1
|
Zhang Z, Li G, Du X, Huang L, Kang G, Zhang J, Cui Z, Liu T, Ni L, Jin Y, Cui G. Rapid Thermal Shutdown of Deep-Eutectic-Polymer Electrolyte Enabling Overheating Self-Protection of Lithium Metal Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409628. [PMID: 39470154 DOI: 10.1002/advs.202409628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/28/2024] [Indexed: 10/30/2024]
Abstract
Safety concerns and uncontrollable dendrite growths have severely impeded the advancement of lithium-metal batteries. Herein, a safe deep-eutectic-polymer electrolyte with built-in thermal shutdown capability is proposed by utilizing hydrophobic association of methylcellulose within a novel deep-eutectic-solvent. Specifically, at elevated temperatures, methylcellulose chains aggregate to form dense polymer networks due to hydrophobic association and break the solvation structure equilibrium inside the deep-eutectic system through encapsulating Li+ in polymer matrix, leading to quick solidification of the electrolyte. The solidified electrolyte obstructs Li+ transports and terminates electrochemical processes, protecting LMBs from unstoppable exothermic chain reactions. The accelerating rate calorimeter tests of 1 Ah pouch cells demonstrate that the as-prepared electrolyte significantly improves the onset self-heating temperature from 73 °C for conventional electrolytes to 172 °C and prolongs the thermal runaway waiting time more than 20 hours. More impressively, benefiting from its favorable electrochemical performance, this polymer electrolyte enables LiNi0.8Mn0.1Co0.1O2||Li batteries to retain 92% capacity over 200 cycles and LiFePO4||Li batteries to maintain 90% capacity after 500 cycles. This research paves a promising avenue for enhancing both the safety and electrochemical performance of high-energy-density LMBs.
Collapse
Affiliation(s)
- Zengqi Zhang
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| | - Gang Li
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
| | - Xiaofan Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| | - Lang Huang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| | - Guohong Kang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| | - Jianjun Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| | - Zili Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| | - Tao Liu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| | - Ling Ni
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| | - Yongcheng Jin
- School of Materials Science and Engineering, Ocean University of China, Qingdao, 266100, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Qingdao New Energy Shandong laboratory, Qingdao, 266101, P. R. China
| |
Collapse
|
2
|
Xia T, Li X, Wu Y, Lu X. Synthesis and thermally-induced gelation of interpenetrating nanogels. J Colloid Interface Sci 2024; 669:754-765. [PMID: 38739967 DOI: 10.1016/j.jcis.2024.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Thermally-induced in-situ gelation of polymers and nanogels is of significant importance for injectable non-invasive tissue engineering and delivery systems of drug delivery system. In this study, we for the first time demonstrated that the interpenetrating (IPN) nanogel with two networks of poly (N-isopropylacrylamide) (PNIPAM) and poly (N-Acryloyl-l-phenylalanine) (PAphe) underwent a reversible temperature-triggered sol-gel transition and formed a structural color gel above the phase transition temperature (Tp). Dynamic light scattering (DLS) studies confirmed that the Tp of IPN nanogels are the same as that of PNIPAM, independent of Aphe content of the IPN nanogels at pH of 6.5 ∼ 7.4. The rheological and optical properties of IPN nanogels during sol-gel transition were studied by rheometer and optical fiber spectroscopy. The results showed that the gelation time of the hydrogel photonic crystals assembled by IPN nanogel was affected by temperature, PAphe composition, concentration, and sequence of interpenetration. As the temperature rose above the Tp, the Bragg reflection peak of IPN nanogels exhibited blue shift due to the shrinkage of IPN nanogels. In addition, these colored IPN nanogels demonstrated good injectability and had no obvious cytotoxicity. These IPN nanogels will open an avenue to the preparation and thermally-induced in-situ gelation of novel NIPAM-based nanogel system.
Collapse
Affiliation(s)
- Tingting Xia
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Shanghai 200082, China
| | - Youtong Wu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Shanghai 200082, China.
| |
Collapse
|
3
|
Weng G, Yang X, Wang Z, Xu Y, Liu R. Hydrogel Electrolyte Enabled High-Performance Flexible Aqueous Zinc Ion Energy Storage Systems toward Wearable Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303949. [PMID: 37530198 DOI: 10.1002/smll.202303949] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/14/2023] [Indexed: 08/03/2023]
Abstract
To cater to the swift advance of flexible wearable electronics, there is growing demand for flexible energy storage system (ESS). Aqueous zinc ion energy storage systems (AZIESSs), characterizing safety and low cost, are competitive candidates for flexible energy storage. Hydrogels, as quasi-solid substances, are the appropriate and burgeoning electrolytes that enable high-performance flexible AZIESSs. However, challenges still remain in designing suitable and comprehensive hydrogel electrolyte, which provides flexible AZIESSs with high reversibility and versatility. Hence, the application of hydrogel electrolyte-based AZIESSs in wearable electronics is restricted. A thorough review is required for hydrogel electrolyte design to pave the way for high-performance flexible AZIESSs. This review delves into the engineering of desirable hydrogel electrolytes for flexible AZIESSs from the perspective of electrolyte designers. Detailed descriptions of hydrogel electrolytes in basic characteristics, Zn anode, and cathode stabilization effects as well as their functional properties are provided. Moreover, the application of hydrogel electrolyte-based flexible AZIESSs in wearable electronics is discussed, expecting to accelerate their strides toward lives. Finally, the corresponding challenges and future development trends are also presented, with the hope of inspiring readers.
Collapse
Affiliation(s)
- Gao Weng
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Xianzhong Yang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Zhiqi Wang
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Yan Xu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| | - Ruiyuan Liu
- Soochow Institute of Energy and Material Innovations, Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
4
|
Wang X, Xue P, Ma S, Gong Y, Xu X. Polydopamine-Modified MXene-Integrated Poly( N-isopropylacrylamide) to Construct Ultrafast Photoresponsive Bilayer Hydrogel Actuators with Smart Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49689-49700. [PMID: 37823839 DOI: 10.1021/acsami.3c12203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In nature, living organisms, such as octopuses, cabrito, and frogs, have already evolved admirable adhesive abilities for better movement and predation in response to the surroundings. Inspired by biological structures, researchers have made enormous efforts in developing actuators that can respond to external stimuli, while such adhesive property is very desired, yet there is still limited research in responsive hydrogel actuators. Here, a bilayer actuator with high stretchability and robust interface bonding is presented, which has a smart adhesion and thermoreception function. The system consists of an adhesive passive layer copolymerized of amphoteric ([2-(methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl), SBMA) and acrylic acid (AA), and an active layer hydrogel composed of poly(N-isopropylacrylamide) (PNIPAm) containing polydopamine-modified MXene (P-MXene) and calcium chloride (CaCl2). The coordination of carboxylate and Ca2+ at the interface of the two layers enhances the interfacial bonding from 14 to 30 N m-1, which facilitates withstanding large strain and preventing stratification. The resulting hydrogel actuator can bend approximately 360° in a mere 10 s, exhibiting excellent photothermal effect, a large angle bending deformation, and ultrafast photoresponsive ability. As a proof of concept, the photothermal actuators are programmed to present various shapes and grab objects. Importantly, the hydrogel actuator exhibits remarkable adhesion capabilities toward diverse substrates, with a maximum peel force of up to 280 N m-1. Relying on their own adhesion and the photoresponse properties, these flexible adhesion actuators show outstanding gripping capability, enabling them to grip and release objects of different shapes and weights. More interestingly, the hydrogel exhibits a smart adjustable adhesion capability at different temperatures, which enables it as a gripper to recognize temperature signals through real-time different feedback actions based on its own adhesion. This study presents innovative insights into biomimetic hydrogel actuators, providing new opportunities for developing intelligent soft robots with multiple functions.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Pan Xue
- Xi'an Rare Metal Materials Institute Co. Ltd, 96 Weiyang Road, Xi'an 710016, China
| | - Shaoshuai Ma
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yanan Gong
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Xinhua Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Xu S, Zhang H, Li Y, Liu J, Li R, Xing Y. Thermoreversible and tunable supramolecular hydrogels based on chitosan and metal cations. Int J Biol Macromol 2023; 242:124906. [PMID: 37210055 DOI: 10.1016/j.ijbiomac.2023.124906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 05/22/2023]
Abstract
A new thermoreversible and tunable hydrogel CS-M with high water content prepared by metal cation (M = Cu2+, Zn2+, Cd2+ and Ni2+) and chitosan (CS) was reported. The influence of metal cations on the thermosensitive gelation of CS-M systems were studied. All prepared CS-M systems were in the transparent and stable sol state and could become the gel state at gelation temperature (Tg). These systems after gelation could recover to its original sol state at low temperature. CS-Cu hydrogel was mainly investigated and characterized due to its large Tg scale (32-80 °C), appropriate pH range (4.0-4.6) and low Cu2+ concentration. The result showed that the Tg range was influenced and could be tuned by adjusting Cu2+ concentration and system pH within an appropriate range. The influence of anions (Cl-, NO3- and Ac-) in cupric salts in the CS-Cu system was also investigated. Scale application as heat insulation window was investigated outdoors. The different supramolecular interactions of the -NH2 group in chitosan at different temperatures were proposed to dominate the thermoreversible process of CS-Cu hydrogel.
Collapse
Affiliation(s)
- Shikuan Xu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Hongmei Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yiwen Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jingjing Liu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Rong Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yanjun Xing
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
6
|
Jiang FN, Cheng XB, Yang SJ, Xie J, Yuan H, Liu L, Huang JQ, Zhang Q. Thermoresponsive Electrolytes for Safe Lithium-Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209114. [PMID: 36609806 DOI: 10.1002/adma.202209114] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Exploring advanced strategies in alleviating the thermal runaway of lithium-metal batteries (LMBs) is critically essential. Herein, a novel electrolyte system with thermoresponsive characteristics is designed to largely enhance the thermal safety of 1.0 Ah LMBs. Specifically, vinyl carbonate (VC) with azodiisobutyronitrile is introduced as a thermoresponsive solvent to boost the thermal stability of both the solid electrolyte interphase (SEI) and electrolyte. First, abundant poly(VC) is formed in SEI with thermoresponsive electrolyte, which is more thermally stable against lithium hexafluorophosphate compared to the inorganic components widely acquired in routine electrolyte. This increases the critical temperature for thermal safety (the beginning temperature of obvious self-heating) from 71.5 to 137.4 °C. The remained VC solvents can be polymerized into poly(VC) as the battery temperature abnormally increases. The poly(VC) can not only afford as a barrier to prevent the direct contact between electrodes, but also immobilize the free liquid solvents, thereby reducing the exothermic reactions between electrodes and electrolytes. Consequently, the internal-short-circuit temperature and "ignition point" temperature (the starting temperature of thermal runaway) of LMBs are largely increased from 126.3 and 100.3 °C to 176.5 and 203.6 °C. This work provides novel insights for pursuing thermally stable LMBs with the addition of various thermoresponsive solvents in commercial electrolytes.
Collapse
Affiliation(s)
- Feng-Ni Jiang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 211189, China
| | - Shi-Jie Yang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jin Xie
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hong Yuan
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Jia-Qi Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Qiang Zhang
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Tan S, Zhang Z, Xue Y, Zhao J, Ji J, Wang C, Wu Y. Ionic Liquid Cross-linked Poly( N-isopropylacrylamide) Hydrogel Electrolytes for Self-Protective Flexible Separator-Free Supercapacitors. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Shuai Tan
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Zechuan Zhang
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Yuzhen Xue
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Jingli Zhao
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Caihong Wang
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| | - Yong Wu
- School of Chemical Engineering, Sichuan University, Chengdu610045, China
| |
Collapse
|
8
|
Ming X, Xiang Y, Yao L, He W, Zhu H, Zhang Q, Zhu S. Ionic Switches with Positive Temperature Coefficient Enabled by Phase Separation within Hydrogel Electrolytes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47167-47175. [PMID: 36201631 DOI: 10.1021/acsami.2c15446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ionic switches with a positive temperature coefficient (PTC) effect are highly desirable in the fabrication of smart electrolytes for the safety protection of electrochemical energy devices. However, most of them encounter liquid leaking or volume shrinking problems, limiting their long-term and stable operations. Herein, a PTC-type ionic switch is introduced based on a poly(acrylic acid) (PAA) hydrogel soaked by calcium acetate (CaAc), with a resistance change of six times in maximum between the homogeneous and phase separated state. The PTC effect is owing to the strong phase separation upon heating where the ion transport is restricted. Such a hydrogel-based PTC-type ionic switch is in the solid state and isochoric during phase separation without leaking or shrinking issues. The influence of different CaAc soaking concentrations is investigated. A simplified model consisting of interconnected ion channels is proposed based on microstructure analysis. A smart supercapacitor is successfully demonstrated by this PTC ionic switch with a safety protection ability. The research here would provide a new pathway for the design and development of PTC-type ionic switches in the safety protection of electrochemical energy storage devices.
Collapse
Affiliation(s)
- Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Yang Xiang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Le Yao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Wenqing He
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong518172, P.R. China
| |
Collapse
|
9
|
Yu T, Xue P, Ma S, Gu Y, Wang Y, Xu X. Thermal Self‐Protection Behavior of Energy Storage Devices Using a Thermally Responsive Smart Polymer Electrolyte. ChemistrySelect 2022. [DOI: 10.1002/slct.202104499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tiantian Yu
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Pan Xue
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Shaoshuai Ma
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Yifan Gu
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Yutian Wang
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Xinhua Xu
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan DistrictTianjin 300072 P. R. China
| |
Collapse
|
10
|
Liu Z, Hu Q, Guo S, Yu L, Hu X. Thermoregulating Separators Based on Phase-Change Materials for Safe Lithium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008088. [PMID: 33710704 DOI: 10.1002/adma.202008088] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Safety issues in lithium-ion batteries (LIBs) have aroused great interest owing to their wide applications, from miniaturized devices to large-scale storage plants. Separators are a vital component to ensure the safety of LIBs; they prevent direct electric contact between the cathode and anode while allowing ion transport. In this study, the first design is reported for a thermoregulating separator that responds to heat stimuli. The separator with a phase-change material (PCM) of paraffin wax encapsulated in hollow polyacrylonitrile nanofibers renders a wide range of enthalpy (0-135.3 J g-1 ), capable of alleviating the internal temperature rise of LIBs in a timely manner. Under abuse conditions, the generated heat in batteries stimulates the melting of the encapsulated PCM, which absorbs large amounts of heat without creating a significant rise in temperature. Experimental simulation of the inner short-circuit in prototype pouch cells through nail penetration demonstrates that the PCM-based separator can effectively suppress the temperature rise due to cell failure. Meanwhile, a cell penetrated by a nail promptly cools down to room temperature within 35 s, benefiting from the latent heat-storage of the unique PCM separator. The present design of separators featuring latent heat-storage provides effective strategies for overheat protection and enhanced safety of LIBs.
Collapse
Affiliation(s)
- Zhifang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiaomei Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Songtao Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Le Yu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xianluo Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
11
|
Li X, Zhao D, Shea KJ, Li X, Lu X. In situ formed thermogelable hydrogel photonic crystals assembled by thermosensitive IPNs. MATERIALS HORIZONS 2021; 8:932-938. [PMID: 34821323 DOI: 10.1039/d0mh01886d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, soft thermosensitive photonic crystals are immobilized via a reversible temperature-triggered in situ sol-gel transition above their phase transition temperature (Tp), which may be a significant advance in the field. Specifically, a library of thermosensitive poly(N-isopropylacrylamide)/poly(acrylic acid) (PNIPAm/PAA) interpenetrating nanogels (IPNs) is synthesized, which can achieve a reversible temperature-induced sol-gel transition at a low concentration (1.1 wt%). More interestingly, as the temperature is increased above Tp, the photonic crystals assembled by these IPNs do not disappear but are "immobilized" in the in situ formed hydrogel matrix. Moreover, these colorful IPN dispersions exhibit outstanding syringe-injectability, immediately turning from an aqueous solution into an insoluble hydrogel as they are injected into PBS at 37 °C. Plus, a protein-release study showed that these injectable hydrogels show extended release times and slower release rates in comparison with dilute nanogel dispersions. In brief, these in situ formed hydrogels with brilliant structural colors have potential in optical applications, e.g., color displays, crystal immobilization, and biological applications, e.g., 3D cell culture and drug delivery.
Collapse
Affiliation(s)
- Xiaoxiao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620, China.
| | | | | | | | | |
Collapse
|
12
|
Room-Temperature Self-Standing Cellulose-Based Hydrogel Electrolytes for Electrochemical Devices. Polymers (Basel) 2020; 12:polym12112686. [PMID: 33203005 PMCID: PMC7696359 DOI: 10.3390/polym12112686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/11/2020] [Indexed: 11/25/2022] Open
Abstract
The trend of research towards more sustainable materials is pushing the application of biopolymers in a variety of unexplored fields. In this regard, hydrogels are attracting significant attention as electrolytes for flexible electrochemical devices thanks to their combination of ionic conductivity and mechanical properties. In this context, we present the use of cellulose-based hydrogels as aqueous electrolytes for electrochemical devices. These materials were obtained by crosslinking of hydroxyethyl cellulose (HEC) with divinyl sulfone (DVS) in the presence of carboxymethyl cellulose (CMC), creating a semi-IPN structure. The reaction was confirmed by NMR and FTIR. The small-amplitude oscillatory shear (SAOS) technique revealed that the rheological properties could be conveniently varied by simply changing the gel composition. Additionally, the hydrogels presented high ionic conductivity in the range of mS cm−1. The ease of synthesis and processing of the hydrogels allowed the assembly of an all-in-one electrochromic device (ECD) with high transmittance variation, improved switching time and good color efficiency. On the other hand, the swelling ability of the hydrogels permits the tuning of the electrolyte to improve the performance of a printed Zinc/MnO2 primary battery. The results prove the potential of cellulose-based hydrogels as electrolytes for more sustainable electrochemical devices.
Collapse
|
13
|
Abd-Elmageed AAI, Ibrahim SM, Bourezgui A, Al-Hossainy AF. Synthesis, DFT studies, fabrication, and optical characterization of the [ZnCMC] TF polymer (organic/inorganic) as an optoelectronic device. NEW J CHEM 2020. [DOI: 10.1039/d0nj01719a] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel carboxymethyl cellulose zinc thin film [ZnCMC]TF was fabricated using the sol–gel technique.
Collapse
Affiliation(s)
| | - S. M. Ibrahim
- Chemistry Department
- Faculty of Science
- New Valley University
- Al-Kharga
- Egypt
| | - A. Bourezgui
- Physics Department
- Faculty of Science
- Northern border University
- Arar
- Saudi Arabia
| | - A. F. Al-Hossainy
- Chemistry Department
- Faculty of Science
- New Valley University
- Al-Kharga
- Egypt
| |
Collapse
|
14
|
Li Y, Feng X, Ren D, Ouyang M, Lu L, Han X. Thermal Runaway Triggered by Plated Lithium on the Anode after Fast Charging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46839-46850. [PMID: 31742989 DOI: 10.1021/acsami.9b16589] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Battery safety, at the foundation of fast charging, is critical to the application of lithium-ion batteries, especially for high energy density cells applied in electric vehicles. In this paper, an earlier thermal runaway of cells after fast charging application is illustrated. Under this condition, the reaction between the plated lithium and electrolyte is revealed to be the mechanism of thermal runaway triggering. The mechanism is proved by the accelerated rate calorimetry tests for partial cells, which determine the triggering reactions of thermal runaway in the anode-electrolyte thermodynamic system. The reactants in this system are analyzed by nuclear magnetic resonance and differential scanning calorimetry, proving that the vigorous exothermic reaction is induced by the interaction between the plated lithium and electrolyte. As a result, the finding of thermal runaway triggered by the plated lithium on anode surface of cells after fast charging promotes the understanding of thermal runaway mechanisms, which warns of the danger of plated lithium in the utilization of lithium-ion batteries.
Collapse
Affiliation(s)
- Yalun Li
- State Key Laboratory of Automotive Safety and Energy , Tsinghua University , Beijing 100084 , China
| | - Xuning Feng
- State Key Laboratory of Automotive Safety and Energy , Tsinghua University , Beijing 100084 , China
| | - Dongsheng Ren
- State Key Laboratory of Automotive Safety and Energy , Tsinghua University , Beijing 100084 , China
| | - Minggao Ouyang
- State Key Laboratory of Automotive Safety and Energy , Tsinghua University , Beijing 100084 , China
| | - Languang Lu
- State Key Laboratory of Automotive Safety and Energy , Tsinghua University , Beijing 100084 , China
| | - Xuebing Han
- State Key Laboratory of Automotive Safety and Energy , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
15
|
Zhou J, Qian T, Liu J, Wang M, Zhang L, Yan C. High-Safety All-Solid-State Lithium-Metal Battery with High-Ionic-Conductivity Thermoresponsive Solid Polymer Electrolyte. NANO LETTERS 2019; 19:3066-3073. [PMID: 30951633 DOI: 10.1021/acs.nanolett.9b00450] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Lithium-metal batteries (LMB) are very attractive owing to their high theoretical energy density, but significant challenges such as low ionic conductivity and safety risks prevent their widespread application. Herein, we report a new design of high-safety all-solid-state LMB by using high-ionic-conductivity thermoresponsive solid-polymer electrolyte (TSPE), providing a smart and active approach to realize thermally induced autonomic shutdown of LMBs by efficiently inhibiting the ionic conduction between electrodes beyond an unsafe temperature. The as-obtained TSPE exhibits a high ionic conductivity (2 × 10-4 S cm-1 at 30 °C), which enables a significantly improved capacity of 160 mA h g-1 at 0.2 C and outstanding high rate capability up to 5 C as well as a super-long cycle life of over 400 cycles for the constructed all-solid-state Li||LiFePO4 batteries. The present study opens up a new avenue for the fabrication of self-protective all-solid-state batteries with inherent intelligent thermal management to ensure battery-series safety.
Collapse
Affiliation(s)
- Jinqiu Zhou
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China
| | - Tao Qian
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China
| | - Jie Liu
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China
| | - Mengfan Wang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China
| | - Li Zhang
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China
| | - Chenglin Yan
- Soochow Institute for Energy and Materials Innovations, College of Energy, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province , Soochow University , Suzhou 215006 , China
| |
Collapse
|