1
|
Song Q, Zheng Y, Zhong G, Wang S, He C, Li M. Application of Nanoparticles in the Diagnosis and Treatment of Colorectal Cancer. Anticancer Agents Med Chem 2024; 24:1305-1326. [PMID: 39129164 PMCID: PMC11497148 DOI: 10.2174/0118715206323900240807110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.
Collapse
Affiliation(s)
- Qiuyu Song
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Guoqiang Zhong
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chengcheng He
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Gastroenterology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Ansari JA, Malik JA, Ahmed S, Bhat FA, Khanam A, Mir SA, Abouzied AS, Ahemad N, Anwar S. Targeting Breast Cancer Signaling via Phytomedicine and Nanomedicine. Pharmacology 2023; 108:504-520. [PMID: 37748454 DOI: 10.1159/000531802] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/28/2023] [Indexed: 09/27/2023]
Abstract
BACKGROUND The development of breast cancer (BC) and how it responds to treatment have both been linked to the involvement of inflammation. Chronic inflammation is critical in carcinogenesis, leading to elevated DNA damage, impaired DNA repair machinery, cell growth, apoptosis, angiogenesis, and invasion. Studies have found several targets that selectively modulate inflammation in cancer, limit BC's growth, and boost treatment effectiveness. Drug resistance and the absence of efficient therapeutics for metastatic and triple-negative BC contribute to the poor outlook of BC patients. SUMMARY To treat BC, small-molecule inhibitors, phytomedicines, and nanoparticles are conjugated to attenuate BC signaling pathways. Due to their numerous target mechanisms and strong safety records, phytomedicines and nanomedicines have received much attention in studies examining their prospects as anti-BC agents by such unfulfilled demands. KEY MESSAGES The processes involved in the affiliation across the progression of tumors and the spread of inflammation are highlighted in this review. Furthermore, we included many drugs now undergoing clinical trials that target cancer-mediated inflammatory pathways, cutting-edge nanotechnology-derived delivery systems, and a variety of phytomedicines that presently address BC.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India
| | - Sakeel Ahmed
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | | | - Afreen Khanam
- Department of Pharmacology, Jamia Hamdard, New Delhi, India
| | - Suhail Ahmad Mir
- Department of Pharmacy, University of Kashmir, Jammu and Kashmir, India
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Nafees Ahemad
- School of Pharmacy, MONASH University Malaysia, Bandar Sunway, Malaysia
| | - Sirajudheen Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
3
|
Yates-Alston S, Sarkar S, Cochran M, Kuthirummal N, Levi N. Hybrid donor-acceptor polymer nanoparticles and combination antibiotic for mitigation of pathogenic bacteria and biofilms. J Microbiol Methods 2021; 190:106328. [PMID: 34536464 DOI: 10.1016/j.mimet.2021.106328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/19/2022]
Abstract
Biofilms pose a significant clinical problem in skin and soft tissue infections. Their resistance to antibiotics has spurred investigations into alternative treatments, such as nanoparticle-mediated photothermal ablation. Non-toxic Hybrid Donor- Acceptor (DA) Polymer nanoParticles (H-DAPPs) were developed for fluorescence imaging (using poly(3-hexylthiophene-2,5 diyl) (P3HT)) and rapid, near-infrared photothermal ablation (NIR- PTA) (using poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe)). H-DAPPs were evaluated alone, and in combination with antibiotics, against planktonic S. aureus and S. pyogenes, and S. aureus biofilms. H-DAPPs NIR-PTA (15-700 μg/ mL) can generate rapid temperature changes of 27.6-73.1 °C, which can eradicate planktonic bacterial populations and reduce biofilm bacterial viability by more than 4- log (> 99.99%) with exposure to 60 s of 800 nm light. Reductions were confirmed via confocal analysis, which suggested that H-DAPPs PTA caused bacterial inactivation within the biofilms, but did not significantly reduce biofilm polysaccharides. SEM imaging revealed structural changes in biofilms after H-DAPPs PTA. S. aureus biofilms challenged with 100 μg/mL of H-DAPPs (H-DAPPs-100) to induce an average temperature of 55.1 °C, and the minimum biofilm eradication concentration (MBEC) of clindamycin, resulted in up to ~3- log decrease in bacterial viability compared to untreated biofilms and those administered H-DAPPs-100 PTA only, and up to ~2- log compared to biofilms administered only clindamycin. This study demonstrates that polymer nanoparticle PTA can mitigate biofilm infection and may improve antimicrobial efficacy.
Collapse
Affiliation(s)
- Shaina Yates-Alston
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | - Matthew Cochran
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, North Carolina, USA.
| |
Collapse
|
4
|
Variable Molecular Weight Polymer Nanoparticles for Detection and Hyperthermia-Induced Chemotherapy of Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13174472. [PMID: 34503282 PMCID: PMC8431470 DOI: 10.3390/cancers13174472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The purpose of this work was to evaluate the development of polymer-based nanoparticles that can both generate heat and be used for fluorescence detection. The nanoparticles were used against luminescent colorectal cancer cells that were either sensitive or resistant to the chemotherapy drug, oxaliplatin. The fluorescence of the nanoparticles indicates that they are internalized within the cells for heat generation. Mild heating makes oxaliplatin-resistant cancer cells responsive to chemotherapy, and the nanoparticle-induced hyperthermia causes cell death in a few minutes, compared to classical bulk heating, which takes a few hours. Changes in the luminescence of the cancer cells can be used to determine the thermal dose induced by the nanoparticles, which may be correlated with the cell viability and therapeutic response. Abstract Oxaliplatin plays a significant role as a chemotherapeutic agent for the treatment of colorectal cancer (CRC); however, oxaliplatin-resistant phenotypes make further treatment challenging. Here, we have demonstrated that rapid (60 s) hyperthermia (42 °C), generated by the near-infrared stimulation of variable molecular weight nanoparticles (VMWNPs), increases the effectiveness of oxaliplatin in the oxaliplatin-resistant CRC cells. VMWNP-induced hyperthermia resulted in a higher cell death in comparison to cells exposed to chemotherapy at 42 °C for 2 h. Fluorescence from VMWNPs was observed inside cells, which allows for the detection of CRC. The work further demonstrates that the intracellular thermal dose can be determined using cell luminescence and correlated with the cell viability and response to VMWNP-induced chemotherapy. Mild heating makes oxaliplatin-resistant cancer cells responsive to chemotherapy, and the VMWNPs-induced hyperthermia can induce cell death in a few minutes, compared to classical bulk heating. The results presented here lay the foundation for photothermal polymer nanoparticles to be used for cell ablation and augmenting chemotherapy in drug-resistant colorectal cancer cells.
Collapse
|
5
|
Klein I, Sarkar S, Gutierrez-Aceves J, Levi N. Photothermal nanoparticles for ablation of bacteria associated with kidney stones. Int J Hyperthermia 2021; 38:760-770. [PMID: 33971781 DOI: 10.1080/02656736.2021.1916099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
OBJECTIVE To determine whether photothermal polymer nanoparticles (NPs) can interface with bacteria associated with kidney stones, generate heat when stimulated with near infrared (NIR) light, and aid in reducing bacterial burden. METHODS Two types of kidney stones, artificial, and those removed during percutaneous nephrolithotomy (PCNL), were inoculated with Escherichia coli (E. coli) and then incubated with NPs composed of FITC-labeled Poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']-dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe). Association of the PCPDTBSe NPs was evaluated using fluorescence microscopy. Infected stones were incubated with NPs and exposed to 800 nm light to generate temperature increases from 25.4 to 68.6 °C on the stones. Following photothermal treatment, the stones were homogenized and the bacteria was enumerated via colony counting assays to evaluate the bactericidal effect. The photothermal effect was also evaluated using scanning electron microscopy of the treated biofilms. RESULTS Both kidney stone types sequestered E. coli. Control stones and stones treated with laser only had growth of numerous bacterial colonies, while stones exposed to NPs and laser grew significantly less, or none (p = 0.02). CONCLUSIONS The polymer NPs interface with E. coli on artificial and patient-derived kidney stones, and they can impart a bactericidal effect, when stimulated with NIR to generate heat. This technique may possibly be extended to treating infected kidney stones in patients.
Collapse
Affiliation(s)
- Ilan Klein
- Department of Urology, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| |
Collapse
|
6
|
McCarthy B, Singh R, Levi-Polyachenko N. Oxaliplatin-resistant colorectal cancer models for nanoparticle hyperthermia. Int J Hyperthermia 2021; 38:152-164. [PMID: 33576281 DOI: 10.1080/02656736.2021.1876253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Metastatic colorectal cancer (CRC) is complicated by chemotherapy-resistant cell populations. Oxaliplatin is used in heated intraperitoneal hyperthermic chemoperfusion (HIPEC) for treatment of disseminated CRC. Photothermal nanoparticles can provide focal heating to improve the response of CRC cells to oxaliplatin, by confining heating near individual cells. Reduction in cellular luciferase signal may allow single-cell-resolution recording of thermal dosimetry. METHODS Oxaliplatin resistant (OxR) variants of luciferase-expressing CT26.WT-Fluc-Neo CRC cells were developed and their sensitivity to hyperthermia was evaluated. Polymer-based photothermal nanoparticles were developed, characterized and used to explore their potential for imparting a thermal dose to improve cell response to oxaliplatin. A correlation of thermal dose to intracellular luciferase activity was established using quantitative luminescence monitoring and microscopy. RESULTS Luciferase-based monitoring of thermal dose within CT26 cell lines was validated within the ranges of 0.04-8.33 CEM43 for parental cells and 0.05-9.74 CEM43 for OxR CT26 cells. This was further confirmed using nanoparticle-induced hyperthermia, where the single-cell resolution of the thermal dose can be achieved. The nanoparticles enhance cell killing of resistant cells when combined with oxaliplatin and stimulated to generate heat. CONCLUSION Nanoparticle-based hyperthermia is effective for augmenting chemotherapy and can be coupled with reductions in CT26 luciferase expression to monitor thermal dose at single-cell resolution. The development of OxR CT26.WT-Fluc-Neo CRC cells sets the stage for pre-clinical evaluations to measure nanoparticle-induced hyperthermia to augment chemotherapy (Nano-HIPEC) in a chemotherapy-resistant model of disseminated CRC.
Collapse
Affiliation(s)
- Bryce McCarthy
- Department of Plastic and Reconstructive Surgery Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Nicole Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery Research, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
7
|
McCarthy B, Cudykier A, Singh R, Levi-Polyachenko N, Soker S. Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids. Sci Rep 2021; 11:1532. [PMID: 33452397 PMCID: PMC7810691 DOI: 10.1038/s41598-021-81122-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/14/2020] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) treatment is currently hindered by micrometastatic relapse that cannot be removed completely during surgery and is often chemotherapy resistant. Targeted theranostic nanoparticles (NPs) that can produce heat for ablation and enable tumor visualization via their fluorescence offer advantages for detection and treatment of disseminated small nodules. A major hurdle in clinical translation of nanoparticles is their interaction with the 3D tumor microenvironment. To address this problem tumor organoid technology was used to evaluate the ablative potential of CD44-targeted polymer nanoparticles using hyaluronic acid (HA) as the targeting agent and coating it onto hybrid donor acceptor polymer particles (HDAPPs) to form HA-HDAPPs. Additionally, nanoparticles composed from only the photothermal polymer, poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe), were also coated with HA, to form HA-BSe NPs, and evaluated in 3D. Monitoring of nanoparticle transport in 3D organoids revealed uniform diffusion of non-targeted HDAPPs in comparison to attenuated diffusion of HA-HDAPPs due to nanoparticle-matrix interactions. Computational diffusion profiles suggested that HA-HDAPPs transport may not be accounted for by diffusion alone, which is indicative of nanoparticle/cell matrix interactions. Photothermal activation revealed that only HA-BSe NPs were able to significantly reduce tumor cell viability in the organoids. Despite limited transport of the CD44-targeted theranostic nanoparticles, their targeted retention provides increased heat for enhanced photothermal ablation in 3D, which is beneficial for assessing nanoparticle therapies prior to in vivo testing.
Collapse
Affiliation(s)
- Bryce McCarthy
- Department of Plastic and Reconstructive Surgery Research, Wake Forest School of Medicine, Winston Salem, NC, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Amit Cudykier
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Ravi Singh
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston Salem, NC, USA
| | - Nicole Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery Research, Wake Forest School of Medicine, Winston Salem, NC, USA.
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston Salem, NC, USA.
| | - Shay Soker
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, USA.
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC, USA.
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston Salem, NC, USA.
| |
Collapse
|
8
|
Smith DJ, Gaspar TR, Levi-Polyachenko N, Kuthirummal N, Sarkar S, Ringwood AH. Bioreactivity and Sunlight Potentiation of Hybrid Polymer Nanoparticles in Oysters, Crassostrea virginica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10031-10038. [PMID: 32654482 DOI: 10.1021/acs.est.0c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymer dynamic organic theranostic spheres (PolyDOTS) are being studied as a photothermal ablation treatment of cancer and are activated by blue or near-infrared light. PolyDOTS or related hybrid polymeric nanoparticle products could be mass-produced, and it is expected that they, like any other engineered nanoparticle (ENP), could be found in aquatic environments. The purpose of this study was to investigate the potential toxicity of these types of hybrid nanoparticles on nontarget marine organisms. To investigate the potential of even greater toxicity due to solar exposure, the PolyDOTS were exposed to the sun for 12 h and "charged". Once charged, hepatopancreas and gill tissues from oysters (Crassostrea virginica) were exposed to concentrations of both uncharged and charged PolyDOTS for 24 h in vitro. The effects of PolyDOTS on lysosomal destabilization, cell viability, and free radical damage were analyzed. Significant sublethal toxicity was observed with the charged particles, and reduced viability was observed with uncharged particles in vitro. In vivo imaging studies using IVIS (In Vivo Imaging System) indicated PolyDOTS uptake in tissues. These types of studies are important for understanding the potential effects of light sensitive ENPs in oysters and their broader ecological impacts on estuarine ecosystems.
Collapse
Affiliation(s)
- Daniel J Smith
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Tamara R Gaspar
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| | - Nicole Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Narayanan Kuthirummal
- Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, South Carolina 29424, United States
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, United States
| | - Amy H Ringwood
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223, United States
| |
Collapse
|
9
|
Bhattacharya DS, Svechkarev D, Bapat A, Patil P, Hollingsworth MA, Mohs AM. Sulfation modulates the targeting properties of hyaluronic acid to P-selectin and CD44. ACS Biomater Sci Eng 2020; 6:3585-3598. [PMID: 32617404 PMCID: PMC7331950 DOI: 10.1021/acsbiomaterials.0c00115] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Many targeting strategies can be employed to direct nanoparticles to tumors for imaging and therapy. However, tumors display a dynamic, heterogeneous microenvironment that undergoes spatiotemporal changes, including the expression of targetable cell-surface biomarkers. Here, we develop a nanoparticle system to effectively target two receptors overexpressed in the microenvironment of aggressive tumors. Hyaluronic acid (HA) was regioselectivity modified using a multi-step synthetic approach to alter binding specificities for CD44 and P-selectin to tumor cell interaction. The dual-targeting strategy utilizes sulfate modifications on HA that targets P-selectin, in addition to native targeting of CD44, which exploits spatiotemporal alterations in the expression patterns of these two receptors in cancer sites. Using biophysical characterization and in vitro studies, we demonstrate that modified HA nanoparticles effectively targets both P-selectin+ and CD44+ cells, which lays the groundwork for future in vivo biomedical applications.
Collapse
Affiliation(s)
- Deep S. Bhattacharya
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Denis Svechkarev
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Aishwarya Bapat
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Prathamesh Patil
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Aaron M. Mohs
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
10
|
McCabe-Lankford E, McCarthy B, Berwick MAP, Salafian K, Galarza-Paez L, Sarkar S, Sloop J, Donati G, Brown AJ, Levi-Polyachenko N. Binding of Targeted Semiconducting Photothermal Polymer Nanoparticles for Intraperitoneal Detection and Treatment of Colorectal Cancer. Nanotheranostics 2020; 4:107-118. [PMID: 32328438 PMCID: PMC7171385 DOI: 10.7150/ntno.29522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/13/2020] [Indexed: 01/15/2023] Open
Abstract
Nanoparticles offer many promising advantages for improving current surgical regimens through their ability to detect and treat disseminated colorectal cancer (CRC). Hybrid Donor-Acceptor Polymer Particles (HDAPPs) have recently been shown to fluorescently detect and thermally ablate tumors in a murine model. Here, HDAPPS were functionalized with hyaluronic acid (HA) to improve their binding specificity to CT26 mouse CRC cells using HA to target the cancer stem cell marker CD44. In this work, we compared the binding of HA functionalized HDAPPs (HA-HDAPPs) in in vitro, ex vivo, and in vivo environments. The HA-HDAPPs bound to CT26 cells 2-fold more in vitro and 2.3-fold higher than un-functionalized HDAPPs ex vivo. Compared to intraoperative abdominal perfusion, intraperitoneal injection prior to laser stimulation for nanoparticle heat generation provides a superior modality of HA-HDAPPs delivery for CRC tumor selectivity. Photothermal treatment of disseminated CRC showed that only HA-HDAPPs delivered via intraperitoneal injection had a reduction in the tumor burden, and these nanoparticles also remained in the abdomen following resolution of the tumor. The results of this work confirm that HA-HDAPPs selectively bind to disseminated CRC, with ex vivo tumors having bound HA-HDAPPs capable of photothermal ablation. HA-HDAPPs demonstrated superior binding to tumor regions compared to HDAPPs. Overall, this study displays the theranostic potential of HDAPPs, emphasizing their capacity to detect and photothermally treat disseminated CRC tumors.
Collapse
Affiliation(s)
- Eleanor McCabe-Lankford
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Bryce McCarthy
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Margarita Arakelyan-Peters Berwick
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Kiarash Salafian
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Laura Galarza-Paez
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Santu Sarkar
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - John Sloop
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - George Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - April J Brown
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Nicole Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| |
Collapse
|
11
|
Sarkar S, Levi-Polyachenko N. Conjugated polymer nano-systems for hyperthermia, imaging and drug delivery. Adv Drug Deliv Rev 2020; 163-164:40-64. [PMID: 32001326 DOI: 10.1016/j.addr.2020.01.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/28/2019] [Accepted: 01/20/2020] [Indexed: 01/02/2023]
Abstract
Hyperthermia has shown tremendous therapeutic efficiency in the treatment of cancer due to its controllability, minimal invasiveness and limited side effects compared to the conventional treatment techniques like surgery, radiotherapy and chemotherapy. To improve the precision of hyperthermia specifically to a tumor location, near infra-red (NIR) light activatable inorganic metal nanoparticles have served as effective photothermal therapy materials, but toxicity and non-biodegradability have limited their clinical applications. Conjugated polymer nanoparticles have overcome these limitations and are emerging as superior photothermal materials owing to their excellent light harvesting nature, biocompatibility and tunable absorption properties. In this review we focus on the development of organic conjugated polymers (polyaniline, polypyrrole, polydopamine etc.) and their nanoparticles, which have broad NIR absorption. Such materials elicit photothermal effects upon NIR stimulation and may also serve as carriers for delivery of therapeutic and contrast agents for combined therapy. Subsequently, the emergence of donor-acceptor based semiconducting polymer nanoparticles with strong absorbance that is tunable across the NIR have been shown to eradicate tumors by either hyperthermia alone or combined with other therapies. The design of multifunctional polymer nanoparticles that absorb near- or mid- infrared light for heat generation, as well as their diagnostic abilities for precise biomedical applications are highlighted.
Collapse
|
12
|
Afzal M, Ameeduzzafar, Alharbi KS, Alruwaili NK, Al-Abassi FA, Al-Malki AAL, Kazmi I, Kumar V, Kamal MA, Nadeem MS, Aslam M, Anwar F. Nanomedicine in treatment of breast cancer - A challenge to conventional therapy. Semin Cancer Biol 2019; 69:279-292. [PMID: 31870940 DOI: 10.1016/j.semcancer.2019.12.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/18/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Amongst the various types of cancer, breast cancer is a highly heterogeneous disease and known as the leading cause of death among women globally. The extensive interdisciplinary investigation in nanotechnology and cancer biomedical research has been evolved over the years for its effective treatment. However, the advent of chemotherapeutic resistance in breast cancer is one of the major confront researchers are facing in achieving successful chemotherapy. Research in the area of cancer nanotechnology over the years have now been revolutionized through the development of smart polymers, lipids, inorganic materials and eventually their surface-engineering with targeting ligands. Moreover, nanotechnology further extended and brings in the notice the new theranostic approach which combining the therapy and imaging simultaneously. Currently, research is being envisaged in the area of novel nano-pharmaceutical design viz. liposome, nanotubes, polymer lipid hybrid system, which focuses to make the chemotherapy curative and long-lasting. In this review, we aimed to discuss the recent advancement of different surface-engineered/targeted nanomedicines that improved the drug efficacy in breast cancer.
Collapse
Affiliation(s)
- Muhammad Afzal
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | - Ameeduzzafar
- College of Pharmacy, Jouf University, Al-Jouf, Sakaka, Saudi Arabia
| | | | | | - Fahad A Al-Abassi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | | | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, Natural Product Drug Discovery Laboratory, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Muhammad Aslam
- Statistics Department, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah 21589 Saudi Arabia.
| |
Collapse
|
13
|
Zhang Z, Yuan Y, Liu Z, Chen H, Chen D, Fang X, Zheng J, Qin W, Wu C. Brightness Enhancement of Near-Infrared Semiconducting Polymer Dots for in Vivo Whole-Body Cell Tracking in Deep Organs. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26928-26935. [PMID: 30033725 DOI: 10.1021/acsami.8b08735] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In vivo visualization of cell migration and engraftment in small animals provide crucial information in biomedical studies. Semiconducting polymer dots (Pdots) are emerging as superior probes for biological imaging. However, in vivo whole-body fluorescence imaging is largely constrained by the limited brightness of Pdots in near-infrared (NIR) region. Here, we describe the brightness enhancement of NIR fluorescent Pdots for in vivo whole-body cell tracking in deep organs. We first synthesize semiconducting polymers with strong absorption in orange and far-red regions. By molecular doping, the weak broad-band fluorescence of the Pdots was significantly narrowed and enhanced by 1 order of magnitude enhancement, yielding bright narrow-band NIR emission with a quantum yield of ∼0.21. Under an excitation of far-red light (676 nm), a trace amount of Pdots (∼2 μg) in the stomach can be clearly detected in whole-body fluorescence imaging of live mice. The Pdots coated with a cell-penetrating peptide are able to brightly label cancer cells with minimal cytotoxicity. In vivo cell tracking in live mice indicated that the entrapment and migration of the tail-vein-administered cells (∼400 000) were clearly visualized in real time. These Pdots with deep-red excitation and bright NIR emission are promising for in vivo whole-body fluorescence imaging.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Ye Yuan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Zhihe Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Haobin Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Dandan Chen
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Xiaofeng Fang
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| | - Jie Zheng
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Weiping Qin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , China
| | - Changfeng Wu
- Department of Biomedical Engineering , Southern University of Science and Technology , Shenzhen , Guangdong 518055 , China
| |
Collapse
|
14
|
McCabe-Lankford EE, Brown TL, Levi-Polyachenko NH. Assessing fluorescence detection and effective photothermal therapy of near-infrared polymer nanoparticles using alginate tissue phantoms. Lasers Surg Med 2018; 50:1040-1049. [PMID: 29953621 DOI: 10.1002/lsm.22955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Photothermal therapy (PTT) uses light absorbing materials to generate heat for treatment of diseases, like cancer. The advantages of using PTT components that absorb in the near-infrared (NIR) include reduced tissue auto-fluorescence and higher penetration depths. However, NIR laser light can still be scattered and absorbed by biological tissues, thus decreasing the amount of the energy reaching the PTT agents. We have developed two distinct formulations of NIR-absorbing nanoparticles, one which can be utilized for PTT only, and another for both PTT and fluorescence imaging of colorectal cancer. In this work, the fluorescence detection limit and the PTT heating potential of the two nanoparticle types were determined using alginate tissue phantoms. The objective of this study was to determine the PTT efficiency and theranostic potential of the nanoparticles by irradiating 3D collagen tumor spheroids, containing nanoparticles and CT26 mouse colorectal cancer cells, through increasing tissue phantom thicknesses and then quantifying cell death. Materials and Methods Our lab has previously developed nanoparticles based on the semiconducting, conjugated polymer poly[4,4-bis(2-ethylhexyl)-cyclopenta[2,1-b;3,4-b']dithiophene-2,6-diyl-alt-2,1,3-benzoselenadiazole-4,7-diyl] (PCPDTBSe). We have also made a hybrid nanoparticle that heats and fluoresces by combining PCPDTBSe polymer with the fluorescent poly[(9,9-dihexylfluorene)-co-2,1,3-benzothiadiazole-co-4,7-di(thiophen-2-yl)-2,1,3-benzothiadiazole] (PFBTDBT10) polymer to yield nanoparticles termed Hybrid Donor-Acceptor Polymer Particles (H-DAPPs). H-DAPPs and PCPDTBSe nanoparticles were added to three-dimensional collagen gel tumor spheroids in order to represent nanoparticles in a tumor. Alginate tissue phantoms, comprised of an optical scattering agent (Intralipid) and an optical absorbing material (hemoglobin) in order to mirror biological tissue scattering effects, were used to simulate increasing tissue thickness between the nanoparticles and the PTT energy source. RESULTS Fluorescence from the H-DAPPs was detectable through 6 mm of tissue phantoms. It was found that less than 10% of the laser energy could penetrate through 9 mm of tissue phantoms and only 60% of the laser energy passed through the 1.5 mm phantoms, regardless of laser power. PTT experiments, using 800 nm light at 2.2 W/cm2 for 60 s through tissue phantoms to stimulate nanoparticle-doped tumor spheroids, showed 55% cell death through 3 mm of tissue phantoms using H-DAPPs. Results from using the PCPDTBSe nanoparticles showed 72% cell death through 3 mm and over 50% cell death through 6 mm of tissue phantoms. CONCLUSION The results of this work validated the heating potential and fluorescence detection limitations of two theranostic polymer nanoparticles by utilizing alginate tissue phantoms and 3D tumor spheroids. H-DAPPs and PCPDTBSe polymer nanoparticles can be utilized as effective PTT agents by exploiting their absorption of NIR light and H-DAPPs have advantageous fluorescence for imaging colorectal cancer. The data generated from this study design can allow for other NIR absorbing and fluorescing nanoparticle formulations to be evaluated prior to in vivo experimentation. Lasers Surg. Med. 50:1040-1049, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Eleanor E McCabe-Lankford
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Theodore L Brown
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157
| | - Nicole H Levi-Polyachenko
- Department of Plastic and Reconstructive Surgery, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157
| |
Collapse
|