1
|
Zhang N, Li J, Liang W, Zhang Y, Wu Z, Du Y. Synthesis of Solvent-Mediated Morphology-Controlled PdSn Alloy Nanocatalysts and their Application in Electrocatalysis of Ethylene Glycol and Ethanol. Inorg Chem 2024; 63:7063-7070. [PMID: 38567746 DOI: 10.1021/acs.inorgchem.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
2D nanodendrites (NDs) and nanosheets (NSs) have been regarded as efficient nanocatalysts for enhancing the electrocatalytic performance due to their low coordinated sites and abundant electrocatalytic centers. Nevertheless, it remains challenging to construct advanced NDs and NSs in a single reaction system. Herein, by tuning the volume ratios of mixed solvents, the reduction and diffusion rate of Sn2+ on Pd NSs template was rationally controlled to prepare PdSn NDs and PdSn NSs. Ascribed to the open 2D nanostructure, high specific surface area, and robust synergistic effect, the as-prepared PdSn NDs and PdSn NSs exhibited distinguished electrocatalytic activities for ethylene glycol oxidation reaction (EGOR) and ethanol oxidation reaction (EOR), as well as commendable electrocatalytic durability, which were far superior to the Pd NSs and commercial Pd/C. In addition, the PdSn NDs exhibited enhanced reaction kinetics because the characteristic branch structure exposed a high density of active sites. This work may provide significant guidance for preparing excellent nanocatalysts with various morphological features by simply optimizing the content of the coexisting solvents.
Collapse
Affiliation(s)
- Nannan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wanyu Liang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
2
|
Guan J, Dong D, Khan NA, Zheng Y. Emerging Pt-based intermetallic nanoparticles for the oxygen reduction reaction. Chem Commun (Camb) 2024. [PMID: 38264768 DOI: 10.1039/d3cc05611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The advancement of highly efficient and enduring platinum (Pt)-based electrocatalysts for the oxygen reduction reaction (ORR) is a critical determinant to enable broad utilization of clean energy conversion technologies. Pt-based intermetallic electrocatalysts offer durability and superior ORR activity over their traditional analogues due to their definite stoichiometry, ordered and extended structures, and favourable enthalpy of formation. With the advent in new synthetic methods, Pt-based intermetallic nanoparticles as a new class of advanced electrocatalysts have been studied extensively in recent years. This review discusses the preparation principles, representative preparation methods of Pt-based intermetallics and their applications in the ORR. Our review is focused on L10 Pt-based intermetallics which have gained tremendous interest recently due to their larger surface strain and enhanced M(3d)-Pt(5d) orbital coupling, particularly in the crystallographic c-axis direction. Additionally, we discuss future research directions to further improve the efficiency of Pt-based intermetallic electrocatalysts with the intention of stimulating increased research ventures in this domain.
Collapse
Affiliation(s)
- Jingyu Guan
- China Nuclear Power Engineering Co., Ltd, Beijing 100840, China.
| | - Duo Dong
- China Nuclear Power Engineering Co., Ltd, Beijing 100840, China.
| | - Niaz Ali Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Yong Zheng
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
| |
Collapse
|
3
|
Wang J, Pan F, Chen W, Li B, Yang D, Ming P, Wei X, Zhang C. Pt-Based Intermetallic Compound Catalysts for the Oxygen Reduction Reaction: Structural Control at the Atomic Scale to Achieve a Win–Win Situation Between Catalytic Activity and Stability. ELECTROCHEM ENERGY R 2023. [DOI: 10.1007/s41918-022-00141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
4
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Electrochemical Activation and Its Prolonged Effect on the Durability of Bimetallic Pt-Based Electrocatalysts for PEMFCs. INORGANICS 2023. [DOI: 10.3390/inorganics11010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The present study, concerned with high-performance ORR catalysts, may be a valuable resource for a wide range of researchers within the fields of nanomaterials, electrocatalysis, and hydrogen energy. The objects of the research are electrocatalysts based on platinum–copper nanoparticles with onion-like and solid-solution structures. To evaluate the functional characteristics of the catalysts, the XRD, XRF, TEM, HAADF-STEM, and EDX methods, as well as the voltammetry method on a rotating disk electrode have been used. This work draws the attention of researchers to the significance of applying a protocol of electrochemically activating bimetallic catalysts in terms of the study of their functional characteristics on the rotating disk electrode. The choice of the potential range during the pre-cycling stage has been shown to play a crucial role in maintaining the durability of the catalysts. The activation of the PtCu/C catalyst during cycling of up to 1.0 V allows for an increase in the durability of the catalysts with onion-like and solid-solution structures of nanoparticles by 28% and 23%, respectively, as compared with activation of up to 1.2 V.
Collapse
|
6
|
Zhang K, Wang C, Gao F, Guo S, Zhang Y, Wang X, Hata S, Shiraishi Y, Du Y. Recent progress in ultrafine 3D Pd-based nanocubes with multiple structures for advanced fuel cells electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Feng S, Geng Y, Liu H, Li H. Targeted Intermetallic Nanocatalysts for Sustainable Biomass and CO 2 Valorization. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shumei Feng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Yanyan Geng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hongyan Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin300130, China
| |
Collapse
|
8
|
Yang M, Wan J, Yan C. Ordered intermetallic compounds combining precious metals and transition metals for electrocatalysis. Front Chem 2022; 10:1007931. [PMID: 36186599 PMCID: PMC9520242 DOI: 10.3389/fchem.2022.1007931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Ordered intermetallic alloys with significantly improved activity and stability have attracted extensive attention as advanced electrocatalysts for reactions in polymer electrolyte membrane fuel cells (PEMFCs). Here, recent advances in tuning intermetallic Pt- and Pd-based nanocrystals with tunable morphology and structure in PEMFCs to catalyze the cathodic reduction of oxygen and the anodic oxidation of fuels are highlighted. The fabrication/tuning of ordered noble metal-transition metal-bonded intermetallic PtM and PdM (M = Fe, Co) nanocrystals by using high temperature annealing treatments to promote the activity and stability of electrocatalytic reactions are discussed. Furthermore, the further improvement of the efficiency of this unique ordered intermetallic alloys for electrocatalysis are also proposed and discussed. This report aims to demonstrate the potential of the ordered intermetallic strategy of noble and transition metals to facilitate electrocatalysis and facilitate more research efforts in this field.
Collapse
Affiliation(s)
- Meicheng Yang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PRChina
| | - Jinxin Wan
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, PRChina
| | - Chao Yan
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, PRChina
- *Correspondence: Chao Yan,
| |
Collapse
|
9
|
Zhang J, Zhao J, Jin C, Chen Z, Liu J. Self-Strained Platinum Clusters with Finite Size: High-Performance Catalysts with CO Tolerance for PEMFCs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30692-30703. [PMID: 35767898 DOI: 10.1021/acsami.2c04033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strained platinum-based materials with high performance have been regarded as the most promising electrocatalysts for proton exchange membrane fuel cells (PEMFCs) recently. Herein, self-strained platinum clusters with finite size (about 1 nm) are prepared by a combining liquid- and solid-phase UV irradiation cycle strategy. It started with a fresh H2PtCl6 solution irradiated by UV light and then mixed with a graphitized carbon, followed by the dried mixture being subjected to UV light to generate monodispersed Pt clusters on the carbon surface. The obtained platinum clusters feature narrower size distribution and higher loading on carbon, exhibiting significantly improved activity and durability, much higher than that of the-state-of-art commercial Pt/C for the oxygen reduction reaction. More importantly, the self-strained Pt clusters display a surprising CO tolerance, which can be attributed to the unique adaptive lattice compressive strain that triggers an electron enrichment phenomenon for the Pt clusters. Therefore, this stepwise UV irradiation method solves the long-standing problem of both wide size distribution and low loading of metal clusters fabricated by one-step photochemical reduction, providing a potential route for the synthesis of other metal clusters with strained structures.
Collapse
Affiliation(s)
- Jingyan Zhang
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jing Zhao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Chun Jin
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhiguo Chen
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
10
|
Shi J, Zhang J, Chen Y, Xue Y, Zhang J, Zhang C, Chen J, Wang R. Design of Au Surface‐doped PtFe Catalyst to Modulate Oxygen Binding Energy for Highly Efficient Oxygen Reduction Reaction. ChemistrySelect 2022. [DOI: 10.1002/slct.202200675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Junjie Shi
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Jie Zhang
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Yihan Chen
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Yali Xue
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Jin Zhang
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Chenyang Zhang
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Jinwei Chen
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| | - Ruilin Wang
- College of Materials Science and Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
11
|
Pt-Based Intermetallic Nanocrystals in Cathode Catalysts for Proton Exchange Membrane Fuel Cells: From Precise Synthesis to Oxygen Reduction Reaction Strategy. Catalysts 2021. [DOI: 10.3390/catal11091050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although oxygen reduction reaction (ORR) catalysts have been extensively investigated and developed, there is a lack of clarity on catalysts that can balance high performance and low cost. Pt-based intermetallic nanocrystals are of special interest in the commercialization of proton exchange membrane fuel cells (PEMFCs) due to their excellent ORR activity and stability. This review summarizes the wide range of applications of Pt-based intermetallic nanocrystals in cathode catalysts for PEMFCs and their unique advantages in the field of ORR. Firstly, we introduce the fundamental understanding of Pt-based intermetallic nanocrystals, and highlight the difficulties and countermeasures in their synthesis. Then, the progress of theoretical and experimental studies related to the ORR activity and stability of Pt-based intermetallic nanocrystals in recent years are reviewed, especially the integrated strategies for enhancing the stability of ORR. Finally, the challenges faced by Pt-based intermetallic nanocrystals are summarized and future research directions are proposed. In addition, numerous design ideas of Pt-based intermetallic nanocrystals as ORR catalysts are summarized, aiming to promote further development of commercialization of PEMFC catalysts while fully understanding Pt-based intermetallic nanocrystals.
Collapse
|
12
|
He S, Liu Y, Zhan H, Guan L. Direct Thermal Annealing Synthesis of Ordered Pt Alloy Nanoparticles Coated with a Thin N-Doped Carbon Shell for the Oxygen Reduction Reaction. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02434] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Suqiong He
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 Fujian, China
- College of Material Science and Engineering, Fuzhou University, Fuzhou 350108 Fujian, China
| | - Yang Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 Fujian, China
| | - Hongbing Zhan
- College of Material Science and Engineering, Fuzhou University, Fuzhou 350108 Fujian, China
| | - Lunhui Guan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002 Fujian, China
| |
Collapse
|
13
|
Cao J, Cao H, Wang F, Zhu H. Fully ordered L10-PtCoAu electrocatalyst derived from PtAu@CoO precursor with enhanced performance for oxygen reduction reaction. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
14
|
Gao F, Zhang Y, Wu Z, You H, Du Y. Universal strategies to multi-dimensional noble-metal-based catalysts for electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213825] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
15
|
Peng K, Zhang W, Bhuvanendran N, Ma Q, Xu Q, Xing L, Khotseng L, Su H. Pt-based (Zn, Cu) nanodendrites with enhanced catalytic efficiency and durability toward methanol electro-oxidation via trace Ir-doping engineering. J Colloid Interface Sci 2021; 598:126-135. [PMID: 33895534 DOI: 10.1016/j.jcis.2021.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
Pt-based alloy nanomaterials with nanodendrites (NDs) structures are efficient electrocatalysts for methanol oxidation reaction (MOR), however their durability is greatly limited by the issue of transition metals dissolution. In this work, a facile trace Ir-doping strategy was proposed to fabricate Ir-PtZn and Ir-PtCu alloy NDs catalysts in aqueous medium, which significantly improved the electrocatalytic activity and durability for MOR. The as-prepared Ir-PtZn/Cu NDs catalysts showed distinct dendrites structures with the averaged diameter of 4.1 nm, and trace Ir doping subsequently improved the utilization of Pt atoms and promoted the oxidation efficiency of methanol. The electrochemical characterizations further demonstrated that the obtained Ir-PtZn/Cu NDs possessed enhanced mass activities of nearly 1.23 and 1.28-fold higher than those of undoped PtZn and PtCu, and approximately 2.35 and 2.67-fold higher than that of Pt/C in acid medium. More excitingly, after long-term durability test, the proposed Ir-PtZn and Ir-PtCu NDs still retained about 88.9% and 91.6% of its initial mass activities, which further highlights the key role of Ir-doping in determining catalyst performance. This work suggests that trace Ir-doping engineering could be a promising way to develop advanced electrocatalysts toward MOR for direct methanol fuel cell (DMFC) applications.
Collapse
Affiliation(s)
- Kai Peng
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Weiqi Zhang
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | | | - Qiang Ma
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Qian Xu
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Lei Xing
- Institute of Green Chemistry and Chemical Technology, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China
| | - Lindiwe Khotseng
- Department of Chemistry, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535, South Africa
| | - Huaneng Su
- Institute for Energy Research, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, PR China.
| |
Collapse
|
16
|
Li Z, Li M, Wang X, Fu G, Tang Y. The use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals: a minireview. NANOSCALE ADVANCES 2021; 3:1813-1829. [PMID: 36133100 PMCID: PMC9416890 DOI: 10.1039/d1na00006c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/06/2021] [Indexed: 06/14/2023]
Abstract
Controlling the morphologies and structures of noble-metal nanocrystals has always been a frontier field in electrocatalysis. Functional molecules such as capping agents, surfactants and additives are indispensable in shape-control synthesis. Amino-based functional molecules have strong coordination abilities with metal ions, and they are widely used in the morphology control of nanocrystals. In this minireview, we pay close attention to recent advances in the use of amino-based functional molecules for the controllable synthesis of noble-metal nanocrystals. The effects of various amino-based molecules on differently shaped noble-metal nanocrystals, including zero-, one-, two-, and three-dimensional nanocrystals, are reviewed and summarized. The roles and mechanisms of amino-based small molecules and long-chain ammonium salts relating to the morphology-control synthesis of noble-metal nanocrystals are highlighted. Relationships between shape and electrocatalytic properties are also described. Finally, some key prospects and challenges relating to the controllable synthesis of noble-metal nanocrystals and their electrocatalytic applications are proposed.
Collapse
Affiliation(s)
- Zhijuan Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Meng Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Xuan Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Gengtao Fu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
17
|
PdAgPt Corner-Satellite Nanocrystals in Well-Controlled Morphologies and the Structure-Related Electrocatalytic Properties. NANOMATERIALS 2021; 11:nano11020340. [PMID: 33572848 PMCID: PMC7911664 DOI: 10.3390/nano11020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
The functions of heterogeneous metallic nanocrystals (HMNCs) can be undoubtedly tuned by controlling their morphologies and compositions. As a less-studied kind of HMNCs, corner-satellite multi-metallic nanocrystals (CSMNCs) have great research value in structure-related electrocatalytic performance. In this work, PdAgPt corner-satellite nanocrystals with well-controlled morphologies and compositions have been developed by temperature regulation of a seed-mediated growth process. Through the seed-mediated growth, the morphology of PdAgPt products evolves from Pd@Ag cubes to PdAgPt corner-satellite cubes, and eventually to truncated hollow octahedra, as a result of the expansion of {111} facets in AgPt satellites. The growth of AgPt satellites exclusively on the corners of central cubes is realized with the joint help of Ag shell and moderate bromide, and hollow structures form only at higher reaction temperatures on account of galvanic displacement promoted by the Pd core. In view of the different performances of Pd and Pt toward formic acid oxidation (FAO), this structure-sensitive reaction is chosen to measure electrocatalytic properties of PdAgPt HMNCs. It is proven that PdAgPt CSMNCs display greatly improved activity toward FAO in direct oxidation pathway. In addition, with the help of AgPt heterogeneous shells, all PdAgPt HMNCs exhibit better durability than Pd cubes and commercial Pt.
Collapse
|
18
|
Zhou M, Li C, Fang J. Noble-Metal Based Random Alloy and Intermetallic Nanocrystals: Syntheses and Applications. Chem Rev 2020; 121:736-795. [DOI: 10.1021/acs.chemrev.0c00436] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ming Zhou
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Can Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| | - Jiye Fang
- Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, United States
| |
Collapse
|
19
|
Lu X, Wang D, Wu KH, Guo X, Qi W. Oxygen reduction to hydrogen peroxide on oxidized nanocarbon: Identification and quantification of active sites. J Colloid Interface Sci 2020; 573:376-383. [DOI: 10.1016/j.jcis.2020.04.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 01/02/2023]
|
20
|
Cao J, Cao H, Shen J, Wang F, Zhu H. Impact of CuFe bimetallic core on the electrocatalytic activity and stability of Pt shell for oxygen reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Cai Z, Yamada I, Yagi S. ZIF-Derived Co 9-xNi xS 8 Nanoparticles Immobilized on N-Doped Carbons as Efficient Catalysts for High-Performance Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5847-5856. [PMID: 31944103 DOI: 10.1021/acsami.9b19268] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bimetallic sulfides have been attracting considerable attention because of their high catalytic activities for oxygen reduction reaction (ORR) and oxygen evolution reaction; thus, they are considered efficient catalysts for important energy conversion devices such as fuel cells and metal-air batteries. Here, the catalytic activity of a novel catalyst composed of Co9-xNixS8 nanoparticles immobilized on N-doped carbons (Co9-xNixS8/NC) is reported. The catalyst is synthesized using a Ni-adsorbed Co-Zn zeolitic imidazolate framework (ZIF) precursor (NiCoZn-ZIF). Because of the porous structure of ZIF and the high intrinsic activity of the bimetallic sulfide nanoparticles, the Co9-xNixS8/NC catalyst exhibits high half-wave potential 0.86 V versus reversible hydrogen electrode for ORR and outstanding bifunctional catalytic performance. When Co9-xNixS8/NC is applied as a cathode catalyst in zinc-air batteries, considerably higher power density of about 75 mW cm-2 and discharge voltage are achieved compared to those of batteries with commercial Pt/C and other ZIF-derived catalysts. The zinc-air battery with the Co9-xNixS8/NC catalyst shows a high cyclability more than 170 cycles for 60 h with almost negligible decline at 10 mA cm-2. Our work provides a new insight into the design of bimetallic sulfide composites with high catalytic activities.
Collapse
Affiliation(s)
- Zuocheng Cai
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan
| | - Ikuya Yamada
- Department of Materials Science, Graduate School of Engineering , Osaka Prefecture University , 1-2 Gakuen-cho , Naka-ku, Sakai , Osaka 599-8570 , Japan
| | - Shunsuke Yagi
- Institute of Industrial Science , The University of Tokyo , 4-6-1 Komaba , Meguro-ku, Tokyo 153-8505 , Japan
| |
Collapse
|
22
|
Luo S, Xu D, Li J, Huang Y, Li L, Li X, Wu X, Gao M, Yang D, Zhang H. Au-Doped intermetallic Pd3Pb wavy nanowires as highly efficient electrocatalysts toward the oxygen reduction reaction. CrystEngComm 2020. [DOI: 10.1039/d0ce00944j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Au-Doped intermetallic Pd3Pb wavy nanowires were synthesized and exhibited substantially enhanced properties for the oxygen reduction reaction relative to commercial Pt/C.
Collapse
Affiliation(s)
- Sai Luo
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Dazhe Xu
- Center for High Pressure Science and Technology Advanced Research
- China
| | - Junjie Li
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Yuxuan Huang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Lei Li
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Xiao Li
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Xingqiao Wu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Mingxi Gao
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Deren Yang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| | - Hui Zhang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering
- Zhejiang University
- Hangzhou
- P. R. China
| |
Collapse
|
23
|
He C, Ma Z, Wu Q, Cai Y, Huang Y, Liu K, Fan Y, Wang H, Li Q, Qi J, Li Q, Wu X. Promoting the ORR catalysis of Pt-Fe intermetallic catalysts by increasing atomic utilization and electronic regulation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135119] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Zhao R, Chen Z, Huang S. Rapid synthesis of hollow PtPdCu trimetallic octahedrons at room temperature for oxygen reduction reactions in acid media. CrystEngComm 2020. [DOI: 10.1039/c9ce01422e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hollow PtPdCu trimetallic octahedrons were prepared under mild conditions, exhibiting enhanced activity toward the oxygen reduction reaction in acid media.
Collapse
Affiliation(s)
- Ruopeng Zhao
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou
- PR China
| | - Zhijing Chen
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou
- PR China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices
- School of Materials and Energy
- Guangdong University of Technology
- Guangzhou
- PR China
| |
Collapse
|
25
|
Wang XX, Swihart MT, Wu G. Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation. Nat Catal 2019. [DOI: 10.1038/s41929-019-0304-9] [Citation(s) in RCA: 492] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Rational Development of Structurally Ordered Platinum Ternary Intermetallic Electrocatalysts for Oxygen Reduction Reaction. Catalysts 2019. [DOI: 10.3390/catal9070569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Structurally ordered intermetallic structure is an efficient catalyst design strategy to significantly improve the catalytic performance of Pt alloy electrocatalysts for oxygen reduction reaction in fuel cells. However, a high structural ordering degree generally relies on high-temperature annealing, which results in detrimental catalyst particle sintering. Herein, we reveal that the incompatibility between high ordering degree and minimum particle sintering during thermal annealing can be resolved through rational development of structurally ordered Pt ternary alloys. Ordering transformation mediated by high-temperature annealing of three representative Pt ternary alloys (Pt–Fe–Co, Pt–Ni–Co and Pt–Fe–Ni) at a similar Pt composition was systematically studied. It was found that Fe can significantly promote the structural ordering due to a faster atomic diffusion, whereas Co can effectively inhibit the particle sintering. As a result of the synergy between Co and Fe, the ordered PtCoFe catalyst exhibited the highest ordering degree after thermal annealing at 600 °C with the minimum nanoparticle growth, leading to the highest catalytic activity (0.65 A/mgPt at 0.9 V, 4 times that of pure Pt catalyst) and best stability (16% drop after 10,000 potential cycles). This study provides important clues for the rational design of high-performance structurally ordered ternary Pt alloys.
Collapse
|
27
|
Affiliation(s)
- Leonard Rößner
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| | - Marc Armbrüster
- Faculty of Natural Sciences, Institute of Chemistry, Materials for Innovative Energy Concepts, Chemnitz University of Technology, 09107 Chemnitz, Germany
| |
Collapse
|