1
|
Moxey D, Devendhar Singh SK, Plunkett E, Moore RB, Arnett NY. Fabrication of Thermally Stable Sulfonated Poly(arylene ether sulfone) Containing Sulfonic Acid Based Additives for Proton Exchange Membrane Fuel Cells. ChemistrySelect 2022. [DOI: 10.1002/slct.202203309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- D'Andra Moxey
- Department of Chemistry Florida A&M University Tallahassee 32307 Florida USA
| | - Sanjay Kumar Devendhar Singh
- Department of Chemistry Florida A&M University Tallahassee 32307 Florida USA
- Department of Chemical & Biomedical Engineering FAMU-FSU College of Engineering Tallahassee 32310 Florida USA
| | - Emily Plunkett
- Department of Chemistry and Macromolecules Innovation Institute Virginia Tech Blacksburg 24061 Virginia USA
| | - Robert B. Moore
- Department of Chemistry and Macromolecules Innovation Institute Virginia Tech Blacksburg 24061 Virginia USA
| | - Natalie Y. Arnett
- Department of Chemistry Florida A&M University Tallahassee 32307 Florida USA
- Department of Chemical & Biomedical Engineering FAMU-FSU College of Engineering Tallahassee 32310 Florida USA
| |
Collapse
|
2
|
Kim J, Hwang S, Jeong YG, Choi YS, Kim K. Cross-Linked Sulfonated Poly(arylene ether sulfone) Membrane Using Polymeric Cross-Linkers for Polymer Electrolyte Membrane Fuel Cell Applications. MEMBRANES 2022; 13:7. [PMID: 36676814 PMCID: PMC9861409 DOI: 10.3390/membranes13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Cross-linked membranes for polymer electrolyte membrane fuel cell application are prepared using highly sulfonated poly(arylene ether sulfone) (SPAES) and polymeric cross-linkers having different hydrophilicities by facile in-situ casting and heating processes. From the advantage of the cross-linked structures made with the use of polymeric cross-linkers, a stable membrane can be obtained even though the polymer matrix with a very high degree of sulfonation was used. In particular, hydrophilic cross-linker is found to be effective in improving physicochemical properties of the cross-linked membranes and at the same time showing reasonable proton conductivity. Accordingly, membrane electrode assembly made from the cross-linked membrane prepared by using hydrophilic polymeric cross-linker exhibits outstanding cell performance under high temperature and low relative humidity conditions (e.g., maximum power density of 176.4 mW cm-2 at 120 °C and 40% RH).
Collapse
Affiliation(s)
- Junghwan Kim
- Center for Hydrogen·Fuel Cell Research, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Seansoo Hwang
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yu-Gyeong Jeong
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yong-Seok Choi
- Composites Materials Application Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Kihyun Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Li X, Zhang H, Lin C, Tian R, Zheng P, Hu C. Morphological Effect of Side Chain Length in Sulfonated Poly(arylene ether sulfone)s Polymer Electrolyte Membranes via Molecular Dynamics Simulation. Polymers (Basel) 2022; 14:5499. [PMID: 36559872 PMCID: PMC9782572 DOI: 10.3390/polym14245499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
With the recognition of the multiple advantages of sulfonated hydrocarbon-based polymers that possess high chemical and mechanical stability with significant low cost, we employed molecular dynamics simulation to explore the morphological effects of side chain length in sulfonated polystyrene grafted poly(arylene ether sulfone)s (SPAES) proton exchange membranes. The calculated diffusion coefficients of hydronium ions (H3O+) are in range of 0.61-1.15 × 10-7 cm2/s, smaller than that of water molecules, due to the electrical attraction between the oppositely charged sulfonate group and H3O+. The investigation into the radial distribution functions suggests that phase segregation in the SPAES membrane is more probable with longer side chains. As the hydration level of the membranes in this study is relatively low (λ = 3), longer side chains correspond to more water molecules in the amorphous cell, which provides better solvent effects for the distribution of sulfonated side chains. The coordination number of water molecules and hydronium ions around the sulfonate group increases from 1.67 to 2.40 and from 2.45 to 5.66, respectively, with the increase in the side chain length. A significant proportion of the hydronium ions appear to be in bridging configurations coordinated by multiple sulfonate groups. The microscopic conformation of the SPAES membrane is basically unaffected by temperature during the evaluated temperature range. Thus, it can be revealed that the side chain length plays a key role in the configuration of the polymer chain and would contribute to the formation of the microphase separation morphology, which profits proton transport in the hydrophilic domains.
Collapse
Affiliation(s)
- Xue Li
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Zhang
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng Lin
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ran Tian
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Penglun Zheng
- Civil Aircraft Fire Science and Safety Engineering Key Laboratory of Sichuan Province, Civil Aviation Flight University of China, Guanghan 618307, China
| | - Chenxing Hu
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Polymer Electrolyte Membranes Containing Functionalized Organic/Inorganic Composite for Polymer Electrolyte Membrane Fuel Cell Applications. Int J Mol Sci 2022; 23:ijms232214252. [PMID: 36430726 PMCID: PMC9694323 DOI: 10.3390/ijms232214252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/02/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
To mitigate the dependence on fossil fuels and the associated global warming issues, numerous studies have focused on the development of eco-friendly energy conversion devices such as polymer electrolyte membrane fuel cells (PEMFCs) that directly convert chemical energy into electrical energy. As one of the key components in PEMFCs, polymer electrolyte membranes (PEMs) should have high proton conductivity and outstanding physicochemical stability during operation. Although the perfluorinated sulfonic acid (PFSA)-based PEMs and some of the hydrocarbon-based PEMs composed of rationally designed polymer structures are found to meet these criteria, there is an ongoing and pressing need to improve and fine-tune these further, to be useful in practical PEMFC operation. Incorporation of organic/inorganic fillers into the polymer matrix is one of the methods shown to be effective for controlling target PEM properties including thermal stability, mechanical properties, and physical stability, as well as proton conductivity. Functionalization of organic/inorganic fillers is critical to optimize the filler efficiency and dispersion, thus resulting in significant improvements to PEM properties. This review focused on the structural engineering of functionalized carbon and silica-based fillers and comparisons of the resulting PEM properties. Newly constructed composite membranes were compared to composite membrane containing non-functionalized fillers or pure polymer matrix membrane without fillers.
Collapse
|
5
|
Choi J, Kim D, Chae JE, Lee S, Kim SM, Yoo SJ, Kim HJ, Choi M, Jang S. Oxygen Plasma-Mediated Microstructured Hydrocarbon Membrane for Improving Interface Adhesion and Mass Transport in Polymer Electrolyte Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50956-50965. [PMID: 36327306 DOI: 10.1021/acsami.2c15122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing a method for fabricating high-efficient and low-cost fuel cells is imperative for commercializing polymer electrolyte membrane (PEM) fuel cells (FCs). This study introduces a mechanical and chemical modification technique using the oxygen plasma irradiation process for hydrocarbon-based (HC) PEM. The oxygen functional groups were introduced on the HC-PEM surface through the plasma process in the controlled area, and microsized structures were formed. The modified membrane was incorporated with plasma-treated electrodes, improving the adhesive force between the HC-PEM and the electrode. The decal transfer was enabled at low temperatures and pressures, and the interfacial resistance in the membrane-electrode assembly (MEA) was reduced. Furthermore, the micropillar structured electrode configuration significantly reduced the oxygen transport resistance in the MEA. Various diagnostic techniques were conducted to find out the effects of the membrane surface modification, interface adhesion, and mass transport, such as physical characterizations, mechanical stress tests, and diverse electrochemical measurements.
Collapse
Affiliation(s)
- Jiwoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Dongsu Kim
- Department of Mechanical Engineering, Kookmin National University, Seoul02707, Republic of Korea
| | - Ji Eon Chae
- Department of Mobility Power Research, Korea Institute of Machinery & Materials, 156 Gajeongbuk-ro, Yuseong-gu, Daejeon34103, Korea
| | - Sanghyeok Lee
- Department of Mechanical Engineering, Kookmin National University, Seoul02707, Republic of Korea
| | - Sang Moon Kim
- Department of Mechanical Engineering, Incheon National University, Incheon22012, Republic of Korea
| | - Sung Jong Yoo
- Center for Hydrogen & Fuel Cell Research, Korea Institute of Science and Technology, Seoul02792, Korea
| | - Hyoung-Juhn Kim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju, Jeonnam58330, Republic of Korea
| | - Mansoo Choi
- Global Frontier Center for Multiscale Energy Systems, Seoul National University, Seoul08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul08826, Republic of Korea
| | - Segeun Jang
- Department of Mechanical Engineering, Kookmin National University, Seoul02707, Republic of Korea
| |
Collapse
|
6
|
Kim M, Ko H, Nam SY, Kim K. Study on Control of Polymeric Architecture of Sulfonated Hydrocarbon-Based Polymers for High-Performance Polymer Electrolyte Membranes in Fuel Cell Applications. Polymers (Basel) 2021; 13:3520. [PMID: 34685282 PMCID: PMC8539910 DOI: 10.3390/polym13203520] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/23/2023] Open
Abstract
Polymer electrolyte membrane fuel cell (PEMFC) is an eco-friendly energy conversion device that can convert chemical energy into electrical energy without emission of harmful oxidants such as nitrogen oxides (NOx) and/or sulfur oxides (SOx) during operation. Nafion®, a representative perfluorinated sulfonic acid (PFSA) ionomer-based membrane, is generally incorporated in fuel cell systems as a polymer electrolyte membrane (PEM). Since the PFSA ionomers are composed of flexible hydrophobic main backbones and hydrophilic side chains with proton-conducting groups, the resulting membranes are found to have high proton conductivity due to the distinct phase-separated structure between hydrophilic and hydrophobic domains. However, PFSA ionomer-based membranes have some drawbacks, including high cost, low glass transition temperatures and emission of environmental pollutants (e.g., HF) during degradation. Hydrocarbon-based PEMs composed of aromatic backbones with proton-conducting hydrophilic groups have been actively studied as substitutes. However, the main problem with the hydrocarbon-based PEMs is the relatively low proton-conducting behavior compared to the PFSA ionomer-based membranes due to the difficulties associated with the formation of well-defined phase-separated structures between the hydrophilic and hydrophobic domains. This study focused on the structural engineering of sulfonated hydrocarbon polymers to develop hydrocarbon-based PEMs that exhibit outstanding proton conductivity for practical fuel cell applications.
Collapse
Affiliation(s)
| | | | | | - Kihyun Kim
- Department of Materials Engineering and Convergence Technology, Gyeongsang National University, Jinju 52828, Korea; (M.K.); (H.K.); (S.Y.N.)
| |
Collapse
|
7
|
Chemically sustainable fuel cells via layer-by-layer fabrication of sulfonated poly(arylene ether sulfone) membranes containing cerium oxide nanoparticles. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
8
|
Yu H, Xia Y, Zeng K, Wang Y. Facile fabrication of sulfonated poly(aryl ether sulfone)/polybenzoxazine crosslinked membrane for vanadium flow battery application. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03330-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Preparation of sulfonated polyimide/polyvinyl alcohol composite membrane for vanadium redox flow battery applications. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03314-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zeng M, Guo H, Wang G, Shang L, Zhao C, Li H. Nanostructured high-performance electrolyte membranes based on polymer network post-assembly for high-temperature supercapacitors. J Colloid Interface Sci 2021; 603:408-417. [PMID: 34197989 DOI: 10.1016/j.jcis.2021.06.110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 11/30/2022]
Abstract
The development of high-temperature supercapacitors highly relies on the explore of stable polymer electrolyte membranes (PEMs) with high ionic conductivities at high-temperature conditions. However, it is a challenge to achieve both high stability and high conductivity in a PEM at elevated temperatures. Herein, we report the fabrication of high-performance proton conductive PEMs suitable for high-temperature supercapacitors (HT-SCs), which is based on a post-assembly strategy to control the rearrangement of polymer networks in the PEMs. This strategy can create cross-linked PEMs with bicontinuous nanostructures, as well as highly stable and highly conductive features. Specifically, a series of bicontinuous PEMs are prepared by the controllable cross-linking of poly(ether-ether-ketone) and poly(4-vinylpyridine), followed by the inducement of phosphoric acid. These PEMs exhibit both a high proton conductivity of 70 mS cm-1 and a high modulus of 39.3 MPa at 150 ℃, which can serve as high-performance electrolytes. The HT-SCs based on these PEMs display a specific capacitance of 138.0 F g-1 and a high capacitance retention of 80.0% after 2500 galvanostatic charge-discharge cycles at 150 ℃, exhibiting excellent high-temperature capacitance and cycle stability. This post-assembly concept can provide a new route to design high-performance PEMs for HT-SC and other energy device applications.
Collapse
Affiliation(s)
- Minghao Zeng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Haikun Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Gang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Lichao Shang
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Chengji Zhao
- Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China.
| | - Haolong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China; Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
11
|
Bonneaud C, Howell J, Bongiovanni R, Joly-Duhamel C, Friesen CM. Diversity of Synthetic Approaches to Functionalized Perfluoropolyalkylether Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jon Howell
- Science Department, Centenary University, 400 Jefferson Street, Hackettstown, New Jersey 07840, United States
| | - Roberta Bongiovanni
- Department of Applied Science and Technology, Politecnico di Torino, 10128 Torino, Italy
| | | | - Chadron M. Friesen
- Department of Chemistry, Trinity Western University, 7600 Glover Road, Langley, British Columbia V2Y 1Y1, Canada
| |
Collapse
|
12
|
Kim J, Kim K, Han J, Lee H, Kim H, Kim S, Sung Y, Lee J. End‐group cross‐linked membranes based on highly sulfonated poly(arylene ether sulfone) with vinyl functionalized graphene oxide as a cross‐linker and a filler for proton exchange membrane fuel cell application. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junghwan Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Kihyun Kim
- School of Materials Science and Engineering, Polymer Science and Engineering Gyeongsang National University Jinju South Korea
| | - Jusung Han
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Hyunhee Lee
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Hyejin Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| | - Sungjun Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul National University Seoul Republic of Korea
| | - Yung‐Eun Sung
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS) Seoul National University Seoul Republic of Korea
| | - Jong‐Chan Lee
- Department of Chemical and Biological Engineering and Institute of Chemical Processes Seoul National University Seoul Republic of Korea
| |
Collapse
|
13
|
Yu H, Wang Y. Sulfonated poly (arylene ether sulfone)-graft-sulfonated poly (vinyl alcohol) proton exchange membranes: Improved proton selectivity. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320968164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aldehyde terminated sulfonated poly (arylene ether sulfone) (SPAES-CHO) is prepared by a series of nucleophilic substitution reaction based on SPAES in this paper. Novel SPAES-graft-SPVA (SPAES-g-SPVA) membranes are fabricated by acetal reaction between SPAES-CHO and different amounts of sulfonated poly (vinyl alcohol) (SPVA). The 1H-NMR and FTIR indicate the successful preparation of SPAES-CHO and SPAES-g-SPVA membranes. With the introduction of SPVA, the SPAES-g-SPVA membranes have much lower methanol permeability than pure SPAES membrane and Nafion117 membrane. The methanol permeability coefficients of the SPAES-g-SPVA membranes decrease from 3.41 × 10−7 cm2 s−1 to 1.67 × 10−7 cm2 s−1 with the increase of SPVA content. And the proton conductivity of all the membranes is higher than 15 mS cm−1 at 25°C. Moreover, SPAES-g-SPVA membranes exhibit high proton selectivity. Especially, SPAES-g-SPVA-30% membrane has the highest proton selectivity, which is nearly five times higher than Nafion117.
Collapse
Affiliation(s)
- Hailin Yu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| | - Yinghan Wang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
14
|
Han J, Lee H, Kim J, Kim S, Kim H, Kim E, Sung YE, Kim K, Lee JC. Sulfonated poly(arylene ether sulfone) composite membrane having sulfonated polytriazole grafted graphene oxide for high-performance proton exchange membrane fuel cells. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118428] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Yu H, Xia Y, Zhang H, Gong X, Geng P, Gao Z, Wang Y. Improved chemical stability and proton selectivity of semi‐interpenetrating polymer network amphoteric membrane for vanadium redox flow battery application. J Appl Polym Sci 2020. [DOI: 10.1002/app.49803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hailin Yu
- State Key Laboratory of Polymer Materials Engineering College of Polymer Science and Engineering, Sichuan University Chengdu China
| | - Yifan Xia
- State Key Laboratory of Polymer Materials Engineering College of Polymer Science and Engineering, Sichuan University Chengdu China
| | - Hanwen Zhang
- State Key Laboratory of Polymer Materials Engineering College of Polymer Science and Engineering, Sichuan University Chengdu China
| | - Xinjian Gong
- Weifang Hengcai Digital Photo Materials Co., Ltd Weifang China
| | - Pengfei Geng
- Weifang Hengcai Digital Photo Materials Co., Ltd Weifang China
| | - Zhenwei Gao
- Weifang Hengcai Digital Photo Materials Co., Ltd Weifang China
| | - Yinghan Wang
- State Key Laboratory of Polymer Materials Engineering College of Polymer Science and Engineering, Sichuan University Chengdu China
| |
Collapse
|
16
|
Improved properties of sulfonated octaphenyl polyhedral silsequioxane cross-link with highly sulfonated polyphenylsulfone as proton exchange membrane. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04594-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Wang S, He F, Weng Q, Yuan D, Chen P, Chen X, An Z. Synthesis and characterization of a novel crosslinkable side-chain sulfonated poly(arylene ether sulfone) copolymer proton exchange membranes. RSC Adv 2020; 10:24772-24783. [PMID: 35517481 PMCID: PMC9055182 DOI: 10.1039/d0ra02987d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/28/2020] [Indexed: 11/21/2022] Open
Abstract
A series of novel crosslinkable side-chain sulfonated poly(arylene ether sulfone) copolymers (S-SPAES(x/y)) was prepared from 4,4′-biphenol, 4,4′-difluorodiphenyl sulfone, and a new difluoro aromatic monomer 1-(2,6-difluorophenyl)-2-(3,5-dimethoxyphenyl)-1,2-ethanedione (DFDMED) via co-polycondensation, demethylation, and further nucleophilic substitution of 1,4-butane sultone. Meanwhile, quinoxaline-based crosslinked copolymers (CS-SPAES(x/y)) were obtained via cyclo-condensation between S-SPAES(x/y) and 3,3′-diaminobenzidine. Both the crosslinkable and crosslinked copolymer membranes exhibit good mechanical properties and high anisotropic membrane swelling. Crosslinkable S-SPAES(1/2) with an ion exchange capacity (IEC) of 2.01 mequiv. g−1 displays a relatively high proton conductivity of 180 mS cm−1 and acceptable single-cell performance, which is attributed to its good microphase separation resulting from the side-chain sulfonated copolymer structures. Compared with S-SPAES(1/1) (IEC of 1.68 mequiv. g−1), crosslinked CS-SPAES(1/2) with a comparable IEC exhibits a larger conductivity of 157 mS cm−1, and significantly higher oxidative stability and lower membrane swelling, suggesting a distinct performance improvement due to the quinoxaline-based crosslinking. A series of novel crosslinkable and crosslinked side-chain SPAES has been prepared. The S-SPAES(1/2) has high proton conductivity and acceptable single-cell performance.![]()
Collapse
Affiliation(s)
- Shouping Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Fugang He
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Qiang Weng
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Diao Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Pei Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Xinbing Chen
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| | - Zhongwei An
- Key Laboratory of Applied Surface and Colloid Chemistry (MOE)
- Shaanxi Key Laboratory for Advanced Energy Devices
- Shaanxi Engineering Laboratory for Advanced Energy Technology
- School of Materials Science and Engineering
- Shaanxi Normal University
| |
Collapse
|
18
|
Wang C, Pan N, Jiang Y, Liao J, Sotto A, Ruan H, Gao C, Shen J. A facile approach to prepare crosslinked polysulfone-based anion exchange membranes with enhanced alkali resistance and dimensional stability. RSC Adv 2019; 9:36374-36385. [PMID: 35540625 PMCID: PMC9075031 DOI: 10.1039/c9ra07433c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/10/2019] [Indexed: 11/25/2022] Open
Abstract
Novel anion exchange membranes with enhanced ion exchange capacity, dimensional stability and alkali stability were prepared by a facile synthesis method. Internal crosslinking networks in the resulting membranes were achieved by reacting chloromethylated polysulfone with 4,4′-trimethylene bis(1-methylpiperidine) (BMP), where BMP was used as both a quaternization reagent and crosslinker without requirement of post-functionalization. In order to evaluate the alkali resistance and dimension stability performance of the resulting membranes, the molar ratio of BMP in the resulting membranes was fixed at four different contents: 40%, 60%, 80% and 100%. The obtained membranes were accordingly denoted as CAPSF-N, in which N = 40, 60, 80 and 100, respectively. Due to the dense internal network structure and spatial conformation of the six-membered rings, the resulting CAPSF-N AEMs showed enhanced dimensional structures (at 60 °C, the water uptakes and swelling ratios of CAPSF-N were 8.42% to 14.84% and 2.32% to 5.93%, respectively, whereas those for the commercial AEM Neosepta AMX were 44.23% and 4.22%, respectively). In addition, after soaking in 1 M KOH solution at 60 °C for 15 days, the modified membranes exhibited excellent alkaline stability. The CAPSF-100 membrane showed the highest alkali stability (retained 85% of its original ion exchange capacity and 84% of its original OH− conduction after the alkaline stability test), whereas the non-crosslinked APSF broke into pieces. Additionally, compared to the commercial Neosepta AMX membrane under the same test conditions, the desalination efficiency of CAPSF-100 was enhanced, and the energy consumption was lower. Novel anion exchange membranes with enhanced ion exchange capacity, dimensional stability and alkali stability were prepared by a facile synthesis method.![]()
Collapse
Affiliation(s)
- Chao Wang
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Nengxiu Pan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Yuliang Jiang
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Junbin Liao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Arcadio Sotto
- Rey Juan Carlos University Fuenlabrada, Camino del Molino, s/n Madrid 28942 Spain
| | - Huimin Ruan
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Congjie Gao
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Jiangnan Shen
- Center for Membrane Separation and Water Science & Technology, Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
19
|
Wang R, Liu S, Wang L, Li M, Gao C. Understanding of Nanophase Separation and Hydrophilic Morphology in Nafion and SPEEK Membranes: A Combined Experimental and Theoretical Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E869. [PMID: 31181646 PMCID: PMC6631217 DOI: 10.3390/nano9060869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 01/12/2023]
Abstract
The understanding of the relationship between the chemical structure and the hydrophilic structure is crucial for the designing of high-performance PEMs. Comparative studies in typical Nafion and sulfonated poly (ether ether ketone) (SPEEK) were performed using a combined experimental and theoretical method. SPEEK showed suppressed fuel crossover and good mechanical property but low water uptake, weak phase separation, and inadequate proton conductivity. Molecular dynamics (MD) simulation approaches were employed to get a molecular-level understanding of the structure-property relationship of SPEEK and Nafion membranes. In SPEEK membranes, the local aggregation of hydrophilic clusters is worse, and much stronger electrostatic interaction between Os-Hh was verified, resulting in less delocalized free H3O+ and much lower DH3O+. In addition, the probability of H2O-H3O+ association varied with water content. Particularly, SPEEK exhibited much lower H9O4+ probability at various relative water contents, leading to lower structural diffusivity than Nafion. Eventually, SPEEK possessed low vehicular and structural diffusivities, which resulted in a low proton conductivity. The results indicated that the structure of hydrated hydronium complexes would deform to adapt the confining hydrophilic channels. The confinement effect on diffusion of H2O and H3O+ is influenced by the water content and the hydrophilic morphologies. This study provided a new insight into the exploration of high-performance membranes in fuel cell.
Collapse
Affiliation(s)
- Rujie Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Shanshan Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Ming Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Chong Gao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China.
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
20
|
Han J, Kim K, Kim J, Kim S, Choi SW, Lee H, Kim JJ, Kim TH, Sung YE, Lee JC. Cross-linked highly sulfonated poly(arylene ether sulfone) membranes prepared by in-situ casting and thiol-ene click reaction for fuel cell application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.02.048] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|