1
|
Almohammed S, Kanoun MB, Goumri‐Said S, Alam MW, Fularz A, Alnaim A, Rice JH, Rodriguez BJ. Thermally‐controlled spherical peptide gel architectures prepared using the
pH
switch method. Pept Sci (Hoboken) 2023. [DOI: 10.1002/pep2.24304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Sawsan Almohammed
- School of Physics University College Dublin Dublin Ireland
- Conway Institute of Biomolecular and Biomedical Research University College Dublin Dublin Ireland
| | | | - Souraya Goumri‐Said
- Physics Department, College of Science and General Studies Alfaisal University Riyadh Saudi Arabia
| | - Mir Waqas Alam
- Department of Physics, College of Science King Faisal University Al‐Ahsa Saudi Arabia
| | - Agata Fularz
- School of Physics University College Dublin Dublin Ireland
| | - Abdullah Alnaim
- Department of Physics, College of Science King Faisal University Al‐Ahsa Saudi Arabia
| | - James H. Rice
- School of Physics University College Dublin Dublin Ireland
| | - Brian J. Rodriguez
- School of Physics University College Dublin Dublin Ireland
- Conway Institute of Biomolecular and Biomedical Research University College Dublin Dublin Ireland
| |
Collapse
|
2
|
Ali R, Hameed R, Chauhan D, Sen S, Wahajuddin M, Nazir A, Verma S. Multiple Actions of H 2S-Releasing Peptides in Human β-Amyloid Expressing C. elegans. ACS Chem Neurosci 2022; 13:3378-3388. [PMID: 36351248 DOI: 10.1021/acschemneuro.2c00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is a debilitating progressive neurodegenerative disorder characterized by the loss of cognitive function. A major challenge in treating this ailment fully is its multifactorial nature, as it is associated with effects like deposition of Aβ plaques, oxidative distress, inflammation of neuronal cells, and low levels of the neurotransmitter acetylcholine (ACh). In the present work, we demonstrate the design, synthesis, and biological activity of peptide conjugates by coupling a H2S-releasing moiety to the peptides known for their Aβ antiaggregating properties. These conjugates release H2S in a slow and sustained manner, due to the formation of self-assembled structures and delivered a significant amount of H2S within Caenorhabditis elegans. These conjugates are shown to target multiple factors responsible for the progression of AD: notably, we observed reduction in oxidative distress, inhibition of Aβ aggregation, and significantly increased ACh levels in the C. elegans model expressing human Aβ.
Collapse
Affiliation(s)
- Rafat Ali
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Rohil Hameed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Divya Chauhan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shantanu Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Muhammad Wahajuddin
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Division of Pharmaceutics & Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Aamir Nazir
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep Verma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.,Centre for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.,Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
3
|
Zhang J, Wang Y, Rodriguez BJ, Yang R, Yu B, Mei D, Li J, Tao K, Gazit E. Microfabrication of peptide self-assemblies: inspired by nature towards applications. Chem Soc Rev 2022; 51:6936-6947. [PMID: 35861374 DOI: 10.1039/d2cs00122e] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide self-assemblies show intriguing and tunable physicochemical properties, and thus have been attracting increasing interest over the last two decades. However, the micro/nano-scale dimensions of the self-assemblies severely restrict their extensive applications. Inspired by nature, to genuinely realize the practical utilization of the bio-organic super-architectures, it is beneficial to further organize the peptide self-assemblies to integrate the properties of the individual supermolecules and fabricate higher-level organizations for smart functional devices. Therefore, cumulative studies have been reported on peptide microfabrication giving rise to diverse properties. This review summarizes the recent development of the microfabrication of peptide self-assemblies, discussing each methodology along with the diverse properties and practical applications of the engineered peptide large-scale, highly-ordered organizations. Finally, the current limitations of the state-of-the-art microfabrication strategies are critically assessed and alternative solutions are suggested.
Collapse
Affiliation(s)
- Jiahao Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Brian J Rodriguez
- School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 V1W8, Ireland
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, China
| | - Bin Yu
- Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Tao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China. .,Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China.,Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel. .,School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, 6997801, Tel Aviv, Israel
| |
Collapse
|
4
|
Wiernik G, Mishra NK, Mondal S, Ali R, Gazit E, Verma S. A colored hydrophobic peptide film based on self-assembled two-fold topology. J Colloid Interface Sci 2021; 594:326-333. [PMID: 33770567 DOI: 10.1016/j.jcis.2021.02.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/17/2022]
Abstract
Structural colors are abundant in nature and bear advantages over pigment-based colors, such as higher durability, brilliance and often physical hydrophobicity, thus underlying their vast potential for technological applications. Recently, biomimetics of complex natural topologies resulting in such effects has been extensively studied, requiring advanced processing and fabrication techniques. Yet, artificial topologies combining structural coloration and hydrophobicity have not been reported. Herein, we present the bottom-up fabrication of short self-assembling peptides as surface covering films, resulting in an easily achievable multilevel morphology of primary structures in a foam-like enclosure, producing structural colors and hydrophobicity. We demonstrate simple techniques allowing controlled coloration of different surfaces while maintaining an >100° water contact angle (WCA). The new artificial topology is much simpler than the natural counterparts and is not limited to a specific peptide, thus allowing the design of modular materials with unparalleled multifunctionalities and potential for further tuning and modifications.
Collapse
Affiliation(s)
- Guy Wiernik
- Department of Molecular Biology and Biotechnology, George S. Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Narendra Kumar Mishra
- Department of Chemistry and Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India; Department of Chemistry, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Sudipta Mondal
- Department of Molecular Biology and Biotechnology, George S. Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, WB, India.
| | - Rafat Ali
- Department of Chemistry and Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| | - Ehud Gazit
- Department of Molecular Biology and Biotechnology, George S. Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Sandeep Verma
- Department of Chemistry and Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India.
| |
Collapse
|
5
|
Basavalingappa V, Bera S, Xue B, O’Donnell J, Guerin S, Cazade PA, Yuan H, Haq EU, Silien C, Tao K, Shimon LJW, Tofail SAM, Thompson D, Kolusheva S, Yang R, Cao Y, Gazit E. Diphenylalanine-Derivative Peptide Assemblies with Increased Aromaticity Exhibit Metal-like Rigidity and High Piezoelectricity. ACS NANO 2020; 14:7025-7037. [PMID: 32441511 PMCID: PMC7315635 DOI: 10.1021/acsnano.0c01654] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/21/2020] [Indexed: 05/27/2023]
Abstract
Diphenylalanine (FF) represents the simplest peptide building block that self-assembles into ordered nanostructures with interesting physical properties. Among self-assembled peptide structures, FF nanotubes display notable stiffness and piezoelectric parameters (Young's modulus = 19-27 GPa, strain coefficient d33 = 18 pC/N). Yet, inorganic alternatives remain the major materials of choice for many applications due to higher stiffness and piezoelectricity. Here, aiming to broaden the applications of the FF motif in materials chemistry, we designed three phenyl-rich dipeptides based on the β,β-diphenyl-Ala-OH (Dip) unit: Dip-Dip, cyclo-Dip-Dip, and tert-butyloxycarbonyl (Boc)-Dip-Dip. The doubled number of aromatic groups per unit, compared to FF, produced a dense aromatic zipper network with a dramatically improved Young's modulus of ∼70 GPa, which is comparable to aluminum. The piezoelectric strain coefficient d33 of ∼73 pC/N of such assembly exceeds that of poled polyvinylidene-fluoride (PVDF) polymers and compares well to that of lead zirconium titanate (PZT) thin films and ribbons. The rationally designed π-π assemblies show a voltage coefficient of 2-3 Vm/N, an order of magnitude higher than PVDF, improved thermal stability up to 360 °C (∼60 °C higher than FF), and useful photoluminescence with wide-range excitation-dependent emission in the visible region. Our data demonstrate that aromatic groups improve the rigidity and piezoelectricity of organic self-assembled materials for numerous applications.
Collapse
Affiliation(s)
- Vasantha Basavalingappa
- Department of Molecular
Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Santu Bera
- Department of Molecular
Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bin Xue
- Collaborative Innovation Centre of Advanced Microstructures,
National Laboratory of Solid State Microstructure, Key Laboratory
of Intelligent Optical Sensing and Manipulation, Ministry of Education,
Department of Physics, Nanjing University, Nanjing 210093, PR China
| | - Joseph O’Donnell
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sarah Guerin
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Pierre-Andre Cazade
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Hui Yuan
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, PR China
| | - Ehtsham ul Haq
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Christophe Silien
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Kai Tao
- Department of Molecular
Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- State Key Lab of Fluid Power Transmission and Control,
Department of Mechanical Engineering, Zhejiang
University, Hangzhou, Zhejiang 310027, PR China
| | - Linda J. W. Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Syed A. M. Tofail
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Damien Thompson
- Department of Physics and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Sofiya Kolusheva
- Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi’an 710126, PR China
| | - Yi Cao
- Collaborative Innovation Centre of Advanced Microstructures,
National Laboratory of Solid State Microstructure, Key Laboratory
of Intelligent Optical Sensing and Manipulation, Ministry of Education,
Department of Physics, Nanjing University, Nanjing 210093, PR China
| | - Ehud Gazit
- Department of Molecular
Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Singh P, Wangoo N, Sharma RK. Phenylalanine dimer assembly structure as the basic building block of an amyloid like photoluminescent nanofibril network. SOFT MATTER 2020; 16:4105-4109. [PMID: 32319977 DOI: 10.1039/d0sm00387e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A phenylalanine dimer assembly (Phe-DA) is reported as a basic constituent of a light emitting β-amyloid type nanofibril network. The size and composition of the Phe-DA structure were characterized using various theoretical and experimental techniques. Further, the mechanism involved in the phenylalanine self-assembly process from Phe-DA to the nanofibril network was studied using optical spectroscopy and small angle X-ray scattering (SAXS). The discovery of Phe-DA and its unique optical properties may pave the way for design and development of novel theranostics against metabolite based pathalogical disorders. Further, the role of the Phe-DA structure as the elementary unit in the formation of a long range assembly structure may provide vital understanding for the development of functional materials using simple organic molecules.
Collapse
Affiliation(s)
- Prabhjot Singh
- Centre for Nanoscience and Nanotechnology, Panjab University, Sector 25, Chandigarh-160014, India
| | | | | |
Collapse
|
7
|
Lova P, Congiu S, Sparnacci K, Angelini A, Boarino L, Laus M, Di Stasio F, Comoretto D. Core-shell silica-rhodamine B nanosphere for synthetic opals: from fluorescence spectral redistribution to sensing. RSC Adv 2020; 10:14958-14964. [PMID: 35497145 PMCID: PMC9052040 DOI: 10.1039/d0ra02245d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/07/2020] [Indexed: 11/21/2022] Open
Abstract
Photonic crystals are a unique tool to modify the photoluminescence of light-emitting materials. A variety of optical effects have been demonstrated by infiltrating opaline structures with photoactive media. On the other hand, the fabrication of such structures includes complex infiltration steps, that often affect the opal lattice and decrease the efficiency of light emission control. In this work, silica nanospheres were directly functionalized with rhodamine B to create an emitting shell around the dielectric core. Simple tuning of the microsphere preparation conditions allows selecting the appropriate sphere diameter and polydispersity index approaching 5%. These characteristics allow facile self-assembling of the nanospheres into three-dimensional photonic crystals whose peculiar density of photonic states at the band-gap edges induces spectral redistribution of the rhodamine B photoluminescence. The possibility to employ the new stable structure as sensor is also investigated. As a proof of principle, we report the variation of light emission obtained by exposure of the opal to vapor of chlorobenzene.
Collapse
Affiliation(s)
- Paola Lova
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova Via Dodecaneso 31 16132 Genova Italy
| | - Simone Congiu
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova Via Dodecaneso 31 16132 Genova Italy
| | - Katia Sparnacci
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale "A. Avogadro", INSTM, UdR Alessandria Viale T. Michel 11 15121 Alessandria Italy
| | - Angelo Angelini
- Quantum Research Labs & Nanofacility Piemonte, Advanced Materials Metrology and Life Science Division, Istituto Nazionale di Ricerca Metrologica (INRiM) Strada delle Cacce 91 Torino IT10135 Italy
| | - Luca Boarino
- Quantum Research Labs & Nanofacility Piemonte, Advanced Materials Metrology and Life Science Division, Istituto Nazionale di Ricerca Metrologica (INRiM) Strada delle Cacce 91 Torino IT10135 Italy
| | - Michele Laus
- Dipartimento di Scienze e Innovazione Tecnologica (DISIT), Università del Piemonte Orientale "A. Avogadro", INSTM, UdR Alessandria Viale T. Michel 11 15121 Alessandria Italy
| | - Francesco Di Stasio
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova Via Dodecaneso 31 16132 Genova Italy
| | - Davide Comoretto
- Dipartimento di Chimica e Chimica Industriale, Università degli Studi di Genova Via Dodecaneso 31 16132 Genova Italy
| |
Collapse
|
8
|
Lee SJ, Kumar S, Choi JW, Lee JS. Coloration of colloidal polymer particles through selective extraction of Mie backscattering for cation-responsible colorimetric sensors. J Colloid Interface Sci 2020; 560:894-901. [DOI: 10.1016/j.jcis.2019.10.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 11/28/2022]
|
9
|
Diaferia C, Roviello V, Morelli G, Accardo A. Self‐Assembly of PEGylated Diphenylalanines into Photoluminescent Fibrillary Aggregates. Chemphyschem 2019; 20:2774-2782. [DOI: 10.1002/cphc.201900884] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/18/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Carlo Diaferia
- Department of Pharmacy Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II” Via Mezzocannone 16 80134- Naples Italy
| | - Valentina Roviello
- Department of Chemical, Materials and Industrial Production Engineering, DICMaPIUniversity of Naples “Federico II” Piazzale Tecchio 80 80125 Naples Italy
| | - Giancarlo Morelli
- Department of Pharmacy Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II” Via Mezzocannone 16 80134- Naples Italy
| | - Antonella Accardo
- Department of Pharmacy Research Centre on Bioactive Peptides (CIRPeB)University of Naples “Federico II” Via Mezzocannone 16 80134- Naples Italy
| |
Collapse
|
10
|
Arnon ZA, Gilead S, Gazit E. Microfluidics for real-time direct monitoring of self- and co-assembly biomolecular processes. NANOTECHNOLOGY 2019; 30:102001. [PMID: 30537683 DOI: 10.1088/1361-6528/aaf7b1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Molecular self-assembly is a major approach for the fabrication of functional supramolecular nanomaterials. This dynamic, straightforward, bottom-up procedure may result in the formation of various architectures at the nano-scale, with remarkable physical and chemical characteristics. Biological and bio-inspired building blocks are especially attractive due to their intrinsic tendency to assemble into well-organized structures, as well as their inherent biocompatibility. To further expand the morphological diversity, co-assembly methods have been developed, allowing to produce alternative unique architectures, enhanced properties, and improved structural control. However, in many cases, mechanistic understanding of the self- and co-assembly processes is still lacking. Microfluidic techniques offer a set of exclusive tools for real-time monitoring of biomolecular self-organization, which is crucial for the study of such dynamic processes. Assembled nuclei, confined by micron-scale pillars, could be subjected to controlled environments aiming to assess the effect of different conditions on the assembly process. Other microfluidics setups can produce droplets at a rate of over 100 s-1, with volumes as small as several picoliters. Under these conditions, each droplet can serve as an individual pico/nano-reactor allowing nucleation and assembly. These processes can be monitored, analyzed and imaged, by various techniques including simple bright-field microscopy. Elucidating the mechanism of such molecular events may serve as a conceptual stepping-stone for the rational control of the resulting physicochemical properties.
Collapse
Affiliation(s)
- Zohar A Arnon
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | |
Collapse
|
11
|
Ribeiro AC, Souza GA, Pereira DH, Cordeiro DS, Miranda RS, Custódio R, Martins TD. Phe-Phe Di-Peptide Nanostructure Self-Assembling Modulated by Luminescent Additives. ACS OMEGA 2019; 4:606-619. [PMID: 31459351 PMCID: PMC6648563 DOI: 10.1021/acsomega.8b02732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/26/2018] [Indexed: 05/17/2023]
Abstract
In this work, supramolecular l-l-diphenylalanine (Phe-Phe) nanostructures were self-assembled in solvents of distinct polarity and in the presence of luminescent additives of distinct conjugation length that physically adhere to the nanostructures to provide growth environments of distinct properties. When the additive is poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene], an electron donor polymer, and solvent is tetrahydrofuran (THF), Phe-Phe vesicle-like structures are obtained, whereas in water and in the presence of a similar additive in structure, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene], nanotubes are formed. In contrast, when 9-vinyl-carbazole, an electron acceptor additive is used, nanotubes are formed even when THF is the solvent. The same structures are obtained when the additive is the macromolecule poly(vinyl carbazole). The morphologies of these self-assembled structures were observed by scanning electron microscopy, and their photophysical behavior was determined by steady-state fluorescence spectroscopy and time-resolved fluorescence spectroscopy. These data analyzed altogether inform about the formation mechanisms of such structures and about the influence that distinct interactions exert on self-assembling and charge-transfer processes through formation of complexes between the luminescent additives and the Phe-Phe nano- and microstructures.
Collapse
Affiliation(s)
- Antonio
C. C. Ribeiro
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| | - Geovany A. Souza
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| | - Douglas Henrique Pereira
- Chemistry
Collegiate, Federal University of Tocantins, Campus Gurupi-Badejós, P.O. Box 66, Gurupi 77 402-970, Brazil
| | - Diericon S. Cordeiro
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| | - Ramon S. Miranda
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| | - Rogério Custódio
- Institute
of Chemistry, University of Campinas, Barão Geraldo, P.O. Box 6154, Campinas 13083-970, São Paulo, Brazil
| | - Tatiana D. Martins
- Chemistry
Institute, Federal University of Goias, Campus II—Samambaia, P.O. Box 24242, Goiania 74690-970, Brazil
| |
Collapse
|
12
|
Ni M, Zhuo S. Applications of self-assembling ultrashort peptides in bionanotechnology. RSC Adv 2019; 9:844-852. [PMID: 35517614 PMCID: PMC9059570 DOI: 10.1039/c8ra07533f] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/19/2018] [Indexed: 12/16/2022] Open
Abstract
Peptides are intriguing building blocks for a variety of applications in bionanotechnology. Peptides can self-assemble into well-ordered nanostructures. Among the various nanomorphology forms, peptide nanofibers and nanotubes are relevant in biomedical applications. In this review, their applications as tissue engineering scaffolds, drug delivery vehicles, three-dimensional printing bioinks and bioimaging nanoprobes will be illustrated. This review article describes di-, tri-, tetra-peptides because they are cost-effective, simple to prepare, and amenable to production on a large scale. Ultrashort peptide applications in bionanotechnology.![]()
Collapse
Affiliation(s)
- Ming Ni
- Fujian Provincial Key Laboratory for Photonics Technology
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education
- Fujian Normal University
- Fuzhou
- P. R. China
| | - Shuangmu Zhuo
- Fujian Provincial Key Laboratory for Photonics Technology
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education
- Fujian Normal University
- Fuzhou
- P. R. China
| |
Collapse
|