1
|
Miao D, Li S, Jin D, Long J, Qu J, Wang Y, Wu Z. Hybrid Organic-Inorganic Additive for Robust Al Anode in Alkaline Aluminum-Air Battery. SMALL METHODS 2024; 8:e2301255. [PMID: 37994290 DOI: 10.1002/smtd.202301255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Indexed: 11/24/2023]
Abstract
Aluminum-air batteries (AABs), known for their high energy density, environmental friendliness, and cost-effectiveness, show immense promise in the realm of energy conversion applications. Nonetheless, their commercialization has encountered inherent challenges of Al anode corrosion and material degradation. In this study, economical hybrid electrolyte additives to inhibit the Al corrosion are developed, safeguarding the integrity of the Al anode. Due to the synergistic interplay between the organic compound dithiothreitol, and inorganic compounds zinc chloride, a robust zinc film is formed on the Al surface This Zn film plays a pivotal role in quelling parasitic hydrogen evolution reactions that typically can plague the Al electrode. Consequently, the as-prepared hybrid additive culminates in a remarkable enhancement to AABs, delivering exceptional discharge capacity of 1793.37 mAh g-1 , high energy density of 2047 Wh kg-1 , and excellent battery longevity (over 20 h in on/off cycling tests). This study, therefore, introduces a novel approach in utilizing hybrid electrolyte additives to effectively counteract corrosion-related challenges and boost the stability and performance of AABs.
Collapse
Affiliation(s)
- Di Miao
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Shiliang Li
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Dongxiao Jin
- Xinglv New Energy Technology Co., Ltd, Xuzhou, 221000, P. R. China
| | - Jiangtao Long
- Xinglv New Energy Technology Co., Ltd, Xuzhou, 221000, P. R. China
| | - Jie Qu
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yun Wang
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, 4222, Australia
| | - Zhenzhen Wu
- Centre for Clean Environment and Energy, Griffith University, Gold Coast, 4222, Australia
| |
Collapse
|
2
|
Nayem SMA, Islam S, Mohamed M, Shaheen Shah S, Ahammad AJS, Aziz MA. A Mechanistic Overview of the Current Status and Future Challenges of Aluminum Anode and Electrolyte in Aluminum-Air Batteries. CHEM REC 2024; 24:e202300005. [PMID: 36807755 DOI: 10.1002/tcr.202300005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/06/2023] [Indexed: 02/20/2023]
Abstract
Aluminum-air batteries (AABs) are regarded as attractive candidates for usage as an electric vehicle power source due to their high theoretical energy density (8100 Wh kg-1 ), which is considerably higher than that of lithium-ion batteries. However, AABs have several issues with commercial applications. In this review, we outline the difficulties and most recent developments in AABs technology, including electrolytes and aluminum anodes, as well as their mechanistic understanding. First, the impact of the Al anode and alloying on battery performance is discussed. Then we focus on the impact of electrolytes on battery performances. The possibility of enhancing electrochemical performances by adding inhibitors to electrolytes is also investigated. Additionally, the use of aqueous and non-aqueous electrolytes in AABs is also discussed. Finally, the challenges and potential future research areas for the advancement of AABs are suggested.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Santa Islam
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Mostafa Mohamed
- Physics Department, King Fahd University of Petroleum & Minerals, KFUPM, Box 5047, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8520, Japan
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM, Box 5040, Dhahran, 31261, Saudi Arabia
- K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
3
|
Wang Y, Fang X, Li S, Pan H, Sun J. Complexation of Sulfonate-Containing Polyurethane and Polyacrylic Acid Enables Fabrication of Self-Healing Hydrogel Membranes with High Mechanical Strength and Excellent Elasticity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:25082-25090. [PMID: 34935339 DOI: 10.1021/acsami.1c21002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Artificial hydrogel membranes with good biocompatibility are strongly needed in biological fields. The preparation of biocompatible hydrogel membranes simultaneously possessing high mechanical strength, excellent elasticity, and satisfactory self-healing properties remains a challenge. Herein, we demonstrate the preparation of such hydrogel membranes by complexation of sulfonate-containing polyurethane (SPU) and poly(acrylic acid) (PAA) in the presence of Zn2+ ions followed by swelling in water (denoted as SPU-PAA/Zn). Originating from the synergy of the coordination and hydrogen-bonding interactions and the reinforcement effect of the in situ formed hydrophobic domains, the SPU-PAA/Zn hydrogel membrane exhibits a high tensile strength of ∼7.1 MPa and a toughness of ∼30.4 MJ m-3. Moreover, the hydrogel membrane is highly elastic, which can restore to its initial state from an ∼500% strain within 40 min rest at room temperature without any external assistance. The dynamic noncovalent interactions and hydrophobic domains allow the fractured hydrogel membrane to heal and completely regain its original integrity and mechanical properties at room temperature. Both in vitro and in vivo tests confirm that the hydrogel membrane exhibits satisfactory biocompatibility and could be potentially used as a biological barrier membrane in surgical operations or artificial organs.
Collapse
Affiliation(s)
- Yuting Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Siheng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Hongyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
4
|
Ultrathin Al-air batteries by reducing the thickness of solid electrolyte using aerosol jet printing. Sci Rep 2022; 12:9801. [PMID: 35697927 PMCID: PMC9192594 DOI: 10.1038/s41598-022-14080-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 11/29/2022] Open
Abstract
Flexible Al–air batteries have great potential in the field of wearable electronic devices. However, how to reduce the thickness of the battery and improve their applicability in wearable applications is still an unresolved thorny problem. Therefore, this article focuses on the strategies to minimize the thickness of the solid electrolyte for flexible Al–air batteries. In this paper, an innovative aerosol jet printing method is used to prepare the ultrathin neutral electrolyte with a thickness of 18.3–74.5 μm. This study discusses the influence of the thickness and ion concentration on the conductance of the electrolyte in detail. The ultrathin electrolyte has been applied to the flexible Al–air battery, and the battery performance has been explored. The cell pack composed of single cells is light and thin, and can successfully drive small electrical equipment. This study provided new ideas for the preparation of ultrathin electrolyte for flexible energy products.
Collapse
|
5
|
Chemically triggered life control of “smart” hydrogels through click and declick reactions. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Fabrication of an Immobilized Polyelectrolite Complex (PEC) Membrane from Pectin-Chitosan and Chromoionophore ETH 5294 for pH-Based Fish Freshness Monitoring. COATINGS 2022. [DOI: 10.3390/coatings12010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Considering the significance of its demand around the world, the accurate determination of fish freshness with a simple and rapid procedure has become an interesting issue for the fishing industry. Hence, we aimed to fabricate a new optical pH sensor based on a polyelectrolyte (PEC) membrane of pectin–chitosan and the active material chromoionophore ETH 5294. A trial-and-error investigation of the polymer compositions revealed that the optimum ratio of pectin to chitosan was 3:7. With an optimum wavelength region (λ) at 610 nm, the constructed sensor was capable of stable responses after 5 min exposure to phosphate-buffered solution. Furthermore, the obtained sensor achieved optimum sensitivity when the PBS concentration was 0.1 M, while the relative standard deviation values ranged from 2.07 to 2.34%, suggesting good reproducibility. Further investigation revealed that the sensor experienced decreased absorbance of 16.67–18.68% after 25 days of storage. Employing the optimum conditions stated previously, the sensor was tested to monitor fish freshness in samples that were stored at 4 °C and ambient temperature. The results suggested that the newly fabricated optical sensor could measure pH changes on fish skin after 25 h storage at room temperature (pH 6.37, 8.91 and 11.02, respectively) and 4 °C (pH 6.8, 7.31 and 7.92, respectively).
Collapse
|
7
|
Chen L, Li B, Zhu L, Deng X, Sun X, Liu Y, Zhang C, Zhao W, Chen X. A PVA/LiCl/PEO interpenetrating composite electrolyte with a three-dimensional dual-network for all-solid-state flexible aluminum-air batteries. RSC Adv 2021; 11:39476-39483. [PMID: 35492453 PMCID: PMC9044495 DOI: 10.1039/d1ra07180g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/15/2021] [Indexed: 11/26/2022] Open
Abstract
Aluminum–air batteries are promising electronic power sources because of their low cost and high energy density. However, traditional aluminum–air batteries are greatly restricted from being used in the field of flexible electronics due to the rigid battery structure, and the irreversible corrosion of the anode by the alkaline electrolyte, which greatly reduces the battery life. To address these issues, a three-dimensional dual-network interpenetrating structure PVA/LiCl/PEO composite gel polymer electrolyte (GPE) is proposed. The gel polymer electrolyte exhibits good flexibility and high ionic conductivity (σ = 6.51 × 10−3 S cm−1) at room temperature. Meanwhile, benefiting from the high-performance GPE, an assembled aluminum–air coin cell shows a highest discharge voltage of 0.73 V and a peak power density (Pmax) of 3.31 mW cm−2. The Al specific capacity is as high as 735.2 mA h g−1. A flexible aluminum–air battery assembled using the GPE also performed stably in flat, bent, and folded states. This paper provides a cost-effective and feasible way to fabricate a composite gel polymer electrolyte with high performance for use in flexible aluminum–air batteries, suitable for a variety of energy-related devices. Problems relating to the leakage of alkaline liquid electrolyte, the evaporation of water, and flexibility in traditional aluminum–air batteries are solved in this study.![]()
Collapse
Affiliation(s)
- Li Chen
- School of Chemical Engineering, Northwest University Xi'an 710069 China
| | - Boqiao Li
- School of Aerospace, Xi'an Jiaotong University Xi'an 710049 China
| | - Liangliang Zhu
- School of Chemical Engineering, Northwest University Xi'an 710069 China.,Shaanxi Institute of Energy and Chemical Engineering Xi'an 710069 China
| | - Xiaobin Deng
- Shaanxi Institute of Energy and Chemical Engineering Xi'an 710069 China
| | - Xueyan Sun
- School of Chemical Engineering, Northwest University Xi'an 710069 China
| | - Yilun Liu
- School of Aerospace, Xi'an Jiaotong University Xi'an 710049 China
| | - Chen Zhang
- First Aircraft Institute of Aviation Industry Corporation Xi'an 710089 China
| | - Wei Zhao
- School of Chemical Engineering, Northwest University Xi'an 710069 China.,Shaanxi Institute of Energy and Chemical Engineering Xi'an 710069 China
| | - Xi Chen
- Earth Engineering Center, Center for Advanced Materials for Energy and Environment, Department of Earth and Environmental Engineering, Columbia University New York NY 10027 USA
| |
Collapse
|
8
|
Abstract
Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mechanisms of MABs, electrochemical performance, and the progress made in the development of different structures of MABs. The operational concepts and recent developments in MABs are thoroughly discussed, with a particular focus on innovative materials design and cell structures. The classical research on traditional MABs was chosen and contrasted with metal–air flow systems, demonstrating the merits associated with the latter in terms of achieving higher energy density and efficiency, along with stability. Furthermore, the recent applications of MABs were discussed. Finally, a broad overview of challenges/opportunities and potential directions for commercializing this technology is carefully discussed. The primary focus of this investigation is to present a concise summary and to establish future directions in the development of MABs from traditional static to advanced flow technologies. A systematic analysis of this subject from a material and chemistry standpoint is presented as well.
Collapse
|
9
|
Nivedha L, Raja M, Ramanujam K. Interplay of the functional units of a binder in the oxygen reduction process of zinc-air battery. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.09.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Li X, Li J, Zhang D, Gao L, Qu J, Lin T. Synergistic effect of 8-aminoquinoline and ZnO as hybrid additives in alkaline electrolyte for Al-air battery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114946] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Yazdi MK, Vatanpour V, Taghizadeh A, Taghizadeh M, Ganjali MR, Munir MT, Habibzadeh S, Saeb MR, Ghaedi M. Hydrogel membranes: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111023. [PMID: 32994021 DOI: 10.1016/j.msec.2020.111023] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/22/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022]
Abstract
Hydrogel membranes (HMs) are defined and applied as hydrated porous media constructed of hydrophilic polymers for a broad range of applications. Fascinating physiochemical properties, unique porous architecture, water-swollen features, biocompatibility, and special water content dependent transport phenomena in semi-permeable HMs make them appealing constructs for various applications from wastewater treatment to biomedical fields. Water absorption, mechanical properties, and viscoelastic features of three-dimensional (3D) HM networks evoke the extracellular matrix (ECM). On the other hand, the porous structure with controlled/uniform pore-size distribution, permeability/selectivity features, and structural/chemical tunability of HMs recall membrane separation processes such as desalination, wastewater treatment, and gas separation. Furthermore, supreme physiochemical stability and high ion conductivity make them promising to be utilised in the structure of accumulators such as batteries and supercapacitors. In this review, after summarising the general concepts and production processes for HMs, a comprehensive overview of their applications in medicine, environmental engineering, sensing usage, and energy storage/conservation is well-featured. The present review concludes with existing restrictions, possible potentials, and future directions of HMs.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Iran, Tehran.
| | - Ali Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohsen Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Muhammad Tajammal Munir
- College of Engineering and Technology, American University of the Middle East, Kuwait; Department of Chemical and Materials Engineering, The University of Auckland, New Zealand
| | - Sajjad Habibzadeh
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Resin and Additives, Institute for Color Science and Technology, P.O. Box: 16765-654, Tehran, Iran
| | - Mehrorang Ghaedi
- Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.
| |
Collapse
|
12
|
Liu Y, Wang B, Sun Q, Pan Q, Zhao N, Li Z, Yang Y, Sun X. Controllable Synthesis of Co@CoO x/Helical Nitrogen-Doped Carbon Nanotubes toward Oxygen Reduction Reaction as Binder-free Cathodes for Al-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16512-16520. [PMID: 32175722 DOI: 10.1021/acsami.0c01603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient and stable electrocatalysts for oxygen reduction reaction and freestanding electrode structure were developed to reduce the use of polymer binders in the cathode of metal-air batteries. Considering the unique geometrical configurations of helical carbon nanotubes (CNTs) and improved properties compared with straight CNTs, we prepared high-purity Co@CoOx/helical nitrogen-doped carbon nanotubes (Co@CoOx/HNCNTs) on a carbon fiber paper by hydrothermal and single-step in situ chemical vapor deposition strategies. Under an optimized growth time (1 h), the synthesized Co@CoOx/HNCNTs provide richer edge defects and active sites and show prominent electrocatalytic performance toward oxygen reduction reaction (ORR) under alkaline media compared with Co@CoOx/HNCNTs-0.5 h and Co@CoOx/HNCNTs-2 h. The soft X-ray absorption spectroscopy technique is used to investigate the influences of different growth times on the electronic structure and local chemical configuration of Co@CoOx/HNCNTs. Furthermore, the Al-air coin cell employing Co@CoOx/HNCNTs-1 h as the binder-free cathode exhibits an open-circuit voltage of 1.48 V, a specific capacity of 367.31 mA h g-1 at the discharge current density of 1.0 mA cm-2, and a maximum power density (Pmax) of 3.86 mW cm-2, which are superior to those of Co@CoOx/HNCNTs-0.5 h and Co@CoOx/HNCNTs-2 h electrodes. This work provides valuable insights into the development of scalable binder-free cathodes, exploiting HNCNT composite materials with an outstanding electrocatalytic performance for ORR in Al-air systems.
Collapse
Affiliation(s)
- Yisi Liu
- Institute of Advanced Materials, Hubei Normal University, Huangshi 415000, China
| | - Biqiong Wang
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Qian Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Qiyun Pan
- Institute of Advanced Materials, Hubei Normal University, Huangshi 415000, China
| | - Nian Zhao
- Institute of Advanced Materials, Hubei Normal University, Huangshi 415000, China
| | - Zhong Li
- Institute of Advanced Materials, Hubei Normal University, Huangshi 415000, China
| | - Yahui Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
13
|
Bi S, Feng C, Wang M, Kong M, Liu Y, Cheng X, Wang X, Chen X. Temperature responsive self-assembled hydroxybutyl chitosan nanohydrogel based on homogeneous reaction for smart window. Carbohydr Polym 2020; 229:115557. [DOI: 10.1016/j.carbpol.2019.115557] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/18/2022]
|
14
|
Shen LL, Zhang GR, Biesalski M, Etzold BJM. Paper-based microfluidic aluminum-air batteries: toward next-generation miniaturized power supply. LAB ON A CHIP 2019; 19:3438-3447. [PMID: 31556903 DOI: 10.1039/c9lc00574a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Paper-based microfluidics (lab on paper) emerges as an innovative platform for building small-scale devices for sensing, diagnosis, and energy storage/conversions due to the power-free fluidic transport capability of paper via capillary action. Herein, we report for the first time that paper-based microfluidic concept can be employed to fabricate high-performing aluminum-air batteries, which entails the use of a thin sheet of fibrous capillary paper sandwiched between an aluminum foil anode and a catalyst coated graphite foil cathode without using any costly air electrode or external pump device for fluid transport. The unique microfluidic configuration can help overcome the major drawbacks of conventional aluminum-air batteries including battery self-discharge, product-induced electrode passivation, and expensive and complex air electrodes which have long been considered as grand obstacles to aluminum-air batteries penetrating the market. The paper-based microfluidic aluminum-air batteries are not only miniaturized in size, easy to fabricate and cost-effective, but they are also capable of high electrochemical performance. With a specific capacity of 2750 A h kg-1 (@20 mA cm-2) and an energy density of 2900 W h kg-1, they are 8.3 and 12.6 times higher than those of the non-fluidic counterpart and significantly outperform many other miniaturized energy sources, respectively. The superior performance of microfluidic aluminum-air batteries originates from the remarkable efficiency of paper capillarity in transporting electrolyte along with O2 to electrodes.
Collapse
Affiliation(s)
- Liu-Liu Shen
- Ernst-Berl-Institut für Technische und Makromolekulare Chemie, Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany.
| | | | | | | |
Collapse
|
15
|
Ge H, Li G, Zheng T, Wang F, Shao M, Liu H, Meng X. Hollow NiCo2O4 nanospheres supported on N-doped carbon nanowebs as efficient bifunctional catalyst for rechargeable and flexible Zn-air batteries. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Liu Y, Zhan F, Wang B, Xie B, Sun Q, Jiang H, Li J, Sun X. Three-dimensional Composite Catalysts for Al-O 2 Batteries Composed of CoMn 2O 4 Nanoneedles Supported on Nitrogen-Doped Carbon Nanotubes/Graphene. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21526-21535. [PMID: 31135132 DOI: 10.1021/acsami.9b04861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Great efforts have been focused on studying high-efficiency and stable catalysts toward oxygen reduction reaction (ORR) in metal-air batteries. In view of synergistic effects and improved properties, carbon nanotubes and three-dimensional graphene (CNTs-3D graphene) hybrid catalysts developed via a well-controlled route are urgently required. Herein, a CoMn2O4 (CMO) nanoneedle-supported nitrogen-doped carbon nanotubes/3D graphene (NCNTs/3D graphene) composite was prepared by in situ chemical vapor deposition (CVD) along with hydrothermal methods over a Ni foam substrate. The cyclic voltammetry and linear sweep voltammograms results indicate that the CMO/NCNTs/3D graphene hybrid possesses remarkable electrocatalytic performance toward ORR in alkaline conditions compared with NCNTs/3D graphene, CMO/3D graphene, and 3D graphene catalysts, even outperforming the commercial 20 wt % Pt/C catalyst. Moreover, the Al-air coin cell employing CMO/NCNTs/3D graphene as cathode catalysts obtains an open circuit voltage of 1.55 V and a specific capacity of 312.8 mA h g-1, which are superior to the Al-air coin cell with NCNTs/3D graphene as catalysts. This work supplies new insights to advanced electrocatalysts introducing NCNTs/3D graphene as a catalyst support to develop scalable transition-metal oxide/NCNTs/3D graphene hybrids with excellent catalytic activity toward ORR in Al-air systems.
Collapse
Affiliation(s)
- Yisi Liu
- Institute of Advanced Materials , Hubei Normal University , Huangshi 415000 , China
| | - Faqi Zhan
- State Key Laboratory of Advanced Processing and Recycling of Non-Ferrous Metals , Lanzhou University of Technology , Lanzhou 730050 , China
| | - Biqiong Wang
- Department of Mechanical and Materials Engineering , University of Western Ontario , London , Ontario N6A 5B9 , Canada
| | - Bo Xie
- Institute of Advanced Materials , Hubei Normal University , Huangshi 415000 , China
| | - Qian Sun
- Department of Mechanical and Materials Engineering , University of Western Ontario , London , Ontario N6A 5B9 , Canada
| | - Hao Jiang
- College of Materials and Chemical Engineering , Hunan City University , Yiyang 413000 , China
| | - Jie Li
- School of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Xueliang Sun
- Department of Mechanical and Materials Engineering , University of Western Ontario , London , Ontario N6A 5B9 , Canada
| |
Collapse
|
17
|
Singha NR, Dutta A, Mahapatra M, Roy JSD, Mitra M, Deb M, Chattopadhyay PK. In Situ Attachment of Acrylamido Sulfonic Acid-Based Monomer in Terpolymer Hydrogel Optimized by Response Surface Methodology for Individual and/or Simultaneous Removal(s) of M(III) and Cationic Dyes. ACS OMEGA 2019; 4:1763-1780. [PMID: 31459433 PMCID: PMC6648733 DOI: 10.1021/acsomega.8b02545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/25/2018] [Indexed: 05/20/2023]
Abstract
Herein, grafting of starch (STR) and in situ strategic inclusion of 2-(3-(acrylamido)propylamido)-2-methylpropane sulfonic acid (APMPS) via solution polymerization of 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) and acrylamide (AM) have resulted in the synthesis of smart STR-grafted-AMPS-co-APMPS-co-AM (i.e., STR-g-TerPol) interpenetrating terpolymer (TerPol) network hydrogels. For fabricating the optimum hydrogel showing excellent physicochemical properties and recyclability, amounts of ingredients and temperature of synthesis have been optimized using multistage response surface methodology. STR-g-TerPol bearing the maximum swelling ability, along with the retention of network integrity, has been employed for individual and/or simultaneous removal(s) of metal ions (i.e., M(III)), such as Bi(III) and Sb(III), and dyes, such as tris(4-(dimethylamino)phenyl)methylium chloride (i.e., crystal violet) and (7-amino-8-phenoxazin-3-ylidene)-diethylazanium dichlorozinc dichloride (i.e., brilliant cresyl blue). The in situ strategic protrusion of APMPS, grafting of STR into the TerPol matrix, variation of crystallinity, thermal stabilities, surface properties, mechanical properties, swellability, adsorption capacities (ACs), and ligand-selective superadsorption have been inferred via analyses of unadsorbed and/or adsorbed STR-g-TerPol using Fourier transform infrared (FTIR), 1H/13C NMR, UV-vis, thermogravimetric analysis, differential scanning calorimetry, X-ray diffraction, field emission scanning electron microscopy, energy-dispersive X-ray, dynamic light scattering, and rheological analyses and measuring the lower critical solution temperature, % gel content, pH at point of zero charge (pHPZC), and network parameters, such as ρc and M c. The prevalence of covalent, ionic (I), and variegated interactions between STR-g-TerPol and M(III) has been understood through FTIR analyses, fitting of kinetics data to the pseudosecond-order model, and by the measurement of activation energies of adsorption. The formation of H-aggregate type dimers and hypochromic and hypsochromic shifts has been explained via UV-vis analyses during individual and/or simultaneous removal(s) of cationic dyes. Several isotherm models were fitted to the equilibrium experimental data, of which Langmuir and combined Langmuir-Freundlich models have been best fitted for individual Bi(III)/Sb(III) and simultaneous Sb(III) + Bi(III) removals, respectively. Thermodynamically spontaneous chemisorption processes have shown the maximum ACs of 1047.39/282.39 and 932.08/137.85 mg g-1 for Bi(III) and Sb(III), respectively, at 303 K, adsorbent dose = 0.01 g, and initial concentration of M(III) = 1000/30 ppm. The maximum ACs have been changed to 173.09 and 136.02 mg g-1 for Bi(III) and Sb(III), respectively, for binary Sb(III) + Bi(III) removals at 303 K, adsorbent dose = 0.01 g, and initial concentration of Bi(III)/Sb(III) at 30/5 and 5/30 ppm.
Collapse
Affiliation(s)
- Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Arnab Dutta
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Manas Mahapatra
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Joy Sankar Deb Roy
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Madhushree Mitra
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Advanced Polymer Laboratory, Department of Polymer
Science and Technology, and Department of
Leather Technology, Government College of Engineering and Leather
Technology (Post-Graduate), Maulana Abul
Kalam Azad University of Technology,
Salt Lake, Kolkata 700106, West Bengal, India
| |
Collapse
|
18
|
Mori R. Semi-solid-state aluminium-air batteries with electrolytes composed of aluminium chloride hydroxide with various hydrophobic additives. Phys Chem Chem Phys 2018; 20:29983-29988. [PMID: 30480272 DOI: 10.1039/c8cp03997f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semi-solid-state Al-air batteries with solid electrolytes prepared by mixing AlCl3·6H2O and various hydrophobic additives were prepared and tested. All of the prepared Al-air batteries exhibited higher current 48 hours after battery preparation. This might be due to a decrease in battery resistance as AlCl3·6H2O melted and penetrated into the air cathode as a result of its hygroscopic property. Among the batteries tested, when commercial vaseline and butyl methyl imidazolium hexafluorophosphate were mixed with AlCl3·6H2O and used as the solid electrolyte, the prepared Al-air battery exhibited a stable high current and electrochemical property.
Collapse
Affiliation(s)
- Ryohei Mori
- Green Science Alliance Co., Ltd., 2-22-11 Obana Kawanishi City, Hyogo Prefecture 666-0015, Japan
| |
Collapse
|