1
|
Mo L, Mo M, Yang C, Lin W. Enhancing RNA detection and breast cancer subtyping with a universal 3D-hybridization chain reaction system. Talanta 2024; 277:126387. [PMID: 38876028 DOI: 10.1016/j.talanta.2024.126387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Breast cancer, a globally prevalent malignancy, is characterized by pronounced heterogeneity. Accurate subtyping requires the simultaneous detection of different biomarkers, which is crucial for personalized treatment strategies. However, existing methodologies are hindered by limited versatility and sensing performance. To overcome these hurdles, this study presents a universal 3D-Hybridization Chain Reaction (3D-HCR) system for RNA detection and subtype-specific diagnosis of breast cancer. The system integrated a universal trigger for HCR, thereby circumventing the need for complex sequence design and enabling the analysis of various RNA targets. Leveraging the spatial-confinement effect offered by DNA nanocarriers, this system exhibited superior amplification efficiency, achieving detection limits of 3.83 pM and 4.96 pM for PD-L1 mRNA and miR-21, respectively. Importantly, the system could differentiate between triple-negative breast cancer and estrogen receptor-positive breast cancer in both living cells and clinical tissues. These findings underscore the potential of the universal 3D-HCR system as a promising tool in clinical diagnostics. With its proven proficiency in breast cancer diagnostics and versatility in RNA analysis, this system holds the promise of broadening the horizons of precision medicine.
Collapse
Affiliation(s)
- Liuting Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Mingxiu Mo
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Chan Yang
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Weiying Lin
- Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Guangxi Key Laboratory of Electrochemical Energy Materials, College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
2
|
Khodadadi Yazdi M, Seidi F, Hejna A, Zarrintaj P, Rabiee N, Kucinska-Lipka J, Saeb MR, Bencherif SA. Tailor-Made Polysaccharides for Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:4193-4230. [PMID: 38958361 PMCID: PMC11253104 DOI: 10.1021/acsabm.3c01199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Polysaccharides (PSAs) are carbohydrate-based macromolecules widely used in the biomedical field, either in their pure form or in blends/nanocomposites with other materials. The relationship between structure, properties, and functions has inspired scientists to design multifunctional PSAs for various biomedical applications by incorporating unique molecular structures and targeted bulk properties. Multiple strategies, such as conjugation, grafting, cross-linking, and functionalization, have been explored to control their mechanical properties, electrical conductivity, hydrophilicity, degradability, rheological features, and stimuli-responsiveness. For instance, custom-made PSAs are known for their worldwide biomedical applications in tissue engineering, drug/gene delivery, and regenerative medicine. Furthermore, the remarkable advancements in supramolecular engineering and chemistry have paved the way for mission-oriented biomaterial synthesis and the fabrication of customized biomaterials. These materials can synergistically combine the benefits of biology and chemistry to tackle important biomedical questions. Herein, we categorize and summarize PSAs based on their synthesis methods, and explore the main strategies used to customize their chemical structures. We then highlight various properties of PSAs using practical examples. Lastly, we thoroughly describe the biomedical applications of tailor-made PSAs, along with their current existing challenges and potential future directions.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division
of Electrochemistry and Surface Physical Chemistry, Faculty of Applied
Physics and Mathematics, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
- Advanced
Materials Center, Gdańsk University
of Technology, Narutowicza
11/12, 80-233 Gdańsk, Poland
| | - Farzad Seidi
- Jiangsu
Co−Innovation Center for Efficient Processing and Utilization
of Forest Resources and International Innovation Center for Forest
Chemicals and Materials, Nanjing Forestry
University, Nanjing 210037, China
| | - Aleksander Hejna
- Institute
of Materials Technology, Poznan University
of Technology, PL-61-138 Poznań, Poland
| | - Payam Zarrintaj
- School
of Chemical Engineering, Oklahoma State
University, 420 Engineering
North, Stillwater, Oklahoma 74078, United States
| | - Navid Rabiee
- Department
of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai 600077, India
| | - Justyna Kucinska-Lipka
- Department
of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department
of Pharmaceutical Chemistry, Medical University
of Gdańsk, J.
Hallera 107, 80-416 Gdańsk, Poland
| | - Sidi A. Bencherif
- Chemical
Engineering Department, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
3
|
Rybak D, Su YC, Li Y, Ding B, Lv X, Li Z, Yeh YC, Nakielski P, Rinoldi C, Pierini F, Dodda JM. Evolution of nanostructured skin patches towards multifunctional wearable platforms for biomedical applications. NANOSCALE 2023; 15:8044-8083. [PMID: 37070933 DOI: 10.1039/d3nr00807j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recent advances in the field of skin patches have promoted the development of wearable and implantable bioelectronics for long-term, continuous healthcare management and targeted therapy. However, the design of electronic skin (e-skin) patches with stretchable components is still challenging and requires an in-depth understanding of the skin-attachable substrate layer, functional biomaterials and advanced self-powered electronics. In this comprehensive review, we present the evolution of skin patches from functional nanostructured materials to multi-functional and stimuli-responsive patches towards flexible substrates and emerging biomaterials for e-skin patches, including the material selection, structure design and promising applications. Stretchable sensors and self-powered e-skin patches are also discussed, ranging from electrical stimulation for clinical procedures to continuous health monitoring and integrated systems for comprehensive healthcare management. Moreover, an integrated energy harvester with bioelectronics enables the fabrication of self-powered electronic skin patches, which can effectively solve the energy supply and overcome the drawbacks induced by bulky battery-driven devices. However, to realize the full potential offered by these advancements, several challenges must be addressed for next-generation e-skin patches. Finally, future opportunities and positive outlooks are presented on the future directions of bioelectronics. It is believed that innovative material design, structure engineering, and in-depth study of fundamental principles can foster the rapid evolution of electronic skin patches, and eventually enable self-powered close-looped bioelectronic systems to benefit mankind.
Collapse
Affiliation(s)
- Daniel Rybak
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Yu-Chia Su
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Yang Li
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing, 210023, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China.
| | - Xiaoshuang Lv
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Zhaoling Li
- Shanghai Frontier Science Research Center for Modern Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yi-Cheun Yeh
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan
| | - Pawel Nakielski
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Chiara Rinoldi
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Filippo Pierini
- Institute of Fundamental Technological Research, Polish Academy of Science, 02-106 Warsaw, Poland.
| | - Jagan Mohan Dodda
- New Technologies - Research Centre (NTC), University of West Bohemia, Univerzitní 8, 301 00 Pilsen, Czech Republic.
| |
Collapse
|
4
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
5
|
Sun Y, Bai Y, Yang W, Bu K, Tanveer SK, Hai J. Global Trends in Natural Biopolymers in the 21st Century: A Scientometric Review. Front Chem 2022; 10:915648. [PMID: 35873047 PMCID: PMC9302608 DOI: 10.3389/fchem.2022.915648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Since the 21st century, natural biopolymers have played an indispensable role in long-term global development strategies, and their research has shown a positive growth trend. However, these substantive scientific results are not conducive to our quick grasp of hotspots and insight into future directions and to understanding which local changes have occurred and which trend areas deserve more attention. Therefore, this study provides a new data-driven bibliometric analysis strategy and framework for mining the core content of massive bibliographic data, based on mathematical models VOS Viewer and CiteSpace software, aiming to understand the research prospects and opportunities of natural biopolymers. The United States is reported to be the most important contributor to research in this field, with numerous publications and active institutions; polymer science is the most popular subject category, but the further emphasis should be placed on interdisciplinary teamwork; mainstream research in this field is divided into five clusters of knowledge structures; since the explosion in the number of articles in 2018, researchers are mainly engaged in three fields: “medical field,” “biochemistry field,” and “food science fields.” Through an in-depth analysis of natural biopolymer research, this article provides a better understanding of trends emerging in the field over the past 22 years and can also serve as a reference for future research.
Collapse
Affiliation(s)
- Yitao Sun
- College of Agronomy, Northwest A&F University, Xianyan, China
| | - Yinping Bai
- College of Life Sciences and Engineering, The Southwest University of Science and Technology, Mianyang, China
| | - Wenlong Yang
- College of Agronomy, Northwest A&F University, Xianyan, China
| | - Kangmin Bu
- College of Agronomy, Northwest A&F University, Xianyan, China
| | | | - Jiangbo Hai
- College of Agronomy, Northwest A&F University, Xianyan, China
- *Correspondence: Jiangbo Hai,
| |
Collapse
|
6
|
Zhang Y, Chen J, Yang H, Yin W, Li C, Xu Y, Liu SY, Dai Z, Zou X. Light-Controlled Recruitable Hybridization Chain Reaction on Exosome Vehicles for Highly Sensitive MicroRNA Imaging in Living Cells. Anal Chem 2022; 94:9665-9673. [PMID: 35758600 DOI: 10.1021/acs.analchem.2c00974] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Sensitive imaging of intracellular microRNA (miRNA) in living cells is of great significance. Isothermal hybridization chain reaction (HCR)-based methods, although have been widely used to monitor intracellular low-abundance miRNA, are still subjected to the challenges of limited signal amplification efficiency and compromised imaging resolution. In this work, we design a light-controlled recruitable HCR (LCR-HCR) strategy that enables us to well overcome these limitations. Exosomes as delivery and recruitment vehicles are modified with three cholesterol-modified hairpins (H1, H2, and H3), in which H1 is for anchoring target miRNA and H2 and H3 with photocleavable linkers (PC-linkers) are designed for spatiotemporal HCR. By controllably releasing probes with high local concentrations to efficiently trigger HCR and further recruiting the generated double-stranded DNA (dsDNA) polymers instead of dispersion in the cytoplasm, the LCR-HCR method can significantly improve the imaging contrast by confining all of the reactants on exosome vehicles. For a proof-of-concept demonstration, the miR-21 was analyzed by LCR-HCR with a limit of detection (LOD) down to 3.3 pM (corresponding to 165 amol per 50 μL) in vitro and four times higher response than traditional HCR in vivo. In general, the LCR-HCR method provides a powerful tool for sensitive miRNA imaging in living cells and cancer diagnosis.
Collapse
Affiliation(s)
- Yanfei Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huihui Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wen Yin
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chunrong Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuzhi Xu
- Scientific Research Center, Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Si-Yang Liu
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zong Dai
- Guangdong Provincial Key Laboratory of Sensing Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, China
| | - Xiaoyong Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
7
|
Khadem E, Kharaziha M, Bakhsheshi-Rad HR, Das O, Berto F. Cutting-Edge Progress in Stimuli-Responsive Bioadhesives: From Synthesis to Clinical Applications. Polymers (Basel) 2022; 14:1709. [PMID: 35566878 PMCID: PMC9104595 DOI: 10.3390/polym14091709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
With the advent of "intelligent" materials, the design of smart bioadhesives responding to chemical, physical, or biological stimuli has been widely developed in biomedical applications to minimize the risk of wounds reopening, chronic pain, and inflammation. Intelligent bioadhesives are free-flowing liquid solutions passing through a phase shift in the physiological environment due to stimuli such as light, temperature, pH, and electric field. They possess great merits, such as ease to access and the ability to sustained release as well as the spatial transfer of a biomolecule with reduced side effects. Tissue engineering, wound healing, drug delivery, regenerative biomedicine, cancer therapy, and other fields have benefited from smart bioadhesives. Recently, many disciplinary attempts have been performed to promote the functionality of smart bioadhesives and discover innovative compositions. However, according to our knowledge, the development of multifunctional bioadhesives for various biomedical applications has not been adequately explored. This review aims to summarize the most recent cutting-edge strategies (years 2015-2021) developed for stimuli-sensitive bioadhesives responding to external stimuli. We first focus on five primary categories of stimuli-responsive bioadhesive systems (pH, thermal, light, electric field, and biomolecules), their properties, and limitations. Following the introduction of principal criteria for smart bioadhesives, their performances are discussed, and certain smart polymeric materials employed in their creation in 2015 are studied. Finally, advantages, disadvantages, and future directions regarding smart bioadhesives for biomedical applications are surveyed.
Collapse
Affiliation(s)
- Elham Khadem
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mahshid Kharaziha
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran;
| | - Oisik Das
- Structural and Fire Engineering Division, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden;
| | - Filippo Berto
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
8
|
Kaur J, Sengupta P, Mukhopadhyay S. Critical Review of Bioadsorption on Modified Cellulose and Removal of Divalent Heavy Metals (Cd, Pb, and Cu). Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jatinder Kaur
- Department of Chemistry, Fergusson College, Pune 411004, India
| | | | - Samrat Mukhopadhyay
- Department of Textile and Fiber Engineering, Indian Institute of Technology, New Delhi 110016, India
| |
Collapse
|
9
|
Yu P, Yu F, Xiang J, Zhou K, Zhou L, Zhang Z, Rong X, Ding Z, Wu J, Li W, Zhou Z, Ye L, Yang W. Mechanistically Scoping Cell-Free and Cell-Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107922. [PMID: 34837252 DOI: 10.1002/adma.202107922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Rebuilding mineralized tissues in skeletal and dental systems remains costly and challenging. Despite numerous demands and heavy clinical burden over the world, sources of autografts, allografts, and xenografts are far limited, along with massive risks including viral infections, ethic crisis, and so on. Per such dilemma, artificial scaffolds have emerged to provide efficient alternatives. To date, cell-free biomimetic mineralization (BM) and cell-dependent scaffolds have both demonstrated promising capabilities of regenerating mineralized tissues. However, BM and cell-dependent scaffolds have distinctive mechanisms for mineral genesis, which makes them methodically, synthetically, and functionally disparate. Herein, these two strategies in regenerative dentistry and orthopedics are systematically summarized at the level of mechanisms. For BM, methodological and theoretical advances are focused upon; and meanwhile, for cell-dependent scaffolds, it is demonstrated how scaffolds orchestrate osteogenic cell fate. The summary of the experimental advances and clinical progress will endow researchers with mechanistic understandings of artificial scaffolds in rebuilding hard tissues, by which better clinical choices and research directions may be approached.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Jie Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Zhou
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Xiao Rong
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Zichuan Ding
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Jiayi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wudi Li
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zongke Zhou
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wei Yang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| |
Collapse
|
10
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
11
|
Federer C, Kurpiers M, Bernkop-Schnürch A. Thiolated Chitosans: A Multi-talented Class of Polymers for Various Applications. Biomacromolecules 2020; 22:24-56. [PMID: 32567846 PMCID: PMC7805012 DOI: 10.1021/acs.biomac.0c00663] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Various properties of chitosan can be customized by thiolation for very specific needs in a wide range of application areas. Since the discovery of thiolated chitosans, many studies have proven their advantageous characteristics, such as adhesion to biological surfaces, adjustable cross-linking and swelling behavior, controllable drug release, permeation as well as cellular uptake enhancement, inhibition of efflux pumps and enzymes, complexation of metal ions, antioxidative properties, and radical scavenging activity. Simultaneously, these polymers remain biodegradable without increased toxicity. Within this Review, an overview about the different possibilities to covalently attach sulfhydryl ligands to the polymeric backbone of chitosan is given, and the resulting versatile physiochemical properties are discussed in detail. Furthermore, the broad spectrum of applications for thiolated chitosans in science and industry, ranging from their most advanced use in pharmaceutical and medical science over wastewater treatment to the impregnation of textiles, is addressed.
Collapse
Affiliation(s)
- Christoph Federer
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Markus Kurpiers
- Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse 65, 6020 Innsbruck, Austria.,Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| |
Collapse
|
12
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 350] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Malchesky PS. Thomas Groth, PhD to serve as Co-Editor, Europe, ESAO Representative. Artif Organs 2020; 44:351-354. [PMID: 32185810 DOI: 10.1111/aor.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Doberenz F, Zeng K, Willems C, Zhang K, Groth T. Thermoresponsive polymers and their biomedical application in tissue engineering - a review. J Mater Chem B 2020; 8:607-628. [PMID: 31939978 DOI: 10.1039/c9tb02052g] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thermoresponsive polymers hold great potential in the biomedical field, since they enable the fabrication of cell sheets, in situ drug delivery and 3D-printing under physiological conditions. In this review we provide an overview of several thermoresponsive polymers and their application, with focus on poly(N-isopropylacrylamide)-surfaces for cell sheet engineering. Basic knowledge of important processes like protein adsorption on surfaces and cell adhesion is provided. For different thermoresponsive polymers, namely PNIPAm, Pluronics, elastin-like polypeptides (ELP) and poly(N-vinylcaprolactam) (PNVCL), synthesis and basic chemical and physical properties have been described and the mechanism of their thermoresponsive behavior highlighted. Fabrication methods of thermoresponsive surfaces have been discussed, focusing on PNIPAm, and describing several methods in detail. The latter part of this review is dedicated to the application of the thermoresponsive polymers and with regard to cell sheet engineering, the process of temperature-dependent cell sheet detachment is explained. We provide insight into several applications of PNIPAm surfaces in cell sheet engineering. For Pluronics, ELP and PNVCL we show their application in the field of drug delivery and tissue engineering. We conclude, that research of thermoresponsive polymers has made big progress in recent years, especially for PNIPAm since the 1990s. However, manifold research possibilities, e.g. in surface fabrication and 3D-printing and further translational applications are conceivable in near future.
Collapse
Affiliation(s)
- Falko Doberenz
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.
| | - Kui Zeng
- Wood Technology and Wood Chemistry, University of Goettingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany.
| | - Kai Zhang
- Wood Technology and Wood Chemistry, University of Goettingen, Büsgenweg 4, D-37077 Göttingen, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany. and Interdisciplinary Center of Material Science, Martin Luther University, Halle-Wittenberg, 06099 Halle (Saale), Germany and Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University, 1, 19991, Trubetskaya st. 8, Moscow, Russian Federation
| |
Collapse
|
15
|
Leichner C, Jelkmann M, Bernkop-Schnürch A. Thiolated polymers: Bioinspired polymers utilizing one of the most important bridging structures in nature. Adv Drug Deliv Rev 2019; 151-152:191-221. [PMID: 31028759 DOI: 10.1016/j.addr.2019.04.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Thiolated polymers designated "thiomers" are obtained by covalent attachment of thiol functionalities on the polymeric backbone of polymers. In 1998 these polymers were first described as mucoadhesive and in situ gelling compounds forming disulfide bonds with cysteine-rich substructures of mucus glycoproteins and crosslinking through inter- and intrachain disulfide bond formation. In the following, it was shown that thiomers are able to form disulfides with keratins and membrane-associated proteins exhibiting also cysteine-rich substructures. Furthermore, permeation enhancing, enzyme inhibiting and efflux pump inhibiting properties were demonstrated. Because of these capabilities thiomers are promising tools for drug delivery guaranteeing a strongly prolonged residence time as well as sustained release on mucosal membranes. Apart from that, thiomers are used as drugs per se. In particular, for treatment of dry eye syndrome various thiolated polymers are in development and a first product has already reached the market. Within this review an overview about the thiomer-technology and its potential for different applications is provided discussing especially the outcome of studies in non-rodent animal models and that of numerous clinical trials. Moreover, an overview on product developments is given.
Collapse
|
16
|
Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25637-25653. [PMID: 31283160 DOI: 10.1021/acsami.9b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toward imitating the natural smartness and responsivity of biological systems, surface interfacial properties are considered to be responsive and tunable if they show a reactive behavior to an environmental stimulus. This is still quite different from many contemporary biomaterials that lack responsiveness to interact with blood and different body tissues in a physiological manner. Meanwhile it is possible to even go one step further from responsiveness to dual-mode switchability and explore "switchable" or "reversible" responses of synthetic materials. We understand "switchable biomaterials" as materials undergoing a stepwise, structural transformation coupled with considerable changes of interfacial and other surface properties as a response to a stimulus. Therewith, a survey on stimuli-induced dynamic changes of charge, wettability, stiffness, topography, porosity, and thickness/swelling is presented here, as potentially powerful new technologies especially for future biomaterial development. Since living cells constantly sense their environment through a variety of surface receptors and other mechanisms, these obedient interfacial properties were particularly discussed regarding their advantageous multifunctionality for protein adsorption and cell adhesion signaling, which may alter in time and with environmental conditions.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Applied Sciences , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
17
|
Layer-by-layer assembly as a robust method to construct extracellular matrix mimic surfaces to modulate cell behavior. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Delgado JD, Surmaitis RL, Abou Shaheen S, Schlenoff JB. Engineering Thiolated Surfaces with Polyelectrolyte Multilayers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3524-3535. [PMID: 30620554 DOI: 10.1021/acsami.8b15514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interfaces bearing firmly attached thiol groups are useful for many applications requiring the versatile and facile chemistry of the -SH functionality. In this work, rugged ultrathin films were prepared on substrates using layer-by-layer assembly. The surface of these smooth films was capped with a co-polymer containing benzyl mercaptan units. The utility of this coating was illustrated by three applications. First, thiol-ene "click" chemistry was used to introduce the Arg-Gly-Asp (RGD) adhesive peptide sequence on a surface that otherwise resisted good adhesion of fibroblasts. This treatment promoted cell adhesion and spreading. Similar Michael addition chemistry was employed to attach poly(ethylene glycol) to the surface, which reduced fouling by (adhesion of) serum albumin. Finally, the affinity of gold for -SH was exploited by depositing a layer of gold nanoparticles on the thiolated surface or by evaporating a tenacious film of gold without using the classical chromium "primer" layer.
Collapse
Affiliation(s)
- Jose D Delgado
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Richard L Surmaitis
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
19
|
Esmaeilzadeh P, Menzel M, Groth T. Cyclic Redox-Mediated Switching of Surface Properties of Thiolated Polysaccharide Multilayers and Its Effect on Fibroblast Adhesion. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31168-31177. [PMID: 30156819 DOI: 10.1021/acsami.8b12259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advanced technologies for controlled cell adhesion and detachment in novel biointerface designs profit from stimuli-responsive systems that are able to react to their environment. Here, a multilayer system made of thiolated chitosan and thiolated chondroitin sulfate was constructed, with the potential of switchable inter- and intramolecular thiol/disulfide interactions representing a redox-sensitive nanoplatform. Owing to the formation and cleavage of inherent disulfide bonds by oxidation and reduction, surface properties of the multilayer can be controlled toward protein adsorption/desorption and cell adhesion in a reversible manner. Oxidation of thiols by chloramine-T promotes fibronectin (FN) adsorption and fibroblast cell adhesion, whereas the reduction by tris(2-carboxyethyl)phosphine reverses these effects, leading to low FN adsorption and little cell adhesion and spreading. These effects on the biological systems are related to significant changes of wetting properties, zeta potential, and mechanical properties of these multilayer films. The system presented may be useful for biomedical applications as responsive and obedient surfaces in medical implants and support tissue regeneration.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , D 06120 Halle (Saale) , Germany
- Interdisciplinary Center for Material Research , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Strasse 4 , 06120 Halle (Saale) , Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS , Walter-Hülse-Strasse 1 , 06120 Halle (Saale) , Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , D 06120 Halle (Saale) , Germany
- Interdisciplinary Center for Material Research , Martin Luther University Halle-Wittenberg , Heinrich-Damerow-Strasse 4 , 06120 Halle (Saale) , Germany
| |
Collapse
|
20
|
Kim S, Kim J, Gajendiran M, Yoon M, Hwang MP, Wang Y, Kang BJ, Kim K. Enhanced Skull Bone Regeneration by Sustained Release of BMP-2 in Interpenetrating Composite Hydrogels. Biomacromolecules 2018; 19:4239-4249. [DOI: 10.1021/acs.biomac.8b01013] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sungjun Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Junhyung Kim
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Mani Gajendiran
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Minhyuk Yoon
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| | - Mintai P. Hwang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850, United States
| | - Byung-Jae Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Kyobum Kim
- Division of Bioengineering, College of Life Sciences and Bioengineering, Incheon National University, Incheon, 22012 Korea
| |
Collapse
|