1
|
Li J, Wang C, Ma Y, Li K, Mei Y. In situ formation of red/black phosphorus-modified SiO 2@g-C 3N 4 multi-heterojunction for the enhanced photocatalytic degradation of organic contaminants. RSC Adv 2023; 13:13142-13155. [PMID: 37124021 PMCID: PMC10140671 DOI: 10.1039/d3ra01850d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 05/02/2023] Open
Abstract
A new heterojunction material BP/RP-g-C3N4/SiO2 was obtained by a one-step ball milling method, and its photocatalytic capacity was researched by the degradation of Rhodamine B (RhB) and ofloxacin (OFL) in simulated sunlight. The construction of an in situ BP/RP heterojunction can achieve perfect interface contact between different semiconductors and effectively promote the separation of photogenerated carriers. The composite material was well characterized, which proved that the multi-heterogeneous structure was prepared. Furthermore, the type II heterojunction was formed between the g-C3N4 and BP/RP interface, playing an important role in the degradation and promoting electron transfer. The degradation effect of BP/RP-g-C3N4/SiO2 on RhB reached 90% after 26 min of simulated solar irradiation, which was 1.8 times that of g-C3N4/SiO2. The degradation of OFL by BP/RP-g-C3N4/SiO2 reached 85.3% after illumination for 50 min, while the degradation of g-C3N4/SiO2 was only 35.4%. The mechanisms were further discussed, and ˙O2 - and h+ were found to be the main active substances to degrade RhB. The catalyst also revealed distinguished stability of catalyst and recyclability, and the degradation effect of RhB can still realize 85% after 4 runs of experiment. Thus, this study provided a novel method for the design and preparation of multi-heterojunction catalysts in the removal of organic pollutants from wastewater.
Collapse
Affiliation(s)
- Jiancheng Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology Kunming City 650500 China +86-159 2512 8686
- Yunnan Provience Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming City 650500 China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Provience Kunming City 650500 China
| | - Chi Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology Kunming City 650500 China +86-159 2512 8686
- Yunnan Provience Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming City 650500 China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Provience Kunming City 650500 China
| | - Yixing Ma
- Faculty of Environmental Science Engineering, Kunming University of Science and Technology Kunming City 650500 China +86-187 8810 3059
| | - Kai Li
- Faculty of Environmental Science Engineering, Kunming University of Science and Technology Kunming City 650500 China +86-187 8810 3059
| | - Yi Mei
- Faculty of Chemical Engineering, Kunming University of Science and Technology Kunming City 650500 China +86-159 2512 8686
- Yunnan Provience Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming City 650500 China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Provience Kunming City 650500 China
| |
Collapse
|
2
|
Ma J, Oh K, Tagliabue G. Understanding Wavelength-Dependent Synergies between Morphology and Photonic Design in TiO 2-Based Solar Powered Redox Cells. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:11-21. [PMID: 36660095 PMCID: PMC9841569 DOI: 10.1021/acs.jpcc.2c05893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Solar powered redox cells (SPRCs) are promising for large-scale and long-term storage of solar-energy, particularly when coupled with redox flow batteries (RFBs). While efforts have primarily focused on heterostructure engineering, the potential of synergistic morphology and photonic design has not been carefully studied. Here, we investigate the wavelength-dependent effects of light-absorption and charge transfer characteristics on the performance of gold decorated TiO2-based SPRC photoanodes operating with RFB-compatible redox couples. Through an in-depth optical and photoelectrochemical characterization of three complementary TiO2 microstructures, namely nanotubes, honeycombs, and nanoparticles, we elucidate the combined effects of nanometer-scale semiconductor morphology and plasmonic design across the visible spectrum. In particular, thin-walled TiO2 nanotubes exhibit a ∼ 50% increase in solar-to-chemical efficiency (STC) compared to thick-walled TiO2 honeycombs thanks to improved charge transfer. Au nanoparticles both increase generation and interfacial charge transfer (above bandgap) and promote hot carrier injection (below bandgap) leading to a further 25% increase in STC. Overall, Au/TiO2 nanotubes achieve a high photocurrent at 0.098 mA/cm2 and an excellent STC of 0.06%, among the highest with respect to the theoretical limit. The incident photon to current efficiency and internal quantum efficiency are also superior to those of bare TiO2 showing maximum values of 54.7% and 67%, respectively. Overall, nanophotonic engineering that synergistically combines morphology optimization and plasmonic sensitization schemes offer new avenues for improving rechargeable solar-energy technologies such as solar redox flow batteries.
Collapse
|
3
|
Transition metal co-doped TiO2 nanotubes decorated with Pt nanoparticles on optical fibers as an efficient photocatalyst for the decomposition of hazardous gaseous pollutants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Iqbal A, Hamdan NM. Investigation and Optimization of Mxene Functionalized Mesoporous Titania Films as Efficient Photoelectrodes. MATERIALS (BASEL, SWITZERLAND) 2021; 14:6292. [PMID: 34771820 PMCID: PMC8585131 DOI: 10.3390/ma14216292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
Three-dimensional mesoporous TiO2 scaffolds of anatase phase possess inherent eximious optical behavior that is beneficial for photoelectrodes used for solar energy conversion applications. In this regard; substantial efforts have been devoted to maximizing the UV and/or visible light absorption efficiency; and suppressing the annihilation of photogenerated charged species; in pristine mesoporous TiO2 structures for improved solar illumination conversion efficiency. This study provides fundamental insights into the use of Mxene functionalized mesoporous TiO2 as a photoelectrode. This novel combination of Mxene functionalized TiO2 electrodes with and without TiCl4 treatment was successfully optimized to intensify the process of photon absorption; charge segregation and photocurrent; resulting in superior photoelectrode performance. The photocurrent measurements of the prepared photoelectrodes were significantly enhanced with increased contents of Mxene due to improved absorption efficiency within the visible region; as verified by UV-Vis absorption spectroscopy. The anatase phase of TiO2 was significantly augmented due to increased contents of Mxene and postdeposition heat treatments; as evidenced by structural analysis. Consequently; an appreciable coverage of well-developed grains on the FTO surface was observed in SEM images. As such; these newly fabricated conductive mesoporous TiO2 photoelectrodes are potential candidates for photoinduced energy conversion and storage applications.
Collapse
Affiliation(s)
- Anum Iqbal
- Material Science and Engineering Program, The American University of Sharjah, Sharjah 26666, United Arab Emirates;
| | - Nasser M. Hamdan
- Physics Department, The American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
5
|
Zhao Y, Li C, Song F, Li Y, Liu Y, Zhao Y, Zhang X, Zhao Y, Kang Z. All-in-One, Solid-State, Solar-Powered Electrochemical Cell. ACS APPLIED MATERIALS & INTERFACES 2020; 12:57182-57189. [PMID: 33301294 DOI: 10.1021/acsami.0c19167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar-powered electrochemical cells (SPECs) have been perceived as a potential strategy for coping with the intermittent nature of solar power. Most of the SPECs reported so far use corrosive/toxic liquid electrolyte and/or need very careful packaging, which is restricted by the scenario of implementation and arises the fabrication cost. Here, we demonstrate an all-in-one, solid-state SPEC with solar-to-output energy conversion efficiency of ca. 2.8% under AM 1.5 G irradiation. In this SPEC, a LiBr/polyacrylamide (PAM) hydrogel serves both as electrolyte, cathode-active mediator, and separator, which is sandwiched between an FTO/BiVO4 photoanode and an FTO/Prussian blue (PB) anode. The use of solid-state PAM hydrogel promotes the charge-transfer dynamics at the interface of the photoanode and suppressed the undesired side reactions of electrolyte decomposition, representing an effective strategy by interfacial engineering toward the development of high-performance SPECs.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
| | - Chenyang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
| | - Fanxin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
| | - Yi Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
| | - Yan Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
| | - Yajie Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
| | - Yu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
| | - Zhenhui Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, PR China
| |
Collapse
|
6
|
Yoo JH, Ji M, Kim JH, Ryu CH, Lee YI. Facile synthesis of hierarchical CuS microspheres with high visible-light-driven photocatalytic activity. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Prabhu K, Chandiran AK. Solar energy storage in a Cs 2AgBiBr 6 halide double perovskite photoelectrochemical cell. Chem Commun (Camb) 2020; 56:7329-7332. [PMID: 32478787 DOI: 10.1039/d0cc02743j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Storing solar energy using a stable visible light absorbing Cs2AgBiBr6 double perovskite is achieved using a photoelectrochemical (PEC) device with cobalt complexes and methyl viologen redox mediators. Under illumination, a potential gain of nearly 500 mV is achieved for charging. The charge-discharge cycling was carried out, and using in situ emission and FTIR studies, the self-discharge and solvent crossover were investigated.
Collapse
Affiliation(s)
- Kiran Prabhu
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, Chennai 600036, Tamil Nadu, India.
| | | |
Collapse
|
8
|
Liu E, Du Y, Bai X, Fan J, Hu X. Synergistic improvement of Cr(VI) reduction and RhB degradation using RP/g-C3N4 photocatalyst under visible light irradiation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
9
|
Woo An G, Dhandole LK, Park H, Sub Bae H, Mahadik MA, Suk Jang J. Enhanced Charge Transfer Process in Morphology Restructured TiO
2
Nanotubes via Hydrochloric Acid Assisted One Step
In‐Situ
Hydrothermal Approach. ChemCatChem 2019. [DOI: 10.1002/cctc.201901177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Gil Woo An
- Division of Biotechnology, Advanced Institute of Environmental and Bioscience College of Environmental and Bioresource SciencesChonbuk National University Iksan 570-752 Republic of Korea
| | - Love Kumar Dhandole
- Division of Biotechnology, Advanced Institute of Environmental and Bioscience College of Environmental and Bioresource SciencesChonbuk National University Iksan 570-752 Republic of Korea
| | - Hyunwoong Park
- School of Energy EngineeringKyungpook University Daegu 41566 Republic of Korea
| | - Ho Sub Bae
- Division of Biotechnology, Advanced Institute of Environmental and Bioscience College of Environmental and Bioresource SciencesChonbuk National University Iksan 570-752 Republic of Korea
| | - Mahadeo A. Mahadik
- Division of Biotechnology, Advanced Institute of Environmental and Bioscience College of Environmental and Bioresource SciencesChonbuk National University Iksan 570-752 Republic of Korea
| | - Jum Suk Jang
- Division of Biotechnology, Advanced Institute of Environmental and Bioscience College of Environmental and Bioresource SciencesChonbuk National University Iksan 570-752 Republic of Korea
| |
Collapse
|