1
|
Sun Y, Sun W, Li J, Zhang T, Zhao W, Xiang G, Yang T, He L. Highly graphitized porous carbon/reduced graphene oxide for ultrahigh enrichment and ultrasensitive determination of polycyclic aromatic hydrocarbons. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132699. [PMID: 37827103 DOI: 10.1016/j.jhazmat.2023.132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/22/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
There is an urgent need to develop efficient and reliable coating materials for solid phase microextraction (SPME), in order to quantify and monitor pollutants in environmental waters. Herein, a highly graphitized porous carbon/reduced graphene oxide (PC/rGO) was successfully synthesized by pyrolysis of metal organic framework/graphene oxide precursors, and used as a SPME coating for ultrahigh enrichment of polycyclic aromatic hydrocarbons (PAHs) from water. The as-prepared PC/rGO exhibited high degree of graphitization, abundant number of micro/mesopores along with exceptional thermal stability, making it an ideal SPME coating material. The PC/rGO fiber offered an ultrahigh enrichment factor for PAHs (up to 126057), which could be attributed to the multiple interactions between the PC/rGO and PAHs, including hydrophobic and π-π interactions, partitioning, and mesopore filling effect. In the analysis of PAHs, the PC/rGO fiber showed a wide linearity (0.007-100 ng mL-1), low limits of detection (0.0005-0.005 ng mL-1), and good repeatability (RSDs <10.1%, n = 5) under optimized conditions. The established method was applicable for ultrasensitive determination of PAHs in different environmental waters and showed satisfactory recoveries. This study provides a novel way for constructing thermally stable SPME coating having efficient extraction performance.
Collapse
Affiliation(s)
- Yaming Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou 450001, PR China; School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China
| | - Wenjie Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Junnan Li
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Wenjie Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China
| | - Guoqiang Xiang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China
| | - Tiantian Yang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Lijun He
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Li Z, Qu X, Feng Y, Dong L, Yang Y, Lei T, Ren S. Enzymolytic Lignin-Derived N-S Codoped Porous Carbon Nanocomposites as Electrocatalysts for Oxygen Reduction Reactions. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7614. [PMID: 38138756 PMCID: PMC10745107 DOI: 10.3390/ma16247614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023]
Abstract
Currently, the development of nonmetallic oxygen reduction reaction (ORR) catalysts based on heteroatomic-doped carbon materials is receiving increaseing attention in the field of fuel cells. Here, we used enzymolytic lignin (EL), melamine, and thiourea as carbon, nitrogen, and sulfur sources and NH4Cl as an activator to prepare N- and S-codoped lignin-based polyporous carbon (ELC) by one-step pyrolysis. The prepared lignin-derived biocarbon material (ELC-1-900) possessed a high specific surface area (844 m2 g-1), abundant mesoporous structure, and a large pore volume (0.587 cm3 g-1). The XPS results showed that ELC-1-900 was successfully doped with N and S. ELC-1-900 exhibited extremely high activity and stability in alkaline media for the ORR, with a half-wave potential (E1/2 = 0.88 V) and starting potential (Eonset = 0.98 V) superior to those of Pt/C catalysts and most non-noble-metal catalysts reported in recent studies. In addition, ELC-1-900 showed better ORR stability and methanol tolerance in alkaline media than commercial Pt/C catalysts.
Collapse
Affiliation(s)
- Zheng Li
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China; (Z.L.); (X.Q.); (Y.F.); (L.D.); (Y.Y.)
| | - Xia Qu
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China; (Z.L.); (X.Q.); (Y.F.); (L.D.); (Y.Y.)
| | - Yuwei Feng
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China; (Z.L.); (X.Q.); (Y.F.); (L.D.); (Y.Y.)
| | - Lili Dong
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China; (Z.L.); (X.Q.); (Y.F.); (L.D.); (Y.Y.)
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| | - Yantao Yang
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China; (Z.L.); (X.Q.); (Y.F.); (L.D.); (Y.Y.)
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| | - Tingzhou Lei
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China; (Z.L.); (X.Q.); (Y.F.); (L.D.); (Y.Y.)
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| | - Suxia Ren
- Institute of Urban & Rural Mining, Changzhou University, Changzhou 213164, China; (Z.L.); (X.Q.); (Y.F.); (L.D.); (Y.Y.)
- Changzhou Key Laboratory of Biomass Green, Safe & High Value Utilization Technology, Changzhou 213164, China
| |
Collapse
|
3
|
Wu DH, Huang H, Ul Haq M, Zhang L, Feng JJ, Wang AJ. Lignin-derived iron carbide/Mn, N, S-codoped carbon nanotubes as a high-efficiency catalyst for synergistically enhanced oxygen reduction reaction and rechargeable zinc-air battery. J Colloid Interface Sci 2023; 647:1-11. [PMID: 37236099 DOI: 10.1016/j.jcis.2023.05.111] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Design of efficient and durable oxygen reduction reaction (ORR) electrocatalysts still remains challenge in sustainable energy storage and conversion devices. To achieve sustainable development, it is of importance to prepare high-quality carbon-derived ORR catalysts from biomass. Herein, Fe5C2 nanoparticles (NPs) were facilely entrapped in Mn, N, S-codoped carbon nanotubes (Fe5C2/Mn, N, S-CNTs) by a one-step pyrolysis of the mixed lignin, metal precursors and dicyandiamide. The resulting Fe5C2/Mn, N, S-CNTs had open and tubular structures, which exhibited positive shifts in the onset potential (Eonset = 1.04 V) and high half-wave potential (E1/2 = 0.85 V), showing excellent ORR characteristics. Further, the typical catalyst-assembled Zn-air battery showed a high power density (153.19 mW cm-2) and good cycling performance as well as obvious cost advantage. The research provides some valuable insights for rational construction of low-cost and environmentally sustainable ORR catalysts in clean energy field, coupled by offering some valuable insights for reusing biomass wastes.
Collapse
Affiliation(s)
- Dong-Hui Wu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Mahmood Ul Haq
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
4
|
Thambiliyagodage C, Usgodaarachchi L, Jayanetti M, Liyanaarachchi C, Kandanapitiye M, Vigneswaran S. Efficient Visible-Light Photocatalysis and Antibacterial Activity of TiO 2-Fe 3C-Fe-Fe 3O 4/Graphitic Carbon Composites Fabricated by Catalytic Graphitization of Sucrose Using Natural Ilmenite. ACS OMEGA 2022; 7:25403-25421. [PMID: 35910103 PMCID: PMC9330088 DOI: 10.1021/acsomega.2c02336] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/06/2022] [Indexed: 05/27/2023]
Abstract
Dyes in wastewater are a serious problem that needs to be resolved. Adsorption coupled photocatalysis is an innovative technique used to remove dyes from contaminated water. Novel composites of TiO2-Fe3C-Fe-Fe3O4 dispersed on graphitic carbon were fabricated using natural ilmenite sand as the source of iron and titanium, and sucrose as the carbon source, which were available at no cost. Synthesized composites were characterized by X-ray diffractometry (XRD), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray fluorescence spectroscopy (XRF), and diffuse reflectance UV-visible spectroscopy (DRS). Arrangement of nanoribbons of graphitic carbon with respect to the nanomaterials was observed in TEM images, revealing the occurrence of catalytic graphitization. Variations in the intensity ratio (I D/I G), L a and L D, calculated from data obtained from Raman spectroscopy suggested that the level of graphitization increased with an increased loading of the catalysts. SEM images show the immobilization of nanoplate microballs and nanoparticles on the graphitic carbon matrix. The catalyst surface consists of Fe3+ and Ti4+ as the metal species, with V, Mn, and Zr being the main impurities. According to DRS spectra, the synthesized composites absorb light in the visible region efficiently. Fabricated composites effectively adsorb methylene blue via π-π interactions, with the absorption capacities ranging from 21.18 to 45.87 mg/g. They were effective in photodegrading methylene blue under sunlight, where the rate constants varied in the 0.003-0.007 min-1 range. Photogenerated electrons produced by photocatalysts captured by graphitic carbon produce O2 •- radicals, while holes generate OH• radicals, which effectively degrade methylene blue molecules. TiO2-Fe3C-Fe-Fe3O4/graphitic carbon composites inhibited the growth of Escherichia coli (69%) and Staphylococcus aureus (92%) under visible light. Synthesized novel composites using natural materials comprise an ecofriendly, cost-effective solution to remove dyes, and they were effective in inhibiting the growth of Gram-negative and Gram-positive bacteria.
Collapse
Affiliation(s)
- Charitha Thambiliyagodage
- Faculty
of Humanities and Sciences, Sri Lanka Institute
of Information Technology, Malabe 10115, Sri Lanka
| | - Leshan Usgodaarachchi
- Department
of Materials Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe 10115, Sri Lanka
| | - Madara Jayanetti
- Faculty
of Humanities and Sciences, Sri Lanka Institute
of Information Technology, Malabe 10115, Sri Lanka
| | - Chamika Liyanaarachchi
- Faculty
of Humanities and Sciences, Sri Lanka Institute
of Information Technology, Malabe 10115, Sri Lanka
| | - Murthi Kandanapitiye
- Department
of Nano Science Technology, Wayamba University
of Sri Lanka, Kuliyapitiya 60200, Sri Lanka
| | - Saravanamuthu Vigneswaran
- Faculty
of Engineering, University of Technology
Sydney (UTS), P.O. Box 123, Broadway, NSW 2127, Australia
- Faculty
of Sciences & Technology (RealTek), Norwegian University of Life Sciences, P.O. Box N-1432, Ås 1430, Norway
| |
Collapse
|
5
|
Guo A, Zhang X, Shao B, Sang S, Yang X. Catalytic graphitization assisted synthesis of Fe 3C/Fe/graphitic carbon with advanced pseudocapacitance. RSC Adv 2022; 12:7935-7940. [PMID: 35424725 PMCID: PMC8982454 DOI: 10.1039/d1ra08834c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/16/2022] [Indexed: 11/21/2022] Open
Abstract
We report an environmentally friendly strategy for the synthesis of Fe3C/Fe/graphitic carbon based on hydrothermal carbonization and graphitization of carbon spheres with potassium ferrate (K2FeO4) at 800 °C. The obtained sample consisting of Fe3C/Fe nanoparticles and graphitic carbon (FC-1-8) delivered an enhanced pseudocapacitance of 428.0 F g-1 at a current density of 1 A g-1. After removal of the Fe3C/Fe electroactive materials, the graphitic carbon (FC-1-8-HCl) possessed a large specific surface area (SSA) up to 2813.6 m2 g-1 with a capacity of 243.3 F g-1 at 1 A g-1, far outweighing the other amorphous carbon electrodes of FC-0-8 (carbon spheres annealed at 800 °C without the treatment of K2FeO4). The graphitic material with a porous structure could offer more electroactive sites and improved conductivity of the sample. This method provided guidelines for the synthesis of superior performance supercapacitors with synchronous graphitic carbon and electroactive species.
Collapse
Affiliation(s)
- Aoping Guo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University No. 19, Xinjiekouwai Street, Haidian District Beijing 100875 China
| | - Xiaobao Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University No. 19, Xinjiekouwai Street, Haidian District Beijing 100875 China
| | - Baiyi Shao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University No. 19, Xinjiekouwai Street, Haidian District Beijing 100875 China
| | - Song Sang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University No. 19, Xinjiekouwai Street, Haidian District Beijing 100875 China
| | - Xiaojing Yang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University No. 19, Xinjiekouwai Street, Haidian District Beijing 100875 China
| |
Collapse
|
6
|
Application of Metal-Organic Framework-Based Composites for Gas Sensing and Effects of Synthesis Strategies on Gas-Sensitive Performance. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gas sensing materials, such as semiconducting metal oxides (SMOx), carbon-based materials, and polymers have been studied in recent years. Among of them, SMOx-based gas sensors have higher operating temperatures; sensors crafted from carbon-based materials have poor selectivity for gases and longer response times; and polymer gas sensors have poor stability and selectivity, so it is necessary to develop high-performance gas sensors. As a porous material constructed from inorganic nodes and multidentate organic bridging linkers, the metal-organic framework (MOF) shows viable applications in gas sensors due to its inherent large specific surface area and high porosity. Thus, compounding sensor materials with MOFs can create a synergistic effect. Many studies have been conducted on composite MOFs with three materials to control the synergistic effects to improve gas sensing performance. Therefore, this review summarizes the application of MOFs in sensor materials and emphasizes the synthesis progress of MOF composites. The challenges and development prospects of MOF-based composites are also discussed.
Collapse
|
7
|
Zhou X, Guo L, Wang Q, Wang J, Wang X, Yang J, Tang J. Nitrogen-doped porous graphitized carbon from antibiotic bacteria residues induced by sodium carbonate and application in Li-ion battery. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Green synthesis of graphite from CO 2 without graphitization process of amorphous carbon. Nat Commun 2021; 12:119. [PMID: 33402678 PMCID: PMC7785740 DOI: 10.1038/s41467-020-20380-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/24/2020] [Indexed: 11/08/2022] Open
Abstract
Environmentally benign synthesis of graphite at low temperatures is a great challenge in the absence of transition metal catalysts. Herein, we report a green and efficient approach of synthesizing graphite from carbon dioxide at ultralow temperatures in the absence of transition metal catalysts. Carbon dioxide is converted into graphite submicroflakes in the seconds timescale via reacting with lithium aluminum hydride as the mixture of carbon dioxide and lithium aluminum hydride is heated to as low as 126 °C. Gas pressure-dependent kinetic barriers for synthesizing graphite is demonstrated to be the major reason for our synthesis of graphite without the graphitization process of amorphous carbon. When serving as lithium storage materials, graphite submicroflakes exhibit excellent rate capability and cycling performance with a reversible capacity of ~320 mAh g–1 after 1500 cycles at 1.0 A g–1. This study provides an avenue to synthesize graphite from greenhouse gases at low temperatures. Green synthesis of graphite is a great challenge in the absence of the graphitization of amorphous carbon at high temperatures. Here, the authors report a green approach of synthesizing graphite from carbon dioxide at low temperature in seconds timescale.
Collapse
|
9
|
Lyu T, Wang R, Liang L, Chen J, Hasan SW, Lyu D, Tian ZQ, Shen PK. Hierarchical porous oviform carbon capsules with double-layer shells derived from mushroom spores for efficient sodium ion storage. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
El-Khodary SA, Abomohra AEF, El-Enany GM, Aboalhassan AA, Ng DHL, Wang S, Lian J. Sonochemical assisted fabrication of 3D hierarchical porous carbon for high-performance symmetric supercapacitor. ULTRASONICS SONOCHEMISTRY 2019; 58:104617. [PMID: 31450309 DOI: 10.1016/j.ultsonch.2019.104617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
A scalable fabrication of 3D hierarchical porous carbon structure (3D-HPC) has been achieved via a simple sonochemical route at different pyrolysis temperatures. It is worth noting that all the 3D-HPC samples possess oxygen-functional groups after activation by KOH and self-doped by nitrogen, which are beneficial to improving their surface wettability as well as increasing the electro-active surface area between the electrode and the surrounding electrolyte, consequently enhancing their electrochemical performance. Remarkably, the resulting carbon sample pyrolyzed at 850 °C (AC-850) possesses a maximum doping level of 2.75 at% and a high surface area of 1376.19 m2 g-1, which exhibits high electrochemical performance with high capacitance up to 269.19 F g-1 at a current density of 2 A g-1. Moreover remarkably, the AC-850-based symmetric supercapacitor delivers a high energy density of 21.4 Wh kg-1 at a power density of 531.2 W kg-1 with excellent rate performance and superior cycling stability (94.7% retention over 5000 cycles). The present approach is very suitable for large scale production of high-quality porous carbon materials at low cost, which can be used in different aspects, such as energy storage, gas storage, environmental remediation, and so on.
Collapse
Affiliation(s)
- Sherif A El-Khodary
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; Building Physics and Environment Institute, Housing & Building National Research Center (HBRC), 12311 Dokki, Giza, Egypt
| | - Abd El-Fatah Abomohra
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Gaber M El-Enany
- Scientific Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Ahmed A Aboalhassan
- Chemistry Department, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Dickon H L Ng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Shuang Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jiabiao Lian
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; Key Laboratory of Zhenjiang, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|