1
|
Rajput SK, Mothika VS. Powders to Thin Films: Advances in Conjugated Microporous Polymer Chemical Sensors. Macromol Rapid Commun 2024; 45:e2300730. [PMID: 38407503 DOI: 10.1002/marc.202300730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Chemical sensing of harmful species released either from natural or anthropogenic activities is critical to ensuring human safety and health. Over the last decade, conjugated microporous polymers (CMPs) have been proven to be potential sensor materials with the possibility of realizing sensing devices for practical applications. CMPs found to be unique among other porous materials such as metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) due to their high chemical/thermal stability, high surface area, microporosity, efficient host-guest interactions with the analyte, efficient exciton migration along the π-conjugated chains, and tailorable structure to target specific analytes. Several CMP-based optical, electrochemical, colorimetric, and ratiometric sensors with excellent selectivity and sensing performance were reported. This review comprehensively discusses the advances in CMP chemical sensors (powders and thin films) in the detection of nitroaromatic explosives, chemical warfare agents, anions, metal ions, biomolecules, iodine, and volatile organic compounds (VOCs), with simultaneous delineation of design strategy principles guiding the selectivity and sensitivity of CMP. Preceding this, various photophysical mechanisms responsible for chemical sensing are discussed in detail for convenience. Finally, future challenges to be addressed in the field of CMP chemical sensors are discussed.
Collapse
Affiliation(s)
- Saurabh Kumar Rajput
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| | - Venkata Suresh Mothika
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur, 208016, India
| |
Collapse
|
2
|
Sarvutiene J, Prentice U, Ramanavicius S, Ramanavicius A. Molecular imprinting technology for biomedical applications. Biotechnol Adv 2024; 71:108318. [PMID: 38266935 DOI: 10.1016/j.biotechadv.2024.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Molecularly imprinted polymers (MIPs), a type of biomimetic material, have attracted considerable interest owing to their cost-effectiveness, good physiochemical stability, favourable specificity and selectivity for target analytes, and widely used for various biological applications. It was demonstrated that MIPs with significant selectivity towards protein-based targets could be applied in medicine, diagnostics, proteomics, environmental analysis, sensors, various in vivo and/or in vitro applications, drug delivery systems, etc. This review provides an overview of MIPs dedicated to biomedical applications and insights into perspectives on the application of MIPs in newly emerging areas of biotechnology. Many different protocols applied for the synthesis of MIPs are overviewed in this review. The templates used for molecular imprinting vary from the minor glycosylated glycan-based structures, amino acids, and proteins to whole bacteria, which are also overviewed in this review. Economic, environmental, rapid preparation, stability, and reproducibility have been highlighted as significant advantages of MIPs. Particularly, some specialized MIPs, in addition to molecular recognition properties, can have high catalytic activity, which in some cases could be compared with other bio-catalytic systems. Therefore, such MIPs belong to the class of so-called 'artificial enzymes'. The discussion provided in this manuscript furnishes a comparative analysis of different approaches developed, underlining their relative advantages and disadvantages highlighting trends and possible future directions of MIP technology.
Collapse
Affiliation(s)
- Julija Sarvutiene
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Urte Prentice
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Simonas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Nanotechnology, Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, Vilnius, Lithuania.
| |
Collapse
|
3
|
Quiroz-Arturo H, Reinoso C, Scherf U, Palma-Cando A. Microporous Polymer-Modified Glassy Carbon Electrodes for the Electrochemical Detection of Metronidazole: Experimental and Theoretical Insights. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:180. [PMID: 38251144 PMCID: PMC10819510 DOI: 10.3390/nano14020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
The persistence and potential toxicity of emergent pollutants pose significant threats to biodiversity and human health, emphasizing the need for sensors capable of detecting these pollutants at extremely low concentrations before treatment. This study focuses on the development of glassy carbon electrodes (GCEs) modified by films of poly-tris(4-(4-(carbazol-9-yl)phenyl)silanol (PTPTCzSiOH), poly-4,4'-Di(carbazol-9-yl)-1,1'-biphenyl (PCBP), and poly-1,3,5-tri(carbazol-9-yl)benzene (PTCB) for the detection of metronidazole (MNZ) in aqueous media. The films were characterized using electrochemical, microscopy, and spectroscopy techniques, including scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Monomers were electropolymerized through cyclic voltammetry and chronoamperometry techniques. Computational methods at the B3LYP/def2-TZVP level were employed to investigate the structural and electrochemical properties of the monomers. The electrochemical detection of MNZ utilized the linear sweep voltammetry technique. Surface characterization through SEM and XPS confirmed the proper electrodeposition of polymer films. Notably, MPN-GCEs exhibited higher detection signals compared to bare GCEs up to 3.6 times in the case of PTPTCzSiOH-GCEs. This theoretical study provides insights into the structural, chemical, and electronic properties of the polymers. The findings suggest that polymer-modified GCEs hold promise as candidates for the development of electrochemical sensors.
Collapse
Affiliation(s)
- Héctor Quiroz-Arturo
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador
| | - Carlos Reinoso
- School of Physical Sciences and Nanotechnology, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador
| | - Ullrich Scherf
- Department of Chemistry, Macromolecular Chemistry and Wuppertal Center for Smart Materials @ Systems (CM@S), Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, Urcuqui 100115, Ecuador
| |
Collapse
|
4
|
Kižys K, Zinovičius A, Jakštys B, Bružaitė I, Balčiūnas E, Petrulevičienė M, Ramanavičius A, Morkvėnaitė-Vilkončienė I. Microbial Biofuel Cells: Fundamental Principles, Development and Recent Obstacles. BIOSENSORS 2023; 13:221. [PMID: 36831987 PMCID: PMC9954062 DOI: 10.3390/bios13020221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This review focuses on the development of microbial biofuel cells to demonstrate how similar principles apply to the development of bioelectronic devices. The low specificity of microorganism-based amperometric biosensors can be exploited in designing microbial biofuel cells, enabling them to consume a broader range of chemical fuels. Charge transfer efficiency is among the most challenging and critical issues while developing biofuel cells. Nanomaterials and particular redox mediators are exploited to facilitate charge transfer between biomaterials and biofuel cell electrodes. The application of conductive polymers (CPs) can improve the efficiency of biofuel cells while CPs are well-suitable for the immobilization of enzymes, and in some specific circumstances, CPs can facilitate charge transfer. Moreover, biocompatibility is an important issue during the development of implantable biofuel cells. Therefore, biocompatibility-related aspects of conducting polymers with microorganisms are discussed in this review. Ways to modify cell-wall/membrane and to improve charge transfer efficiency and suitability for biofuel cell design are outlined.
Collapse
Affiliation(s)
- Kasparas Kižys
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Antanas Zinovičius
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Baltramiejus Jakštys
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44248 Kaunas, Lithuania
| | - Ingrida Bružaitė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| | - Evaldas Balčiūnas
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Milda Petrulevičienė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Arūnas Ramanavičius
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Chemistry and Geosciences, Vilnius University, LT-01513 Vilnius, Lithuania
| | - Inga Morkvėnaitė-Vilkončienė
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology, Saulėtekio Ave. 3, LT-10257 Vilnius, Lithuania
- Faculty of Mechanics, Vilnius Gediminas Technical University, LT-10223 Vilnius, Lithuania
| |
Collapse
|
5
|
Possetto D, Pecnikaj I, Marzari G, Orlandi S, Sereno S, Cavazzini M, Pozzi G, Fungo F. Influence of Polyfluorinated Side Chains and Soft-Template Method on the Surface Morphologies and Hydrophobic Properties of Electrodeposited Films from Fluorene Bridged Dicarbazole Monomers. Chemphyschem 2023; 24:e202200371. [PMID: 36073234 PMCID: PMC10091753 DOI: 10.1002/cphc.202200371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/07/2022] [Indexed: 01/20/2023]
Abstract
A clear case of relationship between the monomer molecular structure and the capability of tuning the morphology of electrodeposited gas bubbles template polymer thin films is shown. To this end, a series of fluorene-bridged dicarbazole derivatives containing either linear or terminally branched polyfluorinated side chains connected to the fluorene subunit were synthesized and their electrochemical properties were investigated. The new compounds underwent electrochemical polymerization over indium tin oxide electrodes to give hydrophobic films with nanostructural and morphological properties strongly dependent on the nature of the side chains. Gas bubbles templated electropolymerization was next achieved by the addition of tiny amounts of water to the monomer solutions, without using surfactants. Within the investigated set of molecules, the nanostructural properties of the soft-templated films obtained from monomers bearing linear side chains could be fine-tuned by adjusting electrochemical parameters, leading to superhydrophobic surfaces.
Collapse
Affiliation(s)
- David Possetto
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales AvanzadosIITEMA-UNRC-CONICET) Departamento de QuímicaUniversidad Nacional de Río CuartoAgencia Postal 3X5804BYARío CuartoArgentina
| | - Ilir Pecnikaj
- University of Medicine TiranaDepartment of PharmacyRruga e Dibrës Nr. 371AL1005TiranëAlbania
| | - Gabriela Marzari
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales AvanzadosIITEMA-UNRC-CONICET) Departamento de QuímicaUniversidad Nacional de Río CuartoAgencia Postal 3X5804BYARío CuartoArgentina
| | - Simonetta Orlandi
- CNR Institute of Chemical Sciences and Technologies “Giulio Natta” (CNR SCITEC)UOS Golgi, via Golgi 1920133MilanItaly
| | - Silvia Sereno
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales AvanzadosIITEMA-UNRC-CONICET) Departamento de QuímicaUniversidad Nacional de Río CuartoAgencia Postal 3X5804BYARío CuartoArgentina
| | - Marco Cavazzini
- CNR Institute of Chemical Sciences and Technologies “Giulio Natta” (CNR SCITEC)UOS Golgi, via Golgi 1920133MilanItaly
| | - Gianluca Pozzi
- CNR Institute of Chemical Sciences and Technologies “Giulio Natta” (CNR SCITEC)UOS Golgi, via Golgi 1920133MilanItaly
| | - Fernando Fungo
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales AvanzadosIITEMA-UNRC-CONICET) Departamento de QuímicaUniversidad Nacional de Río CuartoAgencia Postal 3X5804BYARío CuartoArgentina
| |
Collapse
|
6
|
Hu B, Li J, Wang Y, Hu X, Shi Y, Jin L. Design, electrosynthesis and electrochromic properties of conjugated microporous polymer films based on butterfly-shaped diphenylamine-thiophene derivatives. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Polypyrrole based cathode material for battery application. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
The tris[4-(2-thienyl)phenyl]amine-based conjugated microporous polymers synthesized via direct arylation polymerization for fluorescence-sensing iodine and nitrophenols. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Electrochemical sensor for picric acid by using molecularly imprinted polymer and reduced graphene oxide modified pencil graphite electrode. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00084-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Ramanavicius S, Ramanavicius A. Development of molecularly imprinted polymer based phase boundaries for sensors design (review). Adv Colloid Interface Sci 2022; 305:102693. [PMID: 35609398 DOI: 10.1016/j.cis.2022.102693] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/18/2022]
Abstract
Achievements in polymer chemistry enables to design artificial phase boundaries modified by imprints of selected molecules and some larger structures. These structures seem very useful for the design of new materials suitable for affinity chromatography and sensors. In this review, we are overviewing the synthesis of molecularly imprinted polymers (MIPs) and the applicability of these MIPs in the design of affinity sensors. Such MIP-based layers or particles can be used as analyte-recognizing parts for sensors and in some cases they can replace very expensive compounds (e.g.: antibodies, receptors etc.), which are recognizing analyte. Many different polymers can be used for the formation of MIPs, but conducing polymers shows the most attractive capabilities for molecular-imprinting by various chemical compounds. Therefore, the application of conducting polymers (e.g.: polypyrrole, polyaniline, polythiophene, poly(3,4-ethylenedioxythiophene), and ortho-phenylenediamine) seems very promising. Polypyrrole is one of the most suitable for the development of MIP-based structures with molecular imprints by analytes of various molecular weights. Overoxiation of polypyrrole enables to increase the selectivity of polypyrrole-based MIPs. Methods used for the synthesis of conducting polymer based MIPs are overviewed. Some methods, which are applied for the transduction of analytical signal, are discussed, and challenges and new trends in MIP-technology are foreseen.
Collapse
|
11
|
The Adsorption and Electropolymerization of Terthiophene on Au(111) Electrode – Probed by in situ STM. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Hong S, Ho Yoon J, Jeong S, Kim YR, Tae Kim I. Electropolymerization of thiazole derivatives bearing thiophene and selenophene and the potential application in capacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Gao Z, Zeng Q, Wang M, Wang L. Sensitive Detection of 8‐Hydroxyquinoline in Cosmetics by Using a Poly(tannic acid)‐Modified Glassy Carbon Electrode. ChemistrySelect 2022. [DOI: 10.1002/slct.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhimin Gao
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| | - Min Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510641 People's Republic of China
| |
Collapse
|
14
|
Ramanavicius S, Samukaite-Bubniene U, Ratautaite V, Bechelany M, Ramanavicius A. Electrochemical Molecularly Imprinted Polymer Based Sensors for Pharmaceutical and Biomedical Applications (Review). J Pharm Biomed Anal 2022; 215:114739. [DOI: 10.1016/j.jpba.2022.114739] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 12/23/2022]
|
15
|
Ramanavičius S, Morkvėnaitė-Vilkončienė I, Samukaitė-Bubnienė U, Ratautaitė V, Plikusienė I, Viter R, Ramanavičius A. Electrochemically Deposited Molecularly Imprinted Polymer-Based Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:1282. [PMID: 35162027 PMCID: PMC8838766 DOI: 10.3390/s22031282] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 12/10/2022]
Abstract
This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design. Therefore, MIP-based conducting polymers, including polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene), polyaniline and ortho-phenylenediamine are frequently applied in sensor design. Some other materials that can be molecularly imprinted are also overviewed in this review. Among many imprintable materials conducting polymer, polypyrrole is one of the most suitable for molecular imprinting of various targets ranging from small organics up to rather large proteins. Some attention in this review is dedicated to overview methods applied to design MIP-based sensing structures. Some attention is dedicated to the physicochemical methods applied for the transduction of analytical signals. Expected new trends and horizons in the application of MIP-based structures are also discussed.
Collapse
Affiliation(s)
- Simonas Ramanavičius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania;
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
| | - Inga Morkvėnaitė-Vilkončienė
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Electrochemical Energy Conversion, State Research Institute Centre for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Urtė Samukaitė-Bubnienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Department of Mechatronics, Robotics, and Digital Manufacturing, Vilnius Gediminas Technical University, J. Basanaviciaus 28, LT-03224 Vilnius, Lithuania;
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Vilma Ratautaitė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Ieva Plikusienė
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arūnas Ramanavičius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania; (U.S.-B.); (V.R.); (I.P.); (R.V.)
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|
16
|
Zhang M, Feng X. Fabrication Strategies of Conjugated Microporous Polymer Membranes for Molecular Separation. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21110505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Fradin C, Guittard F, Darmanin T. Designing Tunable Omniphobic Surfaces by Controlling the Electropolymerization Sites of Carbazole‐Based Monomers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Fradin C, Orange F, Amigoni S, Szczepanski CR, Guittard F, Darmanin T. Micellar formation by soft template electropolymerization in organic solvents. J Colloid Interface Sci 2021; 590:260-267. [DOI: 10.1016/j.jcis.2021.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022]
|
19
|
Andriukonis E, Celiesiute-Germaniene R, Ramanavicius S, Viter R, Ramanavicius A. From Microorganism-Based Amperometric Biosensors towards Microbial Fuel Cells. SENSORS (BASEL, SWITZERLAND) 2021; 21:2442. [PMID: 33916302 PMCID: PMC8038125 DOI: 10.3390/s21072442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023]
Abstract
This review focuses on the overview of microbial amperometric biosensors and microbial biofuel cells (MFC) and shows how very similar principles are applied for the design of both types of these bioelectronics-based devices. Most microorganism-based amperometric biosensors show poor specificity, but this drawback can be exploited in the design of microbial biofuel cells because this enables them to consume wider range of chemical fuels. The efficiency of the charge transfer is among the most challenging and critical issues during the development of any kind of biofuel cell. In most cases, particular redox mediators and nanomaterials are applied for the facilitation of charge transfer from applied biomaterials towards biofuel cell electrodes. Some improvements in charge transfer efficiency can be achieved by the application of conducting polymers (CPs), which can be used for the immobilization of enzymes and in some particular cases even for the facilitation of charge transfer. In this review, charge transfer pathways and mechanisms, which are suitable for the design of biosensors and in biofuel cells, are discussed. Modification methods of the cell-wall/membrane by conducting polymers in order to enhance charge transfer efficiency of microorganisms, which can be potentially applied in the design of microbial biofuel cells, are outlined. The biocompatibility-related aspects of conducting polymers with microorganisms are summarized.
Collapse
Affiliation(s)
- Eivydas Andriukonis
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Raimonda Celiesiute-Germaniene
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Laboratory of Bioelectrics, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Simonas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| | - Roman Viter
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Center for Collective Use of Scientific Equipment, Sumy State University, 40018 Sumy, Ukraine
- Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1004 Riga, Latvia
| | - Arunas Ramanavicius
- NanoTechnas-Center of Nanotechnology and Material Science, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania; (E.A.); (R.C.-G.); (S.R.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
- Laboratory of Nanotechnology, State Research Institute Center for Physical Sciences and Technology, LT-10257 Vilnius, Lithuania
| |
Collapse
|
20
|
Ramanavicius S, Jagminas A, Ramanavicius A. Advances in Molecularly Imprinted Polymers Based Affinity Sensors (Review). Polymers (Basel) 2021; 13:974. [PMID: 33810074 PMCID: PMC8004762 DOI: 10.3390/polym13060974] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Recent challenges in biomedical diagnostics show that the development of rapid affinity sensors is very important issue. Therefore, in this review we are aiming to outline the most important directions of affinity sensors where polymer-based semiconducting materials are applied. Progress in formation and development of such materials is overviewed and discussed. Some applicability aspects of conducting polymers in the design of affinity sensors are presented. The main attention is focused on bioanalytical application of conducting polymers such as polypyrrole, polyaniline, polythiophene and poly(3,4-ethylenedioxythiophene) ortho-phenylenediamine. In addition, some other polymers and inorganic materials that are suitable for molecular imprinting technology are also overviewed. Polymerization techniques, which are the most suitable for the development of composite structures suitable for affinity sensors are presented. Analytical signal transduction methods applied in affinity sensors based on polymer-based semiconducting materials are discussed. In this review the most attention is focused on the development and application of molecularly imprinted polymer-based structures, which can replace antibodies, receptors, and many others expensive affinity reagents. The applicability of electrochromic polymers in affinity sensor design is envisaged. Sufficient biocompatibility of some conducting polymers enables to apply them as "stealth coatings" in the future implantable affinity-sensors. Some new perspectives and trends in analytical application of polymer-based semiconducting materials are highlighted.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Jagminas
- Department of Electrochemical Material Science, State Research Institute Center for Physical Sciences and Technology (FTMC), Sauletekio av. 3, LT-10257 Vilnius, Lithuania; (S.R.); (A.J.)
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
21
|
Possetto D, Fernández L, Marzari G, Fungo F. Electrochemical bubble generation via hydrazine oxidation for the in situ control of an electrodeposited conducting polymer micro/-nanostructure. RSC Adv 2021; 11:11020-11025. [PMID: 35423569 PMCID: PMC8695890 DOI: 10.1039/d0ra10816b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 01/23/2023] Open
Abstract
Herein, a simple, in situ, on step and highly repeatable electrochemical method that allows controlling the nanostructure of electrodeposited polymer films is reported. As an example, the tuning of the electrodeposited polypyrrole nanostructures using inert gas bubbles as the template at the electrode surface generated by the electrochemical oxidation of hydrazine is shown. The hydrazine discharge occurs at a lower potential regarding the beginning of pyrrole electropolymerization process, which allows the modulation of the density and size of the bubbles on the surface electrode controlling electrochemical parameters (applied potential, concentration, time, etc.). Subsequently, the applied potential is moved to where the pyrrole polymerization begins, which induces the material discharges around the bubble template producing polypyrrole hollow structures with definite patterns on the electrode surface. This methodology is proposed as a simple model for the electrodeposition with the morphological control of a wide range of conductive polymers. An electrochemical method to manipulate the size and density of electrodeposited polypyrrole structures at the micro-nanoscale by the discharge of hydrazine.![]()
Collapse
Affiliation(s)
- David Possetto
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, (UNRC-CONICET) Departamento de Química, Universidad Nacional de Río Cuarto Agencia Postal 3 (X5804BYA) Río Cuarto Argentina
| | - Luciana Fernández
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, (UNRC-CONICET) Departamento de Química, Universidad Nacional de Río Cuarto Agencia Postal 3 (X5804BYA) Río Cuarto Argentina
| | - Gabriela Marzari
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, (UNRC-CONICET) Departamento de Química, Universidad Nacional de Río Cuarto Agencia Postal 3 (X5804BYA) Río Cuarto Argentina
| | - Fernando Fungo
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados, (UNRC-CONICET) Departamento de Química, Universidad Nacional de Río Cuarto Agencia Postal 3 (X5804BYA) Río Cuarto Argentina
| |
Collapse
|
22
|
Ramanavicius S, Ramanavicius A. Charge Transfer and Biocompatibility Aspects in Conducting Polymer-Based Enzymatic Biosensors and Biofuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:371. [PMID: 33540587 PMCID: PMC7912793 DOI: 10.3390/nano11020371] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023]
Abstract
Charge transfer (CT) is a very important issue in the design of biosensors and biofuel cells. Some nanomaterials can be applied to facilitate the CT in these bioelectronics-based devices. In this review, we overview some CT mechanisms and/or pathways that are the most frequently established between redox enzymes and electrodes. Facilitation of indirect CT by the application of some nanomaterials is frequently applied in electrochemical enzymatic biosensors and biofuel cells. More sophisticated and still rather rarely observed is direct charge transfer (DCT), which is often addressed as direct electron transfer (DET), therefore, DCT/DET is also targeted and discussed in this review. The application of conducting polymers (CPs) for the immobilization of enzymes and facilitation of charge transfer during the design of biosensors and biofuel cells are overviewed. Significant attention is paid to various ways of synthesis and application of conducting polymers such as polyaniline, polypyrrole, polythiophene poly(3,4-ethylenedioxythiophene). Some DCT/DET mechanisms in CP-based sensors and biosensors are discussed, taking into account that not only charge transfer via electrons, but also charge transfer via holes can play a crucial role in the design of bioelectronics-based devices. Biocompatibility aspects of CPs, which provides important advantages essential for implantable bioelectronics, are discussed.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Faculty of Chemistry and Geosciences, Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
23
|
Napierała S, Kubicki M, Patroniak V, Wałęsa-Chorab M. Electropolymerization of [2 × 2] grid-type cobalt(II) complex with thiophene substituted dihydrazone ligand. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Densely packed open microspheres by soft template electropolymerization of benzotrithiophene-based monomers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Hu Q, Fang Y, Yu X, Huang J, Wang L. A ferrocene-linked metal-covalent organic polymer as a peroxidase-enzyme mimic for dual channel detection of hydrogen peroxide. Analyst 2021; 146:487-494. [PMID: 33179652 DOI: 10.1039/d0an01837f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ferrocene-linked metal-covalent organic polymer (MCOP-NFC) was synthesized through the Claisen-Schmidt condensation reaction of 1,1'-diacetyl ferrocene and tris(4-formylphenyl)amine. MCOP-NFC acts as a highly efficient artificial enzyme for mimicking peroxidase, and shows good stability in harsh chemical environments including strong bases and acids, and boiling water. Based on the peroxidase-like activity of MCOP-NFC, a highly sensitive dual channel detection method for hydrogen peroxide was developed. For the colorimetric detection strategy, the limit of detection (LOD) reached 2.1 μM, while the limit of detection was found to be as low as 0.08 μM based on the electrochemical detection channel. This study offers a new strategy for the development of an enzyme mimetic on the basis of the covalent assembly of nanostructures, and the proposed electrochemical-colorimetric sensor for H2O2 detection has great potential for applications in biology and biomedicine.
Collapse
Affiliation(s)
- Qiong Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | | | |
Collapse
|
26
|
Terán-Alcocer Á, Bravo-Plascencia F, Cevallos-Morillo C, Palma-Cando A. Electrochemical Sensors Based on Conducting Polymers for the Aqueous Detection of Biologically Relevant Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:252. [PMID: 33478121 PMCID: PMC7835872 DOI: 10.3390/nano11010252] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical sensors appear as low-cost, rapid, easy to use, and in situ devices for determination of diverse analytes in a liquid solution. In that context, conducting polymers are much-explored sensor building materials because of their semiconductivity, structural versatility, multiple synthetic pathways, and stability in environmental conditions. In this state-of-the-art review, synthetic processes, morphological characterization, and nanostructure formation are analyzed for relevant literature about electrochemical sensors based on conducting polymers for the determination of molecules that (i) have a fundamental role in the human body function regulation, and (ii) are considered as water emergent pollutants. Special focus is put on the different types of micro- and nanostructures generated for the polymer itself or the combination with different materials in a composite, and how the rough morphology of the conducting polymers based electrochemical sensors affect their limit of detection. Polypyrroles, polyanilines, and polythiophenes appear as the most recurrent conducting polymers for the construction of electrochemical sensors. These conducting polymers are usually built starting from bifunctional precursor monomers resulting in linear and branched polymer structures; however, opportunities for sensitivity enhancement in electrochemical sensors have been recently reported by using conjugated microporous polymers synthesized from multifunctional monomers.
Collapse
Affiliation(s)
- Álvaro Terán-Alcocer
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Francisco Bravo-Plascencia
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| | - Carlos Cevallos-Morillo
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Francisco Viteri s/n y Gato Sobral, 170129 Quito, Ecuador;
| | - Alex Palma-Cando
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences and Engineering, Yachay Tech University, Hda. San José s/n y Proyecto Yachay, 100119 Urcuquí, Ecuador; (Á.T.-A.); (F.B.-P.)
| |
Collapse
|
27
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polym Chem 2021. [DOI: 10.1039/d1py00193k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new design strategy is disclosed to synthesize conjugated microporous polymers using a Cu-catalyzed [4 + 2] cyclobenzannulation reaction. The polymers reveal BET surface areas up to 794 m2 g−1 and promising uptake of iodine and methylene blue.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
28
|
Ramanavicius S, Ramanavicius A. Conducting Polymers in the Design of Biosensors and Biofuel Cells. Polymers (Basel) 2020; 13:E49. [PMID: 33375584 PMCID: PMC7795957 DOI: 10.3390/polym13010049] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/19/2020] [Accepted: 12/23/2020] [Indexed: 01/15/2023] Open
Abstract
Fast and sensitive determination of biologically active compounds is very important in biomedical diagnostics, the food and beverage industry, and environmental analysis. In this review, the most promising directions in analytical application of conducting polymers (CPs) are outlined. Up to now polyaniline, polypyrrole, polythiophene, and poly(3,4-ethylenedioxythiophene) are the most frequently used CPs in the design of sensors and biosensors; therefore, in this review, main attention is paid to these conducting polymers. The most popular polymerization methods applied for the formation of conducting polymer layers are discussed. The applicability of polypyrrole-based functional layers in the design of electrochemical biosensors and biofuel cells is highlighted. Some signal transduction mechanisms in CP-based sensors and biosensors are discussed. Biocompatibility-related aspects of some conducting polymers are overviewed and some insights into the application of CP-based coatings for the design of implantable sensors and biofuel cells are addressed. New trends and perspectives in the development of sensors based on CPs and their composites with other materials are discussed.
Collapse
Affiliation(s)
- Simonas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Arunas Ramanavicius
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| |
Collapse
|
29
|
El Jaouhari A, Wang Y, Zhang B, Liu X, Zhu J. Effect of surface properties on the electrochemical response of cynarin by electro-synthesized functionalized-polybithiophene/MWCNT/GNP. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111067. [PMID: 32994030 DOI: 10.1016/j.msec.2020.111067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 11/26/2022]
Abstract
Cynarin is one of the biologically active functional components present a wide range of pharmacological applications. Herein, we reported the fabrication and surface properties investigation of a new highly sensitive electrochemical sensor for the detection of cynarin. The electrochemical sensors were fabricated in several steps; the first being the synthesis of bi-thiophene derivatives-based monomers 3,3'-bithiophen (M1); 2-methoxy-5-carbaldehyde-[3,3'-bithiophene] (M2) and 2-((2-methoxy-[3,3'-bithiophen]-5-yl)methylene)malononitrile) (M3) followed by electrochemical polymerization on a glassy carbon electrode after which multi-walled carbon nanotube (MWCNT) and gold nanoparticles (GNP's) were electrodeposited layer-by-layer on the polymer coating to obtain multilayer electrochemical sensors. The morphological properties of the formed polymers were evaluated using SEM analysis and the apparent contact angles to preview the changes in surface properties after the functionalization of monomers and therefore their effects on the detection of cynarin. Analytical parameters such as the accumulation time and pH of the PBS solution which influence the sensitivity of the electrochemical sensors were optimized. Under the optimal conditions the GCE/P3/MWCNT/GNP's showed a wide range of analyte concentrations (1 to 100 μM and 0.01 to 1 μM) and detection limit of 0.0095 using pulse differential voltammetry. In addition, the electrochemical sensors showed good reproducibility, stability and selectivity and they were used successfully for the determination of cynarin in real solutions.
Collapse
Affiliation(s)
- Abdelhadi El Jaouhari
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yong Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Bowen Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xiuhua Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Jinhua Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
30
|
Spychalska K, Zając D, Baluta S, Halicka K, Cabaj J. Functional Polymers Structures for (Bio)Sensing Application-A Review. Polymers (Basel) 2020; 12:E1154. [PMID: 32443618 PMCID: PMC7285029 DOI: 10.3390/polym12051154] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 11/16/2022] Open
Abstract
In this review we present polymeric materials for (bio)sensor technology development. We focused on conductive polymers (conjugated microporous polymer, polymer gels), composites, molecularly imprinted polymers and their influence on the design and fabrication of bio(sensors), which in the future could act as lab-on-a-chip (LOC) devices. LOC instruments enable us to perform a wide range of analysis away from the stationary laboratory. Characterized polymeric species represent promising candidates in biosensor or sensor technology for LOC development, not only for manufacturing these devices, but also as a surface for biologically active materials' immobilization. The presence of biological compounds can improve the sensitivity and selectivity of analytical tools, which in the case of medical diagnostics is extremely important. The described materials are biocompatible, cost-effective, flexible and are an excellent platform for the anchoring of specific compounds.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Cabaj
- Faculty of Chemistry, Wrocław University of Science and Technology, 50-137 Wrocław, Poland; (K.S.); (D.Z.); (S.B.); (K.H.)
| |
Collapse
|
31
|
A nanospherical conjugated microporous polymer-graphene nanosheets modified molecularly imprinted electrochemical sensor for high sensitivity detection of α-Synuclein. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113994] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Bousrih I, El Kateb M, Szczepanski CR, Beji M, Guittard F, Darmanin T. A bioinspired strategy for designing well-ordered nanotubular structures by templateless electropolymerization of thieno[3,4- b]thiophene-based monomers. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190450. [PMID: 32008445 DOI: 10.1098/rsta.2019.0450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Here, a bioinspired strategy is used to prepare well-ordered nanotubular structures, as observed in animals and plants, such as gecko toe pads or corals. The nanotubes are obtained by templateless electropolymerization of thieno[3,4-b]thiophene-based monomers with various aromatic groups in an organic solvent (dichloromethane). The most interesting and robust structures were obtained with carbazole and pyrene substituents to the base monomer structure, since these groups participate significantly in the polymerization and also have strong π-stacking interactions. The addition of water to electropolymerization solvent significantly impacted the formation of nanotubes, as it caused the release of a significant amount of H2 and O2 bubbles, depending on the electropolymerization method. Identifying templateless approaches to vary nanotubular structures is very interesting, as these materials are sought-after for applications in water harvesting systems. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 3)'.
Collapse
Affiliation(s)
- Imen Bousrih
- Laboratory of Structural Organic Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Mejda El Kateb
- Laboratory of Structural Organic Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Caroline R Szczepanski
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI, USA
| | - Mohammed Beji
- Laboratory of Structural Organic Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092 Tunis, Tunisia
| | - Frédéric Guittard
- Université Côte d'Azur, NICE Lab, 06200 Nice, France
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | |
Collapse
|
33
|
Fradin C, Celestini F, Guittard F, Darmanin T. Templateless Electrodeposition of Conducting Polymer Nanotubes on Mesh Substrates. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.201900529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
34
|
Huang Y, Bai S, Huang J, Ma Y, Zeng Q, Wang M, Wang L. Simultaneous detection of nitrophenol isomers using an easy-to-fabricate thiophene-based microporous polymer film modified electrode. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
36
|
Geng TM, Hu C, Liu M, Zhang C, Xu H, Wang X. The influences of the structure of thiophene-based conjugated microporous polymers on the fluorescence sensing properties. NEW J CHEM 2020. [DOI: 10.1039/d0nj02912b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three thiophene-based conjugated microporous polymers (CMPs: TTPTh, DBTh, and TBTh) were prepared by Sonogashira–Hagihara cross-coupling polymerization, and their structures were characterized by FTIR, ss 13C NMR, and elemental analyses.
Collapse
Affiliation(s)
- Tong-Mou Geng
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Chen Hu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Min Liu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Can Zhang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Heng Xu
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| | - Xie Wang
- AnHui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials
- School of Chemistry and Chemical Engineering
- Anqing Normal University
- Anqing 246011
- China
| |
Collapse
|
37
|
Tuning nanotubular structures by templateless electropolymerization with thieno[3,4-b]thiophene-based monomers with different substituents and water content. J Colloid Interface Sci 2019; 564:19-27. [PMID: 31896424 DOI: 10.1016/j.jcis.2019.12.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/23/2023]
Abstract
Here, templateless electropolymerization is employed to produce nanotubular structures from various thieno[3,4-b]thiophene-based monomers that differ in substituent structure and size, as well as the linker connecting the thieno[3,4-b]thiophene core and substituent. The formation of densely packed vertically aligned are obtained from monomers with a pyrene substituent and when a significant amount of water (CH2Cl2 + H2O) is included in the solvent. The geometrical parameters of the nanotubes are highly dependent on the electopolymerization method. A significant amount of air is trapped within the structure of the densely packed open nanotubes obtained with Qs = 100 mC cm-2 causing an increase in water contact angle (θw) up to 82.6° (intermediate state between the Wenzel and the Cassie-Baxter state), and θw can become even more hydrophobic by further modifying the deposition method or the electrolyte.
Collapse
|
38
|
Chai J, Zhang Y, Liu F, Zhang H, Zhang X, Xu J, Zhang G. The effect of boron trifluoride diethyl etherate on electrochemical polymerization and surface morphology of conjugated porous polymer poly(4,4′,4″-Tris(9-carbazolyl)triphenylamine). J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Darmanin T, Klimareva EL, Schewtschenko I, Guittard F, Perepichka IF. Exceptionally Strong Effect of Small Structural Variations in Functionalized 3,4-Phenylenedioxythiophenes on the Surface Nanostructure and Parahydrophobic Properties of Their Electropolymerized Films. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00778] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Elena L. Klimareva
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
- Department of Organic Substances Technology, Ural Federal University, Ekaterinburg 620002, Russian Federation
| | - Irina Schewtschenko
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
| | | | - Igor F. Perepichka
- School of Natural Sciences, Bangor University, Deiniol Road, Bangor LL57 2UW, U.K
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| |
Collapse
|
40
|
Sane O, Diouf A, Pan M, Morán Cruz G, Savina F, Méallet-Renault R, Dieng SY, Amigoni S, Guittard F, Darmanin T. Nanotubular structures through templateless electropolymerization using thieno[3,4-b]thiophene derivatives with different substituents and water content. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Wang J, Lv W, Wu J, Li H, Li F. Electropolymerization-Induced Positively Charged Phenothiazine Polymer Photoelectrode for Highly Sensitive Photoelectrochemical Biosensing. Anal Chem 2019; 91:13831-13837. [DOI: 10.1021/acs.analchem.9b03311] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiao Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Jiahui Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People’s Republic of China
| |
Collapse
|
42
|
Thiam EH, Dramé A, Sow S, Sene A, Szczepanski CR, Dieng SY, Guittard F, Darmanin T. Designing Nanoporous Membranes through Templateless Electropolymerization of Thieno[3,4- b]thiophene Derivatives with High Water Content. ACS OMEGA 2019; 4:13080-13085. [PMID: 31460435 PMCID: PMC6704440 DOI: 10.1021/acsomega.9b00969] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/05/2019] [Indexed: 06/10/2023]
Abstract
In this work, we present the synthesis of original thieno[3,4-b]thiophene monomers with rigid substituents (e.g., perfluorinated chains, and aromatic groups) and demonstrate the ability to prepare nanotubular and nanoporous structures via templateless, surfactant-free electropolymerization in organic solvents (dichloromethane). For the majority of synthesized monomers, including a significant amount of water in the electropolymerization solvent leads to the formation of nanoporous membranes with tunable size and surface hydrophobicity. If water is not included in the electropolymerization solvent, most of the surfaces prepared are relatively smooth. Tests with different water contents show that the formation of nanoporous membranes pass through the formation of vertically aligned nanotubes and that the increase in water content induces an increase in the number of nanotubes while their diameter and height remain unchanged. An increase in surface hydrophobicity is observed with the formation of nanopores up to ≈300 nm in diameter, but as the nanopores further increase in diameter, the surfaces become more hydrophilic with an observed decrease in the water contact angle. These materials and the ease with which they can be fabricated are extremely interesting for applications in separation membranes, opto-electronic devices, as well as for sensors.
Collapse
Affiliation(s)
- El hadji
Yade Thiam
- Faculté
des Sciences et Techniques, Département de Chimie, Université Cheikh Anta Diop, B.P. 5005 Dakar, Senegal
| | - Abdoulaye Dramé
- Faculté
des Sciences et Techniques, Département de Chimie, Université Cheikh Anta Diop, B.P. 5005 Dakar, Senegal
| | - Salif Sow
- Faculté
des Sciences et Techniques, Département de Chimie, Université Cheikh Anta Diop, B.P. 5005 Dakar, Senegal
| | - Aboubacary Sene
- Faculté
des Sciences et Techniques, Département de Chimie, Université Cheikh Anta Diop, B.P. 5005 Dakar, Senegal
| | - Caroline R. Szczepanski
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Samba Yandé Dieng
- Faculté
des Sciences et Techniques, Département de Chimie, Université Cheikh Anta Diop, B.P. 5005 Dakar, Senegal
| | - Frédéric Guittard
- NICE
Lab, IMREDD, Université Côte
d’Azur, 61−63
Avenue Simon Veil, 06200 Nice, France
- Department
of Bioengineering, University California
Riverside, Riverside, California 92521, United States
| | - Thierry Darmanin
- NICE
Lab, IMREDD, Université Côte
d’Azur, 61−63
Avenue Simon Veil, 06200 Nice, France
| |
Collapse
|
43
|
Palma-Cando A, Rendón-Enríquez I, Tausch M, Scherf U. Thin Functional Polymer Films by Electropolymerization. NANOMATERIALS 2019; 9:nano9081125. [PMID: 31382661 PMCID: PMC6723103 DOI: 10.3390/nano9081125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 02/05/2023]
Abstract
Intrinsically conducting polymers (ICPs) have been widely utilized in organic electronics, actuators, electrochromic devices, and sensors. Many potential applications demand the formation of thin polymer films, which can be generated by electrochemical polymerization. Electrochemical methods are quite powerful and versatile and can be utilized for investigation of ICPs, both for educational purposes and materials chemistry research. In this study, we show that potentiodynamic and potentiostatic techniques can be utilized for generating and characterizing thin polymer films under the context of educational chemistry research and state-of-the-art polymer research. First, two well-known bifunctional monomers (with only two linking sites)-aniline and bithiophene-and their respective ICPs-polyaniline (PANI) and polybithiophene (PBTh)-were electrochemically generated and characterized. Tests with simple electrochromic devices based on PANI and PBTh were carried out at different doping levels, where changes in the UV-VIS absorption spectra and color were ascribed to changes in the polymer structures. These experiments may attract students' interest in the electrochemical polymerization of ICPs as doping/dedoping processes can be easily understood from observable color changes to the naked eye, as shown for the two polymers. Second, two new carbazole-based multifunctional monomers (with three or more linking sites)-tris(4-(carbazol-9-yl)phenyl)silanol (TPTCzSiOH) and tris(3,5-di(carbazol-9-yl)phenyl)silanol (TPHxCzSiOH)-were synthesized to produce thin films of cross-linked polymer networks by electropolymerization. These thin polymer films were characterized by electrochemical quartz crystal microbalance (EQCM) experiments and nitrogen sorption, and the results showed a microporous nature with high specific surface areas up to 930 m2g-1. PTPHxCzSiOH-modified glassy carbon electrodes showed an enhanced electrochemical response to nitrobenzene as prototypical nitroaromatic compound compared to unmodified glassy carbon electrodes.
Collapse
Affiliation(s)
- Alex Palma-Cando
- School of Chemical Sciences and Engineering, Universidad Yachay Tech, EC100115 Urcuqui, Ecuador.
- Macromolecular Chemistry Group, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany.
| | - Ibeth Rendón-Enríquez
- Department of Chemistry and Chemical Education, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany
| | - Michael Tausch
- Department of Chemistry and Chemical Education, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany.
| | - Ullrich Scherf
- Macromolecular Chemistry Group, Bergische Universität Wuppertal, Gaußstraße 20, D-42119 Wuppertal, Germany.
| |
Collapse
|
44
|
Thiam O, Diouf A, Diouf D, Dieng SY, Guittard F, Darmanin T. Designing bioinspired coral-like structures using a templateless electropolymerization approach with a high water content. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190123. [PMID: 31177961 DOI: 10.1098/rsta.2019.0123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Here, with the aim of obtaining densely packed porous nanostructures of various shape using templateless electropolymerization in organic solvent (dichloromethane), original thieno[3,4- b]thiophene-based monomers with different substituents are studied. First of all, the adding of water in solution has a huge influence on the formation of porous structures because a much higher amount of gas (O2 and/or H2) is released. Rigid substituents such as aromatic groups have a beneficial effect on the formation of nanotubular structures contrary to flexible ones such as alkyl chains. Special results are obtained with the pyrene substituent (Thieno-Pyr). With this monomer, coral-like structures are obtained. These structures are obtained by the formation first on long nanotubular structures and their sagging due to their weight. Then, the released gas is trapped inside these structures leading to huge craters. These exceptional surfaces could be used in the future in various potential applications such as in drug delivery, cell growth, sensors, optical devices or surface adhesion. This article is part of the theme issue 'Bioinspired materials and surfaces for green science and technology (part 2)'.
Collapse
Affiliation(s)
- Omar Thiam
- 1 Faculté des Sciences et Techniques, Département de Chimie, Université Cheikh Anta Diop , B.P. 5005 Dakar , Sénégal
| | - Alioune Diouf
- 1 Faculté des Sciences et Techniques, Département de Chimie, Université Cheikh Anta Diop , B.P. 5005 Dakar , Sénégal
| | - Djibril Diouf
- 1 Faculté des Sciences et Techniques, Département de Chimie, Université Cheikh Anta Diop , B.P. 5005 Dakar , Sénégal
| | - Samba Yandé Dieng
- 1 Faculté des Sciences et Techniques, Département de Chimie, Université Cheikh Anta Diop , B.P. 5005 Dakar , Sénégal
| | - Frédéric Guittard
- 2 Université Côte d'Azur, NICE Lab, IMREDD , 61-63 Av. Simon Veil, 06200 Nice , France
- 3 Department of Bioengineering, University of California Riverside , Riverside, CA , USA
| | - Thierry Darmanin
- 2 Université Côte d'Azur, NICE Lab, IMREDD , 61-63 Av. Simon Veil, 06200 Nice , France
| |
Collapse
|
45
|
Guo S, Lu Y, Wang B, Shen C, Chen J, Reiter G, Zhang B. Controlling the pore size in conjugated polymer films via crystallization-driven phase separation. SOFT MATTER 2019; 15:2981-2989. [PMID: 30912567 DOI: 10.1039/c9sm00370c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wide range of possible applications in sensors and optoelectronic devices have focused considerable attention on porous membranes made of semi-conducting polymers. In this study, porous films of poly(3-hexylthiophene) (P3HT) were conveniently constructed through spin-coating of solutions of a blend of P3HT and polyethylene glycol (PEG). Pores were formed by phase separation driven simultaneously by incompatibility and crystallization. The influence of the polymer concentration (c), molecular weight (Mn) and spin-coating temperature (Tsp) on the pore size and structure was investigated. With increasing c from 0.5 to 5.0 wt%, the pore diameter (d) varied from ≈1.3 μm to ≈38 μm. Similarly, we observed a substantial increase of d with increasing Mn of PEG, while changing Mn of P3HT did not affect d. Micron- and nano-scale pores coexisted in porous P3HT films. While incompatibility of P3HT and PEG caused the formation of nano-pores, micron-scale pores resulted from crystallization in the PEG-rich domains by forcing PEG molecules to diffuse from the surrounding PEG-P3HT blend region to the crystal growth front.
Collapse
Affiliation(s)
- Shaowen Guo
- School of Materials Science & Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Zhengzhou University, Zhengzhou 450002, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Electrochemical Deposition of Nanomaterials for Electrochemical Sensing. SENSORS 2019; 19:s19051186. [PMID: 30857146 PMCID: PMC6427742 DOI: 10.3390/s19051186] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/01/2019] [Accepted: 03/04/2019] [Indexed: 12/12/2022]
Abstract
The most commonly used methods to electrodeposit nanomaterials on conductive supports or to obtain electrosynthesis nanomaterials are described. Au, layered double hydroxides (LDHs), metal oxides, and polymers are the classes of compounds taken into account. The electrochemical approach for the synthesis allows one to obtain nanostructures with well-defined morphologies, even without the use of a template, and of variable sizes simply by controlling the experimental synthesis conditions. In fact, parameters such as current density, applied potential (constant, pulsed or ramp) and duration of the synthesis play a key role in determining the shape and size of the resulting nanostructures. This review aims to describe the most recent applications in the field of electrochemical sensors of the considered nanomaterials and special attention is devoted to the analytical figures of merit of the devices.
Collapse
|
47
|
Liu F, Kan X. Conductive imprinted electrochemical sensor for epinephrine sensitive detection and double recognition. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.01.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Lu Y, Qiao Y, Xue H, Zhou G. From Colorless to Near-Infrared S-Heteroarene Isomers: Unexpected Cycloaromatization of Cyclopenta[b]thiopyran Catalyzed by PtCl2. Org Lett 2018; 20:6632-6635. [DOI: 10.1021/acs.orglett.8b02546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yifan Lu
- Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P.R. China
| | - Yanjun Qiao
- Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P.R. China
| | - Haodong Xue
- Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P.R. China
| | - Gang Zhou
- Lab of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200438, P.R. China
| |
Collapse
|
49
|
Suresh VM, Scherf U. Electrochemically Generated Conjugated Microporous Polymer Network Thin Films for Chemical Sensor Applications. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800207] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Venkata M. Suresh
- Macromolecular Chemistry Group; Bergische Universität Wuppertal; Gaußstraße 20 42119 Wuppertal Germany
| | - Ullrich Scherf
- Macromolecular Chemistry Group; Bergische Universität Wuppertal; Gaußstraße 20 42119 Wuppertal Germany
| |
Collapse
|