadran A, Polara H, Wang H, Shah T, Biewer MC, Stefan MC. Maleimide functionalized polycaprolactone micelles for glutathione quenching and doxorubicin delivery. Chem Sci 2024; 15:9987-10001. [PMID: 38966382 PMCID: PMC11220601 DOI: 10.1039/d4sc01625d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
High glutathione production is known to be one of the defense mechanisms by which many cancer cells survive elevated oxidative stress. By explicitly targeting glutathione in these cancer cells and diminishing its levels, oxidative stress can be intensified, ultimately triggering apoptosis or programmed cell death. Herein, we developed a novel approach by creating maleimide-functionalized polycaprolactone polymers, specifically using 2,3-diiodomaleimide functionality to reduce the level of glutathione in cancer cells. Polycaprolactone was chosen to conjugate the 2,3-diiodomaleimide functionality due to its biodegradable and biocompatible properties. The amphiphilic block copolymer was synthesized using PEG as a macroinitiator to make corresponding polymeric micelles. The resulting 2,3-diiodomaleimide-conjugated polycaprolactone micelles effectively quenched glutathione, even at low concentrations (0.01 mg mL-1). Furthermore, we loaded these micelles with the anticancer drug doxorubicin (DOX), which exhibited pH-dependent drug release. We obtained a loading capacity (LC) of 3.5% for the micelles, one of the highest LC reported among functional PCL-based micelles. Moreover, the enhanced LC doesn't affect their release profile. Cytotoxicity experiments demonstrated that empty and DOX-loaded micelles inhibited cancer cell growth, with the DOX-loaded micelles displaying the highest cytotoxicity. The ability of the polymer to quench intracellular GSH was also confirmed. This approach of attaching maleimide to polycaprolactone polymers shows promise in depleting elevated glutathione levels in cancer cells, potentially improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas Richardson TX USA
| |
Collapse
|
3
|
Bhadran A, Polara H, Calubaquib EL, Wang H, Babanyinah GK, Shah T, Anderson PA, Saleh M, Biewer MC, Stefan MC. Reversible Cross-linked Thermoresponsive Polycaprolactone Micelles for Enhanced Stability and Controlled Release. Biomacromolecules 2023; 24:5823-5835. [PMID: 37963215 DOI: 10.1021/acs.biomac.3c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Thermoresponsive amphiphilic poly(ε-caprolactone)s (PCL)s are excellent candidates for drug delivery due to their biodegradability, biocompatibility, and controlled release. However, the thermoresponsivity of modified PCL can often lead to premature drug release because their lower critical solution temperature (LCST) is close to physiological temperature conditions. To address this issue, we developed a novel approach that involves functionalizing redox-responsive lipoic acid to the hydrophobic block of PCL. Lipoic acid has disulfide bonds that undergo reversible cross-linking after encapsulating the drug. Herein, we synthesized an ether-linked propargyl-substituted PCL as the hydrophobic block of an amphiphilic copolymer along with unsubstituted PCL. The propargyl group was used to attach lipoic acid through a postpolymerization modification reaction. The hydrophilic block is composed of an ether-linked, thermoresponsive tri(ethylene glycol)-substituted PCL. Anticancer drug doxorubicin (DOX) was encapsulated within the core of the micelles and induced cross-linking in the presence of a reducing agent, dithiothreitol. The developed micelles are thermodynamically stable and demonstrated thermoresponsivity with an LCST value of 37.5 °C but shifted to 40.5 °C after cross-linking. The stability and release of both uncross-linked (LA-PCL) and cross-linked (CLA-PCL) micelles were studied at physiological temperatures. The results indicated that CLA-PCL was stable, and only 35% release was observed after 46 h at 37 °C while LA-PCL released more than 70% drug at the same condition. Furthermore, CLA-PCL was able to release a higher amount of DOX in the presence of glutathione and above the LCST condition (42 °C). Cytotoxicity experiments revealed that CLA-PCL micelles are more toxic toward MDA-MB-231 breast cancer cells at 42 °C than at 37 °C, which supported the thermoresponsive release of the drug. These results indicate that the use of reversible cross-linking is a great approach toward synthesizing stable thermoresponsive micelles with reduced premature drug leakage.
Collapse
Affiliation(s)
- Abhi Bhadran
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Himanshu Polara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Erika L Calubaquib
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Hanghang Wang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Godwin K Babanyinah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Tejas Shah
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Paul Alexander Anderson
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mohammad Saleh
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
4
|
Li H, Zhang M, He J, Liu J, Sun X, Ni P. A CD326 monoclonal antibody modified core cross-linked curcumin-polyphosphoester prodrug for targeted delivery and cancer treatment. J Mater Chem B 2023; 11:9467-9477. [PMID: 37782068 DOI: 10.1039/d3tb01703f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Stimuli-responsive cross-linked micelles (SCMs) are ideal nanocarriers for anti-cancer drugs. Compared with non-cross-linked micelles, SCMs exhibit superior structural stability. At the same time, the introduction of an environmentally sensitive crosslinker into a drug delivery system allows SCMs to respond to single or multiple stimuli in the tumor microenvironment, which can minimize drug leakage during the blood circulation process. In this study, curcumin (CUR) was modified as the hydrophobic core crosslinker by utilizing the bisphenol structure, and redox sensitive disulfide bonds were introduced to prepare the glutathione (GSH) stimulated responsive core crosslinker (abbreviated as N3-ss-CUR-ss-N3). In addition, amphiphilic polymer APEG-b-PBYP was prepared through the ring opening reaction, and reacted with the crosslinker through the "click" reaction. After being dispersed in the aqueous phase, core cross-linked nanoparticles (CCL NPs) were obtained. Finally, monoclonal antibody CD326 (mAb-CD326) was reduced and coupled to the hydrophilic chain ends to obtain the nanoparticles with surface modified antibodies (R-mAb-CD326@CCL NPs) for further enhancing targeted drug delivery. The structures of the polymer and crosslinker were characterized by 1H NMR, UV-Vis, FT-IR, and GPC. The morphology, size and stability of CCL NPs and R-mAb-CD326@CCL NPs were investigated by DLS and TEM. The in vitro drug release behavior of CCL NPs was also studied. The results showed that the CCL NPs exhibited reduction-responsiveness and were able to release the original drug CUR under 10 mM GSH conditions. Additionally, the CCL NPs exhibited excellent stability in both the simulated body fluid environment and organic solvents. Especially, R-mAb-CD326@CCL NPs can actively target tumor cells and showed better therapeutic efficacy in in vivo experiments with a tumor suppression rate of 78.7%. This work provides a new idea for the design of nano-drugs targeting breast cancer.
Collapse
Affiliation(s)
- Haijiao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Xingwei Sun
- Intervention Department, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
5
|
Kumar P, Kim SH, Yadav S, Jo SH, Yoo S, Park SH, Lim KT. Redox-Responsive Core-Cross-Linked Micelles of Miktoarm Poly(ethylene oxide)- b-poly(furfuryl methacrylate) for Anticancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12719-12734. [PMID: 36848457 DOI: 10.1021/acsami.2c21152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The physiological instability of nanocarriers, premature drug leakage during blood circulation, and associated severe side effects cause compromised therapeutic efficacy, which have significantly hampered the progress of nanomedicines. The cross-linking of nanocarriers while keeping the effectiveness of their degradation at the targeted site to release the drug has emerged as a potent strategy to overcome these flaws. Herein, we have designed novel (poly(ethylene oxide))2-b-poly(furfuryl methacrylate) ((PEO2K)2-b-PFMAnk) miktoarm amphiphilic block copolymers by coupling alkyne-functionalized PEO (PEO2K-C≡H) and diazide-functionalized poly(furfuryl methacrylate) ((N3)2-PFMAnk) via click chemistry. (PEO2K)2-b-PFMAnk self-assembled to form nanosized micelles (mikUCL) with hydrodynamic radii in the range of 25∼33 nm. The hydrophobic core of mikUCL was cross-linked by a disulfide-containing cross-linker using the Diels-Alder reaction to avoid unwanted leakage and burst release of a payload. As expected, the resulting core-cross-linked (PEO2K)2-b-PFMAnk micelles (mikCCL) exhibited superior stability under a normal physiological environment and were de-cross-linked to rapidly release doxorubicin (DOX) upon exposure to a reduction environment. The micelles were compatible with HEK-293 normal cells, while DOX-loaded micelles (mikUCL/DOX and mikCCL/DOX) induced high antitumor activity in HeLa and HT-29 cells. mikCCL/DOX preferentially accumulated at the tumor site and was more efficacious than free DOX and mikUCL/DOX for tumor inhibition in HT-29 tumor-bearing nude mice.
Collapse
Affiliation(s)
- Parveen Kumar
- Department of Display Engineering, Pukyong National University, Busan 48513, South Korea
| | - Seon-Hwa Kim
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sonyabapu Yadav
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sung-Han Jo
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Seong Yoo
- Department of Polymer Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sang-Hyug Park
- Department of Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 48513, South Korea
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
| |
Collapse
|
6
|
Guo S, Zheng L, He W, Chai C, Chen X, Ma S, Wang N, Choi MM, Bian W. S,O-doped carbon nitride as a fluorescence probe for the label-free detection of folic acid and targeted cancer cell imaging. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
7
|
Cao H, Yi M, Wei H, Zhang S. Construction of Folate-Conjugated and pH-Responsive Cell Membrane Mimetic Mixed Micelles for Desirable DOX Release and Enhanced Tumor-Cellular Target. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9546-9555. [PMID: 35880856 DOI: 10.1021/acs.langmuir.2c00905] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart multifunctional polymeric micelles are in urgent demand for future cancer diagnosis and therapy. In this paper, doxorubicin (DOX)-loaded folic acid (FA)-targeting and pH-responsive cell membrane mimetic mixed micelles of P(DMAEMA-co-MaPCL) (PCD) and FA-P(MPC-co-MaPCL) (PMCF) (mass ratio 5/5) were prepared by a dialysis method. The micelle size, morphology, X-ray powder diffraction (XRD), pH responsiveness, in vitro DOX release, cytotoxicity, and cellular uptake were studied in detail. The results indicated that DOX could be efficiently loaded into mixed micelles (PDMCF micelles), and the DOX-loaded mixed micelles (DOX@PDMCF micelles) exhibited a size of 150 nm and pH-responsive DOX release in an extended period. Furthermore, the DOX@PDMCF micelles could efficiently suppress the proliferation of tumor cells, HeLa and MCF-7 cells. Our data suggest that the DOX@PDMCF micelles have the potential to be applied in tumor therapy, especially for treating various folate receptor overexpressed tumors.
Collapse
Affiliation(s)
- Haimei Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Meijun Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Henan Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
8
|
Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai HC, Wu SY. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. BIOMATERIALS ADVANCES 2022; 139:213015. [PMID: 35882161 DOI: 10.1016/j.bioadv.2022.213015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Core-crosslinking of micelles (CCMs) appears to be a favorable strategy to enhance micellar stability and sustained release of the loaded drug. In this study, the DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) (mPEG-P [Asp-(Hyd-DOX)] was created using ring-opening polymerization. To further enhance the micellar system, 3,3'-diselanediyldipropanoic acid (DSeDPA) was applied to link the hydrophobic segment via click reaction to form pH/redox-responsive CCMs. Dual anti-cancer drugs, DOX as a pro-drug and SN-38 as a targeting drug, were used to enhance inhibition. DLS confirmed that the non-cross-linked micelle (NCMs) showed a higher (96.43 nm) particle size compared to the CCMs (72.63 nm). Due to micellar shrinkage after crosslinking, CCMs displayed SN-38 drug loading (7.32 %) and encapsulation efficiency (86.23 %). The mPEG-P(Asp-Hyd) copolymer's in vitro cytotoxicity on HeLa and HaCaT cell lines found that 84.52 % of the cells are alive, and zebrafish (Danio rerio) embryos and larvae are highly biocompatible. The DOX/SN-38@CCMs had a sustained discharge profile in vitro, unlike the DOX/SN-38@NCMs. In DOX/SN-38@CCMs, HeLa cells were inhibited 50.90 % more than HaCaT (14.25 %) at the maximum drug dose (10 μg/mL). The CCMs successfully targeted and supplied DOX/SN-38 in HeLa cells rather than HaCaT cells, based on cellular uptake of 2D cell culture. CCMs, unlike NCMs, inhibit the growth of spheroids for extended periods of time due to the prolonged release of the loaded drug. Overall, CCMs are good-looking for use as regulated delivery of DOX/SN-38 in cancer cells because of all of these appealing characteristics.
Collapse
Affiliation(s)
- Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Darieo Thankachan
- Department of Materials Science And Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan.; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
9
|
Cao H, Lu Q, Wei H, Zhang S. Phosphorylcholine zwitterionic shell-detachable mixed micelles for enhanced cancerous cellular uptakes and increased DOX release. J Mater Chem B 2022; 10:5624-5632. [PMID: 35815797 DOI: 10.1039/d2tb01061e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To further enhance the cancerous cellular uptakes and increase the drug release of the drug loaded micelles, herein, we fabricated a series of mixed micelles with different mass ratios using two amphiphilic copolymers P(DMAEMA-co-MaPCL) and PCL-SS-PMPC. The mixed micelles showed a prolonged circulation time due to the zwitterionic shells in a physiological environment (pH 7.4). In addition, because of the protonation of tertiary amine groups in PDMAEMA and the breakage of the disulfide bond in PMPC-SS-PCL in a tumor microenvironment, the mixed micelles aggregated, which led to enhanced cancerous cellular penetration and increased DOX release. Moreover, cytotoxicity assay showed that the mixed micelles had good biocompatibility to L929, HeLa and MCF-7 cells, even at a concentration of up to 1 mg mL-1. Furthermore, enhanced antitumour activity and cellular uptake of HeLa and MCF-7 cells were detected after loading with DOX, which was determined by confocal laser scanning microscopy (CLSM) and flow cytometry (FC), especially for the DOX@MIX 3 micelles (20% mass ratio of the P(DMAEMA-co-MaPCL)). Therefore, the mixed strategy provides a simple and efficient ways to promote anticancer drug delivery.
Collapse
Affiliation(s)
- Haimei Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| | - Qian Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| | - Henan Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| |
Collapse
|
10
|
Wang X, Wei W, Zheng D, Chen Z, Dai H. Folic acid-functionalized L-cys/ZnS:O nanoparticles for homologous targeting and photodynamic therapy of tumor cells. J Mater Chem B 2022; 10:6001-6008. [PMID: 35880798 DOI: 10.1039/d2tb00719c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The combination of photodynamic therapy (PDT) and fluorescence imaging provides a promising approach to theranostics. However, traditional photosensitizers (PSs) have low water solubility and lack active targeting ability. Our ingenious design used L-cys/ZnS:O (LZS) nanoparticles (NPs) modified with folic acid (FA), allowing them to easily enter tumor cells and accurately gather around the nucleus of cancer cells. L-Cysteine were used as intermediates, ZnS:O quantum dots and FA could be connected by a solid-state method and a coupling reaction. In doing so, the cytotoxicity of LZS NPs was further reduced, while the hydrophilicity and dispersibility were improved. Moreover, the as-synthesized FA@LZS NPs had a higher generation of reactive oxygen species (ROS) than commercial Ce6, and they killed HepG2 cells specifically in vitro. These findings give a clear way for the development of advanced PSs with homologous labeling functions. A template for NPs or other fluorophores modified by targeting groups is also provided.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, P. R. China.
| | - Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, P. R. China.
| | - Dian Zheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, P. R. China.
| | - Zhong Chen
- School of Materials and Mechanical and Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P. R. China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan 430070, P. R. China. .,Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu hydrogen Valley, Foshan 528200, P. R. China
| |
Collapse
|
11
|
MOFs-based nanoagent enables dual mitochondrial damage in synergistic antitumor therapy via oxidative stress and calcium overload. Nat Commun 2021; 12:6399. [PMID: 34737274 PMCID: PMC8569165 DOI: 10.1038/s41467-021-26655-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 10/19/2021] [Indexed: 01/19/2023] Open
Abstract
Targeting subcellular organelle with multilevel damage has shown great promise for antitumor therapy. Here, we report a core-shell type of nanoagent with iron (III) carboxylate metal-organic frameworks (MOFs) as shell while upconversion nanoparticles (UCNPs) as core, which enables near-infrared (NIR) light-triggered synergistically reinforced oxidative stress and calcium overload to mitochondria. The folate decoration on MOFs shells enables efficient cellular uptake of nanoagents. Based on the upconversion ability of UCNPs, NIR light mediates Fe3+-to-Fe2+ reduction and simultaneously activates the photoacid generator (pHP) encapsulated in MOFs cavities, which enables release of free Fe2+ and acidification of intracellular microenvironment, respectively. The overexpressed H2O2 in mitochondria, highly reactive Fe2+ and acidic milieu synergistically reinforce Fenton reactions for producing lethal hydroxyl radicals (•OH) while plasma photoacidification inducing calcium influx, leading to mitochondria calcium overload. The dual-mitochondria-damage-based therapeutic potency of the nanoagent has been unequivocally confirmed in cell- and patient-derived tumor xenograft models in vivo. Targeting damage to mitochondria has become an effective strategy antitumor therapies. Here, the authors report on nanoagents with upconversion nanoparticles as cores and photoacid-loaded MOFs as shells for NIR triggered Fenton reaction, acidification and calcium overload to provide synergistic mitochondrial damage.
Collapse
|
12
|
Banach Ł, Williams GT, Fossey JS. Insulin Delivery Using Dynamic Covalent Boronic Acid/Ester‐Controlled Release. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Łukasz Banach
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - George T. Williams
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| | - John S. Fossey
- School of Chemistry University of Birmingham Edgbaston Birmingham West Midlands B15 2TT UK
| |
Collapse
|
13
|
Li H, Zhou R, He J, Zhang M, Liu J, Sun X, Ni P. Glucose-Sensitive Core-Cross-Linked Nanoparticles Constructed with Polyphosphoester Diblock Copolymer for Controlling Insulin Delivery. Bioconjug Chem 2021; 32:2095-2107. [PMID: 34469130 DOI: 10.1021/acs.bioconjchem.1c00390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This work aims to construct biocompatible, biodegradable core-cross-linked and insulin-loaded nanoparticles which are sensitive to glucose and release insulin via cleavage of the nanoparticles in a high-concentration blood glucose environment. First, a polyphosphoester-based diblock copolymer (PBYP-g-Gluc)-b-PEEP was prepared via ring-opening copolymerization (ROP) and the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) in which PBYP and PEEP represent the polymer segments from 2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane and 2-ethoxy-2-oxo-1,3,2-dioxaphospholane, respectively, and Gluc comes from 2-azidoethyl-β-d-glucopyranoside (Gluc-N3) that grafted with PBYP. The structure and molecular weight of the copolymer were characterized by 1H NMR, 31P NMR, GPC, FT-IR, and UV-vis measurements. The amphiphilic copolymer could self-assemble into core-shell uncore-cross-linked nanoparticles (UCCL NPs) in aqueous solutions and form core-cross-linked nanoparticles (CCL NPs) after adding cross-linking agent adipoylamidophenylboronic acid (AAPBA). Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were used to study the self-assembly behavior of the two kinds of NPs and the effect of different Gluc group contents on the size of NPs further to verify the stability and glucose sensitivity of CCL NPs. The ability of NPs to load fluorescein isothiocyanate-labeled insulin (FITC-insulin) and their glucose-triggered release behavior were detected by a fluorescence spectrophotometer. The results of methyl thiazolyl tetrazolium (MTT) assay and hemolysis activity experiments showed that the CCL NPs had good biocompatibility. An in vivo hypoglycemic study has shown that FITC-insulin-loaded CCL NPs could reduce blood glucose and have a protective effect on hypoglycemia. This research provides a new method for constructing biodegradable and glucose-sensitive core-cross-linked nanomedicine carriers for controlled insulin release.
Collapse
Affiliation(s)
- Hongping Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Ru Zhou
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Xingwei Sun
- Intervention Department, The Second Affiliated Hospital of Soochow University, Suzhou 215004, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
14
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
15
|
Zhao J, Zhang L, Qi Y, Liao K, Wang Z, Wen M, Zhou D. NIR Laser Responsive Nanoparticles for Ovarian Cancer Targeted Combination Therapy with Dual-Modal Imaging Guidance. Int J Nanomedicine 2021; 16:4351-4369. [PMID: 34234430 PMCID: PMC8254569 DOI: 10.2147/ijn.s299376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose Multifunctional nanoparticles with targeted therapeutic function and diagnostic-imaging are of great interest in the domain of precision therapy. NIR laser responsive nanoparticles (PLGA-PEG-FA encapsulating Bi2S3, PFP, and Dox (designed as FBPD NPs)) are synthesized for ovarian cancer targeted combination therapy with CT/PA dual-modal imaging guidance (PA: photoacoustic; CT: X-ray computed tomography). Methods and Results The FBPD NPS prepared by the double emulsification method revealed excellent dispersity, great stability, outstanding optical properties. The temperature of FBPD NPs increased rapidly after laser irradiation, inducing liquid-to-gas conversion of perfluoropentane (PFP), and promoting the release of Dox up to 86.7%. These FBPD NPs demonstrated their outstanding imaging capability for both PA and CT imaging both in vitro and in vivo, providing the potential for therapeutic guidance and monitoring. Assisted by folic acid, these nanoparticles could highly enrich in ovarian tumor tissue and the accumulation peaked at 3 h after intravenous administration. The desirable photothermal-conversion efficiency of the nanoparticles combined with chemotherapy achieved highly efficient therapy, which was demonstrated both in vitro and in vivo. Conclusion We successfully constructed multifunctional theranostic FBPD NPs for highly efficient PTT/chemotherapy combined therapy with dual CT/PA imaging guidance/monitoring. The unique nanoparticles with multiple abilities pave an emerging way toward precise treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jiawen Zhao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Liang Zhang
- Department of Ultrasound, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yingjie Qi
- Department of Intensive Care Unit (ICU), Dianjiang People's Hospital of Chongqing, Chongqing, People's Republic of China
| | - Kui Liao
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhigang Wang
- Institute of Ultrasound Imaging, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Ming Wen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Di Zhou
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
16
|
Pelosi C, Tinè MR, Wurm FR. Main-chain water-soluble polyphosphoesters: Multi-functional polymers as degradable PEG-alternatives for biomedical applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110079] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Wang L, Li SY, Jiang W, Liu H, Dou JX, Li XQ, Wang YC. Polyphosphoestered Nanomedicines with Tunable Surface Hydrophilicity for Cancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32312-32320. [PMID: 32578972 DOI: 10.1021/acsami.0c07016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface hydrophilicity of nanoparticles has a major impact on their biological fates. Ascertaining the correlation between nanoparticle surface hydrophilicity and their biological behaviors is particularly instructive for future nanomedicine design and their antitumor efficacy optimization. Herein, we designed a series of polymeric nanoparticles based on polyphosphoesters with well-controlled surface hydrophilicity in the molecular level and systemically evaluated their biological behaviors. The results demonstrated that high surface hydrophilicity preferred lower protein absorption, better stability, longer blood circulation, and higher tumor accumulation but lower cellular uptake. Upon encapsulation of drugs, nanoparticles with high hydrophilicity showed an excellent antitumor therapeutic efficacy in both primary and metastatic tumors as compared to the relatively hydrophobic ones. Further analyses revealed that the superior antitumor outcome was attributed to the balance of tumor accumulation and cellular uptake, demonstrating the particular importance of nanoparticle surface hydrophilicity regulation on the antitumor efficacy. Our work provides a potent guideline for a rational designation on the surface hydrophilicity of nanoparticles for cancer treatment optimization.
Collapse
Affiliation(s)
- Li Wang
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shu-Ya Li
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wei Jiang
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hao Liu
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jia-Xiang Dou
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiao-Qiu Li
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yu-Cai Wang
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
18
|
Comparative study of enzyme-catalyzed biodegradation and crystallization behavior of PCL-PTEGMA amphiphilic hypergraft copolymers. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Birhan YS, Darge HF, Hanurry EY, Andrgie AT, Mekonnen TW, Chou HY, Lai JY, Tsai HC. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020; 12:E580. [PMID: 32585885 PMCID: PMC7356386 DOI: 10.3390/pharmaceutics12060580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022] Open
Abstract
Polymeric micelles (PMs) have been used to improve the poor aqueous solubility, slow absorption and non-selective biodistribution of chemotherapeutic agents (CAs), albeit, they suffer from disassembly and premature release of payloads in the bloodstream. To alleviate the thermodynamic instability of PMs, different core crosslinking approaches were employed. Herein, we synthesized the poly(ethylene oxide)-b-poly((2-aminoethyl)diselanyl)ethyl l-aspartamide)-b-polycaprolactone (mPEG-P(LA-DSeDEA)-PCL) copolymer which self-assembled into monodispersed nanoscale, 156.57 ± 4.42 nm, core crosslinked micelles (CCMs) through visible light-induced diselenide metathesis reaction between the pendant selenocystamine moieties. The CCMs demonstrated desirable doxorubicin (DOX)-loading content (7.31%) and encapsulation efficiency (42.73%). Both blank and DOX-loaded CCMs (DOX@CCMs) established appreciable colloidal stability in the presence of bovine serum albumin (BSA). The DOX@CCMs showed redox-responsive drug releasing behavior when treated with 5 and 10 mM reduced glutathione (GSH) and 0.1% H2O2. Unlike the DOX-loaded non-crosslinked micelles (DOX@NCMs) which exhibited initial burst release, DOX@CCMs demonstrated a sustained release profile in vitro where 71.7% of the encapsulated DOX was released within 72 h. In addition, the in vitro fluorescent microscope images and flow cytometry analysis confirmed the efficient cellular internalization of DOX@CCMs. The in vitro cytotoxicity test on HaCaT, MDCK, and HeLa cell lines reiterated the cytocompatibility (≥82% cell viability) of the mPEG-P(LA-DSeDEA)-PCL copolymer and DOX@CCMs selectively inhibit the viabilities of 48.85% of HeLa cells as compared to 15.75% of HaCaT and 7.85% of MDCK cells at a maximum dose of 10 µg/mL. Overall, all these appealing attributes make CCMs desirable as nanocarriers for the delivery and controlled release of DOX in tumor cells.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
20
|
Chen M, He J, Xie S, Wang T, Ran P, Zhang Z, Li X. Intracellular bacteria destruction via traceable enzymes-responsive release and deferoxamine-mediated ingestion of antibiotics. J Control Release 2020; 322:326-336. [DOI: 10.1016/j.jconrel.2020.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 10/25/2022]
|
21
|
Cunningham AJ, Gibson VP, Banquy X, Zhu X, Jeanne LC. Cholic acid-based mixed micelles as siRNA delivery agents for gene therapy. Int J Pharm 2020; 578:119078. [DOI: 10.1016/j.ijpharm.2020.119078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
|
22
|
Zaboli A, Raissi H, Farzad F, Hashemzadeh H. Assessment of adsorption behavior of 5-fluorouracil and pyrazinamide on carbon nitride and folic acid-conjugated carbon nitride nanosheets for targeting drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.112435] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Maruya-Li K, Shetty C, Moini Jazani A, Arezi N, Oh JK. Dual Reduction/Acid-Responsive Disassembly and Thermoresponsive Tunability of Degradable Double Hydrophilic Block Copolymer. ACS OMEGA 2020; 5:3734-3742. [PMID: 32118189 PMCID: PMC7045573 DOI: 10.1021/acsomega.9b04430] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 01/29/2020] [Indexed: 05/27/2023]
Abstract
We report a thermoresponsive double hydrophilic block copolymer degradable in response to dual reduction and acidic pH at dual locations. The copolymer consists of a poly(ethylene oxide) block covalently connected through an acid-labile acetal linkage with a thermoresponsive polymethacrylate block containing pendant oligo(ethylene oxide) and disulfide groups. The copolymer undergoes temperature-driven self-assembly in water to form nanoassemblies with acetal linkages at the core/corona interface and disulfide pendants in the core, exhibiting dual reduction/acid responses at dual locations. The physically assembled nanoaggregates are converted to disulfide-core-crosslinked nanogels through disulfide-thiol exchange reaction, retaining enhanced colloidal stability, yet degraded to water-soluble unimers upon reduction/acid-responsive degradation. Further, the copolymer exhibits improved tunability of thermoresponsive property upon the cleavage of junction acetal and pendant disulfide linkages individually and in combined manner. This work suggests that dual location dual reduction/acid-responsive degradation is a versatile strategy toward effective drug delivery exhibiting disulfide-core-crosslinking capability and disassembly as well as improved thermoresponsive tunability.
Collapse
|
24
|
Li H, He J, Zhang M, Liu J, Ni P. Glucose-Sensitive Polyphosphoester Diblock Copolymer for an Insulin Delivery System. ACS Biomater Sci Eng 2020; 6:1553-1564. [DOI: 10.1021/acsbiomaterials.9b01817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongping Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
25
|
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152:191-221. [PMID: 31028759 DOI: 10.1016/j.addr.2019.04.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Thiolated polymers designated "thiomers" are obtained by covalent attachment of thiol functionalities on the polymeric backbone of polymers. In 1998 these polymers were first described as mucoadhesive and in situ gelling compounds forming disulfide bonds with cysteine-rich substructures of mucus glycoproteins and crosslinking through inter- and intrachain disulfide bond formation. In the following, it was shown that thiomers are able to form disulfides with keratins and membrane-associated proteins exhibiting also cysteine-rich substructures. Furthermore, permeation enhancing, enzyme inhibiting and efflux pump inhibiting properties were demonstrated. Because of these capabilities thiomers are promising tools for drug delivery guaranteeing a strongly prolonged residence time as well as sustained release on mucosal membranes. Apart from that, thiomers are used as drugs per se. In particular, for treatment of dry eye syndrome various thiolated polymers are in development and a first product has already reached the market. Within this review an overview about the thiomer-technology and its potential for different applications is provided discussing especially the outcome of studies in non-rodent animal models and that of numerous clinical trials. Moreover, an overview on product developments is given.
Collapse
|
26
|
Wang W, Liu S, Chen B, Yan X, Li S, Ma X, Yu X. DNA-Inspired Adhesive Hydrogels Based on the Biodegradable Polyphosphoesters Tackified by a Nucleobase. Biomacromolecules 2019; 20:3672-3683. [DOI: 10.1021/acs.biomac.9b00642] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenliang Wang
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Sanrong Liu
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Binggang Chen
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Xinxin Yan
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Shengran Li
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Xiaojing Ma
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Xifei Yu
- Laboratory of Polymer Composites Engineering, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026 China
| |
Collapse
|
27
|
Lu B, Xiao Z, Wang Z, Wang B, Zhao W, Ma X, Zhang J. Redox-Sensitive Polymer Micelles Based on CD44 and Folic Acid Receptor for Intracellular Drug Delivery and Drug Controlled Release in Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:4222-4232. [DOI: 10.1021/acsabm.9b00500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Beibei Lu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhourui Xiao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhenyuan Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Binshen Wang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Weiwei Zhao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China
- Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
28
|
Bamburowicz-Klimkowska M, Poplawska M, Grudzinski IP. Nanocomposites as biomolecules delivery agents in nanomedicine. J Nanobiotechnology 2019; 17:48. [PMID: 30943985 PMCID: PMC6448271 DOI: 10.1186/s12951-019-0479-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
Nanoparticles (NPs) are atomic clusters of crystalline or amorphous structure that possess unique physical and chemical properties associated with a size range of between 1 and 100 nm. Their nano-sized dimensions, which are in the same range as those of vital biomolecules, such as antibodies, membrane receptors, nucleic acids, and proteins, allow them to interact with different structures within living organisms. Because of these features, numerous nanoparticles are used in medicine as delivery agents for biomolecules. However, off-target drug delivery can cause serious side effects to normal tissues and organs. Considering this issue, it is essential to develop bioengineering strategies to significantly reduce systemic toxicity and improve therapeutic effect. In contrast to passive delivery, nanosystems enable to obtain enhanced therapeutic efficacy, decrease the possibility of drug resistance, and reduce side effects of "conventional" therapy in cancers. The present review provides an overview of the most recent (mostly last 3 years) achievements related to different biomolecules used to enable targeting capabilities of highly diverse nanoparticles. These include monoclonal antibodies, receptor-specific peptides or proteins, deoxyribonucleic acids, ribonucleic acids, [DNA/RNA] aptamers, and small molecules such as folates, and even vitamins or carbohydrates.
Collapse
Affiliation(s)
| | - Magdalena Poplawska
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Str, 00-664, Warsaw, Poland
| | - Ireneusz P Grudzinski
- Department of Applied Toxicology, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str, 02-097, Warsaw, Poland.
| |
Collapse
|
29
|
Dong S, Sun Y, Liu J, Li L, He J, Zhang M, Ni P. Multifunctional Polymeric Prodrug with Simultaneous Conjugating Camptothecin and Doxorubicin for pH/Reduction Dual-Responsive Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8740-8748. [PMID: 30693750 DOI: 10.1021/acsami.8b16363] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Amphiphilic polymeric prodrugs show improved therapeutic indices with respect to traditional hydrophobic anticancer drugs because these prodrugs can self-assemble into nanoparticles, prolong the circulation of drugs in the blood, improve the accumulation of drugs in the disease site, reduce the side effects of drugs, and achieve therapeutic effect. Here, we describe a novel pH/reduction dual-responsive polymeric prodrug, abbreviated as CPT- ss-poly(BYP- hyd-DOX- co-EEP), with simultaneous conjugating camptothecin (CPT) and doxorubicin (DOX), wherein BYP and EEP represent two cyclic phosphate monomers, respectively, that is, 2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane and 2-ethoxy-2-oxo-1,3,2-dioxaphospholane. This prodrug was prepared through a polyphosphoester-DOX conjugate using a CPT derivative (CPT- ss-OH) as the initiator. CPT is linked to the terminal of polyphosphoester via disulfide carbonate, which is easy to break up under intracellular reductive environment and release the parent CPT, whereas DOX was efficiently incorporated onto the pendants of polyphosphoester through a hydrazone bond (- hyd-), which would be cleaved in the intracellular acidic medium. We show that the stable prodrug nanoparticles formed by self-assembly could release CPT and DOX simultaneously in the tumor microenvironment. The results of MTT assay demonstrate that the prodrug, which binds two antitumor drugs simultaneouly, has the properties of dual pH/reduction sensitiveness, biocompatibility, biodegradability, and effective tumor therapy.
Collapse
Affiliation(s)
- Shuxiang Dong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yue Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Jie Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Lei Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Jinlin He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Mingzu Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Peihong Ni
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
30
|
Chen F, Li Y, Fu Y, Hou Y, Chen Y, Luo X. The synthesis and co-micellization of PCL-P(HEMA/HEMA-LA) and PCL-P(HEMA/HEMA-FA) as shell cross-linked drug carriers with target/redox properties. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:276-294. [PMID: 30556773 DOI: 10.1080/09205063.2018.1558486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In order to obtain target/redox shell cross-linked micelles (TCM), copolymers poly(ε-caprolactone)-poly(2-hydroxyethyl methacrylate/methacrylate-alpha lipoic acid) and poly(ε-caprolactone)-poly(2-hydroxyethyl methacrylate/methacrylate-folate, PCL-P(HEMA/HEMA-LA) and PCL-P(HEMA/HEMA-FA) were designed and synthesized. The copolymers PCL-P(HEMA/HEMA-LA) could form reduction-sensitive cross-linked micelles (CM) by using a catalytic amount of DTT. The micelles maintained high stability against dilution but were destroyed in 10 mM dithiothreitol (DTT). The drug loaded content (DLC) of CM was 8.9%, which was almost twice as much as non-cross-linked micelle (NCM). In vitro drug release at pH 7.4 showed that the cumulative release rate of CM in 36 h was less than 30%, while it was about 50% for NCM. When PCL-P(HEMA/HEMA-LA) and PCL-P(HEMA/HEMA-FA) (FA 1%, 3% and 5%) formed target/redox micelles, IC50 of TCM with FA 3% was the lowest (1.4 µg/mL) to Hela cells with excessive expression folate receptors. The cell uptake of TCM by Hela cells is higher than target non-cross-linked micelles (TNCM), while there was not much difference between both micelles uptaken by A549 cells, which are lack of folate receptors. Therefore, the drug carriers of TCM have potential to be explored as shell cross-linked target/redox drug carriers to the cancer cells on the surface with excessive folate receptors.
Collapse
Affiliation(s)
- Fan Chen
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Yi Li
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Ye Fu
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Yu Hou
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Yuanwei Chen
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China
| | - Xianglin Luo
- a College of Polymer Science and Engineering , Sichuan University , Chengdu , P. R. China.,b State Key Lab of Polymer Materials Engineering , Sichuan University , Chengdu , P.R. China
| |
Collapse
|
31
|
Yang J, Li Y, Hao N, Umair A, Liu A, Li L, Ye X. Preparation and Controlled Degradation of Model Amphiphilic Long-Subchain Hyperbranched Copolymers: Hyperblock versus Hypergraft. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b01784] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jinxian Yang
- Shenzhen Key Laboratory for Functional Polymer, School of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Li L, Song Y, He J, Zhang M, Liu J, Ni P. Zwitterionic shielded polymeric prodrug with folate-targeting and pH responsiveness for drug delivery. J Mater Chem B 2019; 7:786-795. [PMID: 32254853 DOI: 10.1039/c8tb02772b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Zwitterionic polymers are a class of polymers that acts as both Lewis base and Lewis acid in solution. These polymers not only have excellent properties of hydration, anti-bacterial adhesion, charge reversal and easy chemical modification, but also have characteristics of long-term circulation and suppress nonspecific protein adsorption in vivo. Here, we describe a novel folate-targeted and acid-labile polymeric prodrug under the microenvironment of tumor cells, abbreviated as FA-P(MPC-co-PEGMA-BZ)-g-DOX, which was synthesized via a combination of reversible addition-fragmentation chain transfer (RAFT) copolymerization, Schiff-base reaction, Click chemistry, and a reaction between the amine group of doxorubicin (DOX) and aldehyde functionalities of P(MPC-co-PEGMA-BZ) pendants, wherein MPC and PEGMA-BZ represent 2-(methacryloyloxy)ethyl phosphorylcholine and polyethylene glycol methacrylate ester benzaldehyde, respectively. The polymeric prodrug could self-assemble into nanoparticles in an aqueous solution. The average particle size and morphologies of the prodrug nanoparticles were observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. We also investigated the in vitro drug release behavior and observed rapid prodrug nanoparticle dissociation and drug release under a mildly acidic microenvironment. The methyl thiazolyl tetrazolium (MTT) assay verified that the P(MPC-co-PEGMA-BZ) copolymer possessed good biocompatibility and the FA-P(MPC-co-PEGMA-BZ)-g-DOX prodrug nanoparticles showed higher cellular uptake than those prodrug nanoparticles without the FA moiety. The results of cytotoxicity and the intracellular uptake of non-folate/folate targeted prodrug nanoparticles further confirmed that FA-P(MPC-co-PEGMA-BZ)-g-DOX could be efficiently accumulated and rapidly internalized by HeLa cells due to the strong interaction between multivalent phosphorylcholine (PC) groups and cell membranes. This kind of multifunctional FA-P(MPC-co-PEGMA-BZ)-g-DOX prodrug nanoparticle with combined target-ability and pH responsiveness demonstrates promising potential for cancer chemotherapy.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | |
Collapse
|
33
|
Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019. [DOI: 10.1039/c8py01808a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Review on recent strategies to synthesize novel disulfide-containing reductively-degradable block copolymers and their nanoassemblies as being classified with the number, position, and location of the disulfide linkages toward effective tumor-targeting intracellular drug delivery exhibiting enhanced release of encapsulated drugs.
Collapse
Affiliation(s)
- Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
34
|
Zhang D, Yang J, Guan J, Yang B, Zhang S, Sun M, Yang R, Zhang T, Zhang R, Kan Q, Zhang H, He Z, Shang L, Sun J. In vivo tailor-made protein corona of a prodrug-based nanoassembly fabricated by redox dual-sensitive paclitaxel prodrug for the superselective treatment of breast cancer. Biomater Sci 2018; 6:2360-2374. [PMID: 30019051 DOI: 10.1039/c8bm00548f] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prodrug self-nanoassemblies have many advantages for anticancer drug delivery, including high drug loading rate, resistance to recrystallization, and on-demand drug release. However, few studies have focused on their protein corona, which is inevitably formed after entering the blood and determines their subsequent fates in vivo. To actively tune the protein corona of prodrug nanoassemblies, three maleimide-paclitaxel prodrugs were synthesized via different redox-sensitive linkers (ester bond, thioether bond and disulfide bond). After incubation with rat plasma, the surface maleimide groups effectively captured albumins, resulting in albumin-enriched protein corona. The recruited albumin corona enabled enhanced tumor accumulation and facilitated cellular uptake, ensuring the high-efficiency delivery of nanoassemblies to tumor cells. Surprisingly, we found that the traditionally reduction-sensitive disulfide bond could also be triggered by reactive oxygen species (ROS). Such a redox dual-responsive drug release property of the disulfide bond-containing prodrug nanoassemblies further increased the selectivity in cytotoxicity between normal and tumor cells. Moreover, the disulfide bond-containing prodrug nanoassemblies exhibited the highest antitumor efficacy in vivo compared to marketed Abraxane® and other prodrug nanoassemblies. Thus, the fabrication of the maleimide-decorated disulfide bond bridged prodrug nanoassembly, integrating a tunable protein corona and on-demand drug release, is a promising strategy for improved cancer chemotherapy.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li L, Li D, Zhang M, He J, Liu J, Ni P. One-Pot Synthesis of pH/Redox Responsive Polymeric Prodrug and Fabrication of Shell Cross-Linked Prodrug Micelles for Antitumor Drug Transportation. Bioconjug Chem 2018; 29:2806-2817. [PMID: 30005157 DOI: 10.1021/acs.bioconjchem.8b00421] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shell cross-linked (SCL) polymeric prodrug micelles have the advantages of good blood circulation stability and high drug content. Herein, we report on a new kind of pH/redox responsive dynamic covalent SCL micelle, which was fabricated by self-assembly of a multifunctional polymeric prodrug. At first, a macroinitiator PBYP- ss- iBuBr was prepared via ring-opening polymerization (ROP), wherein PBYP represents poly[2-(but-3-yn-1-yloxy)-2-oxo-1,3,2-dioxaphospholane]. Subsequently, PBYP- hyd-DOX- ss-P(DMAEMA- co-FBEMA) prodrug was synthesized by a one-pot method with a combination of atom transfer radical polymerization (ATRP) and a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction using a doxorubicin (DOX) derivative containing an azide group to react with the alkynyl group of the side chain in the PBYP block, while DMAEMA and FBEMA are the abbriviations of N, N-(2-dimethylamino)ethyl methacrylate and 2-(4-formylbenzoyloxy)ethyl methacrylate, respectively. The chemical structures of the polymer precursors and the prodrugs have been fully characterized. The SCL prodrug micelles were obtained by self-assembly of the prodrug and adding cross-linker dithiol bis(propanoic dihydrazide) (DTP). Compared with the shell un-cross-linked prodrug micelles, the SCL prodrug micelles can enhance the stability and prevent the drug from leaking in the body during blood circulation. The average size and morphology of the SCL prodrug micelles were measured by dynamic light scattering (DLS) and transmission electron microscopy (TEM), respectively. The SCL micelles can be dissociated under a moderately acidic and/or reductive microenvironment, that is, endosomal/lysosomal pH medium or high GSH level in the tumorous cytosol. The results of DOX release also confirmed that the SCL prodrug micelles possessed pH/reduction responsive properties. Cytotoxicity and cellular uptake analyses further revealed that the SCL prodrug micelles could be rapidly internalized into tumor cells through endocytosis and efficiently release DOX into the HeLa and HepG2 cells, which could efficiently inhibit the cell proliferation. This study provides a fast and precise synthesis method for preparing multifunctional polymer prodrugs, which hold great potential for optimal antitumor therapy.
Collapse
Affiliation(s)
- Lei Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Dian Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM) , Soochow University , Suzhou , 215123 , People's Republic of China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis , Soochow University , Suzhou 215123 , People's Republic of China
| |
Collapse
|
36
|
Zhang Y, Wang D, Gao M, Xu B, Zhu J, Yu W, Liu D, Jiang G. Separable Microneedles for Near-Infrared Light-Triggered Transdermal Delivery of Metformin in Diabetic Rats. ACS Biomater Sci Eng 2018; 4:2879-2888. [DOI: 10.1021/acsbiomaterials.8b00642] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Zhang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Danfeng Wang
- Department of Gynecology and Obstetrics, Tonglu Maternal and Child Health Care Hospital, Tonglu, Zhejiang 311500, China
| | - Mengyue Gao
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Bin Xu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jiangying Zhu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Weijiang Yu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Depeng Liu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Hangzhou, Zhejiang 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, Zhejiang 310018, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|