1
|
Kim JH, Berghmans F, Siddik AB, Sutcu I, Monroy IP, Yu J, Weydts T, Georgitzikis E, Kang J, Baines Y, Hermans Y, Chandrasekaran N, De Roose F, Uytterhoeven G, Puybaret R, Li Y, Lieberman I, Karve G, Cheyns D, Genoe J, Malinowski PE, Heremans P, Myny K, Papadopoulos N, Lee J. A Thin-Film Pinned-Photodiode Imager Pixel with Fully Monolithic Fabrication and beyond 1Me- Full Well Capacity. SENSORS (BASEL, SWITZERLAND) 2023; 23:8803. [PMID: 37960502 PMCID: PMC10649951 DOI: 10.3390/s23218803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023]
Abstract
Thin-film photodiodes (TFPD) monolithically integrated on the Si Read-Out Integrated Circuitry (ROIC) are promising imaging platforms when beyond-silicon optoelectronic properties are required. Although TFPD device performance has improved significantly, the pixel development has been limited in terms of noise characteristics compared to the Si-based image sensors. Here, a thin-film-based pinned photodiode (TF-PPD) structure is presented, showing reduced kTC noise and dark current, accompanied with a high conversion gain (CG). Indium-gallium-zinc oxide (IGZO) thin-film transistors and quantum dot photodiodes are integrated sequentially on the Si ROIC in a fully monolithic scheme with the introduction of photogate (PG) to achieve PPD operation. This PG brings not only a low noise performance, but also a high full well capacity (FWC) coming from the large capacitance of its metal-oxide-semiconductor (MOS). Hence, the FWC of the pixel is boosted up to 1.37 Me- with a 5 μm pixel pitch, which is 8.3 times larger than the FWC that the TFPD junction capacitor can store. This large FWC, along with the inherent low noise characteristics of the TF-PPD, leads to the three-digit dynamic range (DR) of 100.2 dB. Unlike a Si-based PG pixel, dark current contribution from the depleted semiconductor interfaces is limited, thanks to the wide energy band gap of the IGZO channel material used in this work. We expect that this novel 4 T pixel architecture can accelerate the deployment of monolithic TFPD imaging technology, as it has worked for CMOS Image sensors (CIS).
Collapse
Affiliation(s)
- Joo Hyoung Kim
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Francois Berghmans
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Abu Bakar Siddik
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
- Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium
| | - Irem Sutcu
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
- Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium
| | - Isabel Pintor Monroy
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Jehyeok Yu
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
- College of Information and Communication Engineering, SKKU, Suwon 16419, Republic of Korea
| | - Tristan Weydts
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Epimitheas Georgitzikis
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Jubin Kang
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
- Department of Electrical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yannick Baines
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Yannick Hermans
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Naresh Chandrasekaran
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Florian De Roose
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Griet Uytterhoeven
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Renaud Puybaret
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Yunlong Li
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Itai Lieberman
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Gauri Karve
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - David Cheyns
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Jan Genoe
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
- Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium
| | - Paweł E. Malinowski
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Paul Heremans
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
- Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium
| | - Kris Myny
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
- Department of Electrical Engineering (ESAT), KU Leuven, 3001 Leuven, Belgium
| | - Nikolas Papadopoulos
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
| | - Jiwon Lee
- Imec, Kapeldreef 75, 3001 Leuven, Belgium; (J.H.K.); (F.B.); (A.B.S.); (I.S.); (I.P.M.); (J.Y.); (T.W.); (E.G.); (J.K.); (Y.B.); (Y.H.); (N.C.); (F.D.R.); (G.U.); (R.P.); (Y.L.); (I.L.); (G.K.); (D.C.); (J.G.); (P.E.M.); (P.H.); (K.M.); (N.P.)
- Department of Photonics and Nanoelectronics and the BK21 FOUR ERICA-ACE Center, Hanyang University ERICA, Ansan 15495, Republic of Korea
| |
Collapse
|
2
|
Xing S, Nikolis VC, Kublitski J, Guo E, Jia X, Wang Y, Spoltore D, Vandewal K, Kleemann H, Benduhn J, Leo K. Miniaturized VIS-NIR Spectrometers Based on Narrowband and Tunable Transmission Cavity Organic Photodetectors with Ultrahigh Specific Detectivity above 10 14 Jones. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102967. [PMID: 34515381 PMCID: PMC11469248 DOI: 10.1002/adma.202102967] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Spectroscopic photodetection plays a key role in many emerging applications such as context-aware optical sensing, wearable biometric monitoring, and biomedical imaging. Photodetectors based on organic semiconductors open many new possibilities in this field. However, ease of processing, tailorable optoelectronic properties, and sensitivity for faint light are still significant challenges. Here, the authors report a novel concept for a tunable spectral detector by combining an innovative transmission cavity structure with organic absorbers to yield narrowband organic photodetection in the wavelength range of 400-1100 nm, fabricated in a full-vacuum process. Benefiting from this strategy, one of the best performed narrowband organic photodetectors is achieved with a finely wavelength-selective photoresponse (full-width-at-half-maximum of ≈40 nm), ultrahigh specific detectivity above 1014 Jones, the maximum response speed of 555 kHz, and a large dynamic range up to 168 dB. Particularly, an array of transmission cavity organic photodetectors is monolithically integrated on a small substrate to showcase a miniaturized spectrometer application, and a true proof-of-concept transmission spectrum measurement is successfully demonstrated. The excellent performance, the simple device fabrication as well as the possibility of high integration of this new concept challenge state-of-the-art low-noise silicon photodetectors and will mature the spectroscopic photodetection into technological realities.
Collapse
Affiliation(s)
- Shen Xing
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Vasileios Christos Nikolis
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
- Heliatek GmbHTreidler Str. 301139DresdenGermany
| | - Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Erjuan Guo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Xiangkun Jia
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Yazhong Wang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Donato Spoltore
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Koen Vandewal
- Institute for Materials Research (IMO‐IMOMEC)Hasselt UniversityWetenschapspark 1Diepenbeek3590Belgium
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität DresdenNöthnitzer Str. 6101187DresdenGermany
| |
Collapse
|
3
|
Shafian S, Kim K. Panchromatically Responsive Organic Photodiodes utilizing a Noninvasive Narrowband Color Electrode. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53012-53020. [PMID: 33172259 DOI: 10.1021/acsami.0c17183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic photodiodes (OPDs) are emerging as potential candidates in image sensors owing to their high sensitivity and submicron photoactive layer thickness. For OPDs to be more competitive, it is necessary to develop an economical fabrication process and improve their narrowband spectral response from visible to near-infrared (NIR). In this study, panchromatic OPDs with a remarkable narrowband response from visible to NIR are developed by integrating a solution-processed optical filter-electrode (OF-electrode) and a panchromatic organic photoactive layer. Solution-processable TiO2 nanoparticles (sTNPs) bound to an acetylacetone ligand are used to construct the OF-electrode, which had the structure Ag/sTNP/Ag, and a ternary blend of a polymer donor, a nonfullerene acceptor, and a fullerene acceptor is used for preparing the panchromatic organic photoactive layer. Direct integration of the OF-electrode with the organic photoactive layer eliminates the need for additional OF installation, without damaging the underlying organic photoactive layer. Variation of the sTNP layer thickness controls the color filtering wavelength to vary from visible to NIR, with exceptionally narrow full width at half-maximum (fwhm) values of 48-82 nm and transparency values of 50-70%. Owing to their selective response for the desired color and their capability to minimize noise from other colors, the OPDs exhibit high sensitivity values of 2.82 × 1012, 3.02 × 1012, and 3.94 × 1012 cm Hz0.5/W (Jones) with narrow fwhm values of 110, 91, and 75 nm at a peak transmittance exceeding 65% for blue, green, and red, respectively. Furthermore, they detect NIR light at a wavelength of 950 nm with a narrow fwhm value of 51 nm and a high sensitivity of 3.78 × 1012 cm Hz0.5/W (Jones).
Collapse
Affiliation(s)
- Shafidah Shafian
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Kyungkon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
4
|
Guo D, Xu Z, Yang D, Ma D, Tang B, Vadim A. Structure design and performance of photomultiplication-type organic photodetectors based on an aggregation-induced emission material. NANOSCALE 2020; 12:2648-2656. [PMID: 31939957 DOI: 10.1039/c9nr09386a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aggregation-induced emission (AIE) materials have shown attractive prospects in the fields of biological probes, chemical sensing, optoelectronic systems and stimuli responses. Here, we have successfully fabricated photomultiplication-type organic photodetectors based on an AIE material by designing a device structure. The high photoconductive gain was attributed to the interfacial trap-assisted hole-tunneling injection caused by MoO3 as the trap for electrons. The fabricated AIE-based photomultiplication-type organic photodetectors exhibited the figures of merits of high external quantum efficiency in excess of 60 000%, responsivity of 172 A W-1, detectivity of 3.08 × 1012 Jones, and photoresponse with a rise time of 1.69 ms. Moreover, the devices also showed good stability with a half-life of 700 hours at continuous testing under ambient conditions, which makes them one of the most stable OPDs reported so far. The results demonstrate that AIE molecules are an excellent kind of photodetective material.
Collapse
Affiliation(s)
- Dechao Guo
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Zeng Xu
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Dezhi Yang
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Dongge Ma
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Benzhong Tang
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China. and Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Agafonov Vadim
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| |
Collapse
|
5
|
Kim KY, Yoon SH, Kim IK, Kim HG, Kim DK, Shim EL, Choi YJ. Flexible narrowband organic photodiode with high selectivity in color detection. NANOTECHNOLOGY 2019; 30:435203. [PMID: 31349232 DOI: 10.1088/1361-6528/ab35ff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study describes the design of a flexible narrowband organic photodiode (OPDs) with a novel structure. A bulk heterojunction of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl-C70-butyric acid methyl ester (PC70BM) is introduced as a photoactive layer, with an optimized thickness of 160 nm, and a MoO3/Ag/MoO3 (MAM) multilayer electrode and polyimide (PI) film substrate were used. The OPD with the device architecture of PI/MAM/P3HT:PC70BM/Al showed narrowband photodiode performance in the 500-650 nm wavelength range. The maximum external quantum efficiency (EQE) of the OPD was 15.41% at 570 nm, which dropped to ∼0% outside the operation wavelength range. This narrowband detectivity originated from the cutoff of light at wavelengths below 500 nm by the PI substrate and photoreactivity of P3HT:PC70BM at wavelengths between 300 and 650 nm. Outer bending tests performed over 1000 cycles revealed that the average maximum EQE remained at ∼15%. The maximum responsivity of the OPD was calculated to be 0.07 A W-1 at 570 nm. The OPD device showed a narrow response spectrum with a full width at half maximum of 100 nm. This research suggests a new approach for the fabrication of flexible OPDs with high selectivity in color detection.
Collapse
Affiliation(s)
- Kyu Young Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
6
|
Hassan SZ, Cheon HJ, Choi C, Yoon S, Kang M, Cho J, Jang YH, Kwon SK, Chung DS, Kim YH. Molecular Engineering of a Donor-Acceptor Polymer To Realize Single Band Absorption toward a Red-Selective Thin-Film Organic Photodiode. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28106-28114. [PMID: 31311263 DOI: 10.1021/acsami.9b08326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Herein, we explore the strategy of realizing a red-selective thin-film organic photodiode (OPD) by synthesizing a new copolymer with a highly selective red-absorption feature. PCZ-Th-DPP, with phenanthrocarbazole (PCZ) and diketopyrrolopyrrole (DPP) as donor and acceptor units, respectively, was strategically designed/synthesized based on a time-dependent density functional theory calculation, which predicted the significant suppression of the band II absorption of PCZ-Th-DPP due to the extremely efficient intramolecular charge transfer. We demonstrate that the synthesized PCZ-Th-DPP exhibits not only a high absorption coefficient within the red-selective band I region, as theoretically predicted, but also a preferential face-on intermolecular structure in the thin-film state, which is beneficial for vertical charge extraction as an outcome of a glancing incidence X-ray diffraction study. By employing PCZ-Th-DPP as a photoactive layer of Schottky OPD, to fully match its absorption characteristic to the spectral response of the red-selective OPD, we demonstrate a genuine red-selective specific detectivity in the order of 1012 Jones while maintaining a thin active layer thickness of ∼300 nm. This work demonstrates the possibility of realizing a full color image sensor with a synthetic approach to the constituting active layers without optical manipulation.
Collapse
Affiliation(s)
- Syed Zahid Hassan
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Hyung Jin Cheon
- Department of Chemistry and RIGET , Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Changwon Choi
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Seongwon Yoon
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Mingyun Kang
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Jangwhan Cho
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Yun Hee Jang
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Soon-Ki Kwon
- Department of Materials Engineering and Convergence Technology and ERI , Gyeongsang National University , Jinju 660-701 , Republic of Korea
| | - Dae Sung Chung
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Yun-Hi Kim
- Department of Chemistry and RIGET , Gyeongsang National University , Jinju 52828 , Republic of Korea
| |
Collapse
|
7
|
Neethipathi DK, Ryu HS, Jang MS, Yoon S, Sim KM, Woo HY, Chung DS. High-Performance Photomultiplication Photodiode with a 70 nm-Thick Active Layer Assisted by IDIC as an Efficient Molecular Sensitizer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21211-21217. [PMID: 31141329 DOI: 10.1021/acsami.9b01090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, a smart strategy for decreasing the active layer thickness of the organic photodiode down to 70 nm is demonstrated by utilizing a trap-assisted photomultiplication mechanism with the optimized chemical composition. Despite the presence of a high dark current, dramatically enhanced external quantum efficiency (EQE) via photomultiplication can allow significantly reduced active layer thickness, yielding high detectivity comparable to that of conventional Si. To achieve this, a spatially confined and electrically isolated optical sensitizer, 2,2'-((2 Z,2' Z)-((4,4,9,9-tetrahexyl-4,9-dihydro- s-indaceno[1,2- b:5,6- b']dithiophene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile (IDIC) was introduced strategically between a hole transport active layer and a cathode. A nonfullerene acceptor, IDIC, turned out to be a much more efficient sensitizer than the conventional fullerene-based acceptors, as confirmed by the effective lowering of the Schottky barrier under illumination, as well as the highest EQE exceeding 130 000%. Due to its favorable electronic structure as well as two-dimensional molecular structure, a high detectivity over 1012 Jones was successfully demonstrated while maintaining the active layer thickness as 70 nm.
Collapse
Affiliation(s)
- Deepan Kumar Neethipathi
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Hwa Sook Ryu
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Min Su Jang
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Seongwon Yoon
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Kyu Min Sim
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Han Young Woo
- Department of Chemistry , Korea University , Seoul 02841 , Republic of Korea
| | - Dae Sung Chung
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| |
Collapse
|
8
|
Kim J, Kang M, Cho J, Yu SH, Chung DS. Doping-Dedoping Interplay to Realize Patterned/Stacked All-Polymer Optoelectronic Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18580-18589. [PMID: 31058481 DOI: 10.1021/acsami.9b03153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the remaining keys to the success of polymer electronics is the ability to systematically pattern/stack polymer semiconductors with high precision. This paper reports the precise patterning and stacking of various polymer semiconductors with the assistance of a molecular oxidizing agent and reducing agent for donor and acceptor semiconductors, respectively. Such doping-induced solubility control methods have been previously well developed; however, practical applications to various optoelectronic devices have been limited. To pattern/stack various polymers in various dimensions, it is important to carefully design not only the doping method for desolubilizing polymer semiconductors but also the dedoping method for recovering the genuine characteristics of each polymer semiconductor. Based on a systematic approach for such a doping-dedoping interplay, various high-performance optoelectronic devices are demonstrated: (1) all-polymer complementary inverter pattern with a high gain of 176, (2) all-polymer planar heterojunction photodiode with green-selective nature and high specific detectivity over 1012 Jones, and (3) all-polymer ambipolar transistor pattern with balanced hole and electron mobilities. The results of the study indicate the potential of practical application of the doping-dedoping interplay to lateral/vertical patterning of different polymer semiconductors with high precision.
Collapse
Affiliation(s)
- Juhee Kim
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Mingyun Kang
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Jangwhan Cho
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Seong Hoon Yu
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Dae Sung Chung
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| |
Collapse
|
9
|
Yoon S, Sim KM, Chung DS. Bifunctional Etalon-Electrode To Realize High-Performance Color Filter Free Image Sensor. ACS NANO 2019; 13:2127-2135. [PMID: 30706707 DOI: 10.1021/acsnano.8b08717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Organic photodiodes (OPDs), based on organic semiconductors with high absorption coefficients for visible light, are emerging as potential candidates for replacing silicon photodiodes in image sensors, particularly due to the possibility of realizing a thin thickness and exclusion of color filters, both of which can contribute to a dramatically enhanced degree of integration for image sensors. Despite years of research, techniques have not yet been developed that allow the OPD itself to have color selectivity while maintaining a thin (<1 μm) OPD thickness, in combination with a sufficiently high detectivity (>1012 cm·Hz0.5/W). To solve this issue, we introduce a concept of "etalon-electrode", which can perform the function of electrode and simultaneously the function of selective wavelength transparency. A strategically designed OPD architecture consisting of an etalon-electrode, a panchromatic organic active layer, and a counter electrode displays well-defined narrowband R-/G-/B-selective detectivity spectra depending on precision-adjusted thickness composition of the etalon-electrode. While a thin thickness of OPD is preserved at less than 800 nm including electrodes, active layer, and other buffer layers for all R-/G-/B-selective OPDs, high average detectivity values over 1012 cm·Hz0.5/W are demonstrated. Furthermore, the characteristic of imparting color selectivity by the etalon-electrode enables a more facile full color patterning, such that a prototype of a 10 × 10 image sensor with a pixel pitch of 500 μm is realized, resulting in accurate picturing of a well-defined full color image.
Collapse
Affiliation(s)
- Seongwon Yoon
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Kyu Min Sim
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| | - Dae Sung Chung
- Department of Energy Science & Engineering , Daegu Gyeongbuk Institute of Science & Technology (DGIST) , Daegu 42988 , Republic of Korea
| |
Collapse
|
10
|
Kim SK, Park S, Son HJ, Chung DS. Synthetic Approach To Achieve a Thin-Film Red-Selective Polymer Photodiode: Difluorobenzothiadiazole-Based Donor–Acceptor Polymer with Enhanced Space Charge Carriers. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Soo-Kwan Kim
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| | - Sungmin Park
- Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hae Jung Son
- Photo-electronic Hybrids Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Dae Sung Chung
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|