1
|
Kim Y, Seo JW, Lee IH, Kim JY. Investigating the Influence of PbS Quantum Dot-Decorated TiO 2 Photoanode Thickness on Photoelectrochemical Hydrogen Production Performance. MATERIALS (BASEL, SWITZERLAND) 2023; 17:225. [PMID: 38204078 PMCID: PMC10779549 DOI: 10.3390/ma17010225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
To maximize the photoelectrochemical (PEC) hydrogen production performance of quantum dot (QD)-decorated photoelectrodes, it is crucial to prioritize the optimization of electrode's structure, including thickness and porosity. In this study, we prepare PbS QD-decorated mesoporous TiO2 photoanodes for PEC hydrogen production, and systematically investigate the influence of the photoanode thickness on optical properties and PEC performances. As the thickness of photoanodes increases from 6.4 µm to 16.3 µm, the light absorption capability is enhanced across the entire visible and near-infrared (IR) spectrum due to the improved loading of PbS QDs. However, the photocurrent density is optimized for the 11.9 µm thick photoanode (15.19 mA/cm2), compared to the 6.4 µm thick (10.80 mA/cm2) and 16.3 µm thick photoanodes (11.93 mA/cm2). This optimization is attributed to the trade-off between the light absorption capability and the efficient mass transfer of the electrolyte as the photoanode thickness increases, which is confirmed by the lowest charge transfer resistance (Rct) evaluated from the electrochemical impedance data.
Collapse
Affiliation(s)
| | | | | | - Jae-Yup Kim
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea; (Y.K.); (J.-W.S.); (I.-H.L.)
| |
Collapse
|
2
|
Zhao Y, Niu Z, Zhao J, Xue L, Fu X, Long J. Recent Advancements in Photoelectrochemical Water Splitting for Hydrogen Production. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00153-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Kim H, Choe A, Ha SB, Narejo GM, Koo SW, Han JS, Chung W, Kim JY, Yang J, In SI. Quantum Dots, Passivation Layer and Cocatalysts for Enhanced Photoelectrochemical Hydrogen Production. CHEMSUSCHEM 2023; 16:e202201925. [PMID: 36382625 DOI: 10.1002/cssc.202201925] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Solar-driven photoelectrochemical (PEC) hydrogen production is one potential pathway to establish a carbon-neutral society. Nowadays, quantum dots (QDs)-sensitized semiconductors have emerged as promising materials for PEC hydrogen production due to their tunable bandgap by size or morphology control, displaying excellent optical and electrical properties. Nevertheless, they still suffer from anodic corrosion during long-term cycling, offering poor stability. This Review discussed advancements to improve long-term stability of QDs particularly in terms of cocatalysts and passivation layers. The working principle of PEC cells was reviewed, along with all important configurations adopted over recent years. The equations to assess PEC performance were also described. A greater emphasized was placed on QDs and incorporation of cocatalysts or passivation layers that could enhance the PEC performance by influencing the charge transfer and surface recombination processes.
Collapse
Affiliation(s)
- Hwapyong Kim
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Ayeong Choe
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Seung Beom Ha
- Department of Chemical Engineering, Dankook University (DKU), Yongin-si, 16890, Republic of Korea
| | - Ghulam Mustafa Narejo
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Sung Wook Koo
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Ji Su Han
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Wookjin Chung
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Jae-Yup Kim
- Department of Chemical Engineering, Dankook University (DKU), Yongin-si, 16890, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| | - Su-Il In
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988 (Republic of, Korea
| |
Collapse
|
4
|
Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. Int J Biol Macromol 2022; 219:312-332. [PMID: 35934076 DOI: 10.1016/j.ijbiomac.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT), a very stable and biocompatible conducting polymer, and alginate (Alg), a natural water-soluble polysaccharide mainly found in the cell wall of various species of brown algae, exhibit very different but at the same complementary properties. In the last few years, the remarkable capacity of Alg to form hydrogels and the electro-responsive properties of PEDOT have been combined to form not only layered composites (PEDOT-Alg) but also interpenetrated multi-responsive PEDOT/Alg hydrogels. These materials have been found to display outstanding properties, such as electrical conductivity, piezoelectricity, biocompatibility, self-healing and re-usability properties, pH and thermoelectric responsiveness, among others. Consequently, a wide number of applications are being proposed for PEDOT-Alg composites and, especially, PEDOT/Alg hydrogels, which should be considered as a new kind of hybrid material because of the very different chemical nature of the two polymeric components. This review summarizes the applications of PEDOT-Alg and PEDOT/Alg in tissue interfaces and regeneration, drug delivery, sensors, microfluidics, energy storage and evaporators for desalination. Special attention has been given to the discussion of multi-tasking applications, while the new challenges to be tackled based on aspects not yet considered in either of the two polymers have also been highlighted.
Collapse
|
5
|
Takada M, Inoue K, Sugimoto H, Fujii M. Solution-processed silicon quantum dot photocathode for hydrogen evolution. NANOTECHNOLOGY 2021; 32:485709. [PMID: 34110304 DOI: 10.1088/1361-6528/ac09e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
The photoelectrochemical response of a photocathode made from a colloidal solution of boron (B) and phosphorus (P) codoped silicon (Si) quantum dots (QDs) 2-11 nm in diameters is studied. Since codoped Si QDs are dispersible in alcohol and water due to the hydrophilic surface, a photoelectrode with a smooth surface is produced by drop-coating the QD solution on an indium tin oxide substrate. The codoping provides high oxidation resistance to Si QDs and makes the electrode operate as a photocathode. The photoelectrochemical response of a Si QD photoelectrode depends strongly on the size of QDs; there is a transition from anodic to cathodic photocurrent around 4 nm in diameter. Below the size, anodic photocurrent due to self-oxidation of Si QDs is observed, while above the size, cathodic photocurrent due to electron transfer across the interface is observed. The cathodic photocurrent increases with increasing the size, and in some samples, it is observed for more than 3000 s under intermittent light irradiation.
Collapse
Affiliation(s)
- Miho Takada
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
| | - Kosuke Inoue
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hiroshi Sugimoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
| | - Minoru Fujii
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Thalluri SM, Bai L, Lv C, Huang Z, Hu X, Liu L. Strategies for Semiconductor/Electrocatalyst Coupling toward Solar-Driven Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902102. [PMID: 32195077 PMCID: PMC7080548 DOI: 10.1002/advs.201902102] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/20/2019] [Indexed: 05/09/2023]
Abstract
Hydrogen (H2) has a significant potential to enable the global energy transition from the current fossil-dominant system to a clean, sustainable, and low-carbon energy system. While presently global H2 production is predominated by fossil-fuel feedstocks, for future widespread utilization it is of paramount importance to produce H2 in a decarbonized manner. To this end, photoelectrochemical (PEC) water splitting has been proposed to be a highly desirable approach with minimal negative impact on the environment. Both semiconductor light-absorbers and hydrogen/oxygen evolution reaction (HER/OER) catalysts are essential components of an efficient PEC cell. It is well documented that loading electrocatalysts on semiconductor photoelectrodes plays significant roles in accelerating the HER/OER kinetics, suppressing surface recombination, reducing overpotentials needed to accomplish HER/OER, and extending the operational lifetime of semiconductors. Herein, how electrocatalyst coupling influences the PEC performance of semiconductor photoelectrodes is outlined. The focus is then placed on the major strategies developed so far for semiconductor/electrocatalyst coupling, including a variety of dry processes and wet chemical approaches. This Review provides a comprehensive account of advanced methodologies adopted for semiconductor/electrocatalyst coupling and can serve as a guideline for the design of efficient and stable semiconductor photoelectrodes for use in water splitting.
Collapse
Affiliation(s)
| | - Lichen Bai
- Laboratory of Inorganic Synthesis & CatalysisEcole Polytechnique Federale de LausanneEPFL ISIC LSCI, BCH 3305CH‐1015LausanneSwitzerland
| | - Cuncai Lv
- School of Chemical Science & EngineeringTongji University200092ShanghaiP. R. China
- College of Physics Science & TechnologyHebei University071002BaodingHebeiP. R. China
| | - Zhipeng Huang
- School of Chemical Science & EngineeringTongji University200092ShanghaiP. R. China
| | - Xile Hu
- Laboratory of Inorganic Synthesis & CatalysisEcole Polytechnique Federale de LausanneEPFL ISIC LSCI, BCH 3305CH‐1015LausanneSwitzerland
| | - Lifeng Liu
- International Iberian Nanotechnology Laboratory (INL)Avenida Mestre Jose Veiga4715‐330BragaPortugal
| |
Collapse
|
7
|
Chandra Majhi K, Karfa P, Madhuri R. Bimetallic transition metal chalcogenide nanowire array: An effective catalyst for overall water splitting. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.106] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Li H, Wen P, Itanze DS, Kim MW, Adhikari S, Lu C, Jiang L, Qiu Y, Geyer SM. Phosphorus-Rich Colloidal Cobalt Diphosphide (CoP 2 ) Nanocrystals for Electrochemical and Photoelectrochemical Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1900813. [PMID: 31058405 DOI: 10.1002/adma.201900813] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Developing earth-abundant and efficient electrocatalysts for photoelectrochemical water splitting is critical to realizing a high-performance solar-to-hydrogen energy conversion process. Herein, phosphorus-rich colloidal cobalt diphosphide nanocrystals (CoP2 NCs) are synthesized via hot injection. The CoP2 NCs show a Pt-like hydrogen evolution reaction (HER) electrocatalytic activity in acidic solution with a small overpotential of 39 mV to achieve -10 mA cm-2 and a very low Tafel slope of 32 mV dec-1 . Density functional theory (DFT) calculations reveal that the high P content both physically separates Co atoms to prevent H from over binding to multiple Co atoms, while simultaneously stabilizing H adsorbed to single Co atoms. The catalytic performance of the CoP2 NCs is further demonstrated in a metal-insulator-semiconductor photoelectrochemical device consisting of bottom p-Si light absorber, atomic layer deposition Al-ZnO passivation layers, and the CoP2 cocatalyst. The p-Si/AZO/TiO2 /CoP2 photocathode shows a photocurrent density of -16.7 mA cm-2 at 0 V versus reversible hydrogen electrode (RHE) and an output photovoltage of 0.54 V. The high performance and stability are attributed to the junction between p-Si and AZO, the corrosion-resistance of the pinhole-free TiO2 protective layer, and the fast HER kinetics of the CoP2 NCs.
Collapse
Affiliation(s)
- Hui Li
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Peng Wen
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, Department of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Dominique S Itanze
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Michael W Kim
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Shiba Adhikari
- Material Science and Technology Division (MSTD), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN, 37831, USA
| | - Chang Lu
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Lin Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yejun Qiu
- Shenzhen Engineering Lab of Flexible Transparent Conductive Films, Department of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Scott M Geyer
- Department of Chemistry, Wake Forest University, Winston-Salem, NC, 27109, USA
| |
Collapse
|
9
|
Barpuzary D, Kim K, Park MJ. Two-Dimensional Growth of Large-Area Conjugated Polymers on Ice Surfaces: High Conductivity and Photoelectrochemical Applications. ACS NANO 2019; 13:3953-3963. [PMID: 30938984 DOI: 10.1021/acsnano.8b07294] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polymerizing monomers on an atomically flat solid surface and air/water, solid/liquid, or liquid/liquid interface is now a rapidly emerging frontier. Dimension-controlled synthesis of π-conjugated polymers is of particular interest, which can be achieved by precise control of monomer distribution during the polymerization. The surface of ice allows rapid polymerization of monomers in the plane direction along the air-water interface to yield large-area two-dimensional sheet-like poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (2D sheet-like PEDOT:PSS) films with a thickness of ca. 30 nm. The persuasive role of ice chemistry is reflected in the high degree of crystallinity and superior conductivity of resultant PEDOT:PSS films. Excellent photoelectrochemical features were further disclosed when the ice-templated PEDOT:PSS films were coupled to quantum dots. Utilization of these polymer films in photovoltaic devices also resulted in excellent current density and power conversion efficiency. This work presents an innovative material technology that goes beyond traditional and ubiquitous inorganic 2D materials such as graphene and MoS2 for integrated electronic applications.
Collapse
Affiliation(s)
- Dipankar Barpuzary
- Department of Chemistry, Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 790-784 , South Korea
| | - Kyoungwook Kim
- Department of Chemistry, Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 790-784 , South Korea
| | - Moon Jeong Park
- Department of Chemistry, Division of Advanced Materials Science , Pohang University of Science and Technology (POSTECH) , Pohang 790-784 , South Korea
| |
Collapse
|