1
|
Yamamoto M, Aihara T, Wachi K, Hara M, Kamata K. La 1-xSr xFeO 3-δ Perovskite Oxide Nanoparticles for Low-Temperature Aerobic Oxidation of Isobutane to tert-Butyl Alcohol. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39484694 DOI: 10.1021/acsami.4c15585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
The development of reusable solid catalysts based on naturally abundant metal elements for the liquid-phase selective oxidation of light alkanes under mild conditions to obtain desired oxygenated products, such as alcohols and carbonyl compounds, remains a challenge. In this study, various perovskite oxide nanoparticles were synthesized by a sol-gel method using aspartic acid, and the effects of A- and B-site metal cations on the liquid-phase oxidation of isobutane to tert-butyl alcohol with molecular oxygen as the sole oxidant were investigated. Iron-based perovskite oxides containing Fe4+ such as BaFeO3-δ, SrFeO3-δ, and La1-xSrxFeO3-δ exhibited catalytic performance superior to those of other Fe3+- and Fe2+-based iron oxides and Mn-, Ni-, and Co-based perovskite oxides. The partial substitution of Sr for La in LaFeO3 significantly enhanced the catalytic performance and durability. In particular, the La0.8Sr0.2FeO3-δ catalyst could be recovered by simple filtration and reused several times without an obvious loss of its high catalytic performance, whereas the recovered BaFeO3-δ and SrFeO3-δ catalysts were almost inactive. La0.8Sr0.2FeO3-δ promoted the selective oxidation of isobutane even under mild conditions (60 °C), and the catalytic activity was comparable to that of homogeneous systems, including halogenated metalloporphyrin complexes. On the basis of mechanistic studies, including the effect of Sr substitution in La1-xSrxFeO3-δ on surface redox reactions, the present oxidation proceeds via a radical-mediated oxidation mechanism, and the surface-mixed Fe3+/Fe4+ valence states of La1-xSrxFeO3-δ nanoparticles likely play an important role in promoting C-H activation of isobutane as well as decomposition of tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Masanao Yamamoto
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keiju Wachi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
- Materials and Structures Laboratory, Institute of Integrated Research, Institute of Science Tokyo, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa 226-8501, Japan
| |
Collapse
|
2
|
Kamata K, Aihara T, Wachi K. Synthesis and catalytic application of nanostructured metal oxides and phosphates. Chem Commun (Camb) 2024; 60:11483-11499. [PMID: 39282987 DOI: 10.1039/d4cc03233k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
The design and development of new high-performance catalysts is one of the most important and challenging issues to achieve sustainable chemical and energy production. This Feature Article describes the synthesis of nanostructured metal oxides and phosphates mainly based on earth-abundant metals and their thermocatalytic application to selective oxidation and acid-base reactions. A simple and versatile methodology for the control of nanostructures based on crystalline complex oxides and phosphates with diverse structures and compositions is proposed as another approach to catalyst design. Herein, two unique and verstile methods for the synthesis of metal oxide and phosphate nanostructures are introduced; an amino acid-aided method for metal oxides and phosphates and a precursor crystallization method for porous manganese oxides. Nanomaterials based on perovskite oxides, manganese oxides, and metal phosphates can function as effective heterogeneous catalysts for selective aerobic oxidation, biomass conversion, direct methane conversion, one-pot synthesis, acid-base reactions, and water electrolysis. Furthermore, the structure-activity relationship is clarified based on experimental and computational approaches, and the influence of oxygen vacancy formation, concerted activation of molecules, and the redox/acid-base properties of the outermost surface are discussed. The proposed methodology for nanostructure control would be useful not only for the design and understanding of the complexity of metal oxide catalysts, but also for the development of innovative catalysts.
Collapse
Affiliation(s)
- Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| | - Keiju Wachi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R3-6, Midori-ku, Yokohama-city, Kanagawa, 226-8501, Japan.
| |
Collapse
|
3
|
Xiao Y, Zhong L, Fan G, Li F. A-site defective La 2-xCuO 4 perovskite-type oxides for efficient oxidation of cyclohexylbenzene. Dalton Trans 2023; 52:14443-14452. [PMID: 37772348 DOI: 10.1039/d3dt01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Phenol production through the oxidation of cyclohexylbenzene (CHB) and the subsequent decomposition of tertiary hydroperoxide has attracted more and more attention. In this study, defective La2-xCuO4 perovskite-type oxide catalysts with tunable A-site deficient structures and abundant surface oxygen vacancies were developed for the liquid phase oxidation of CHB to produce cyclohexylbenzene-1-hydroperoxide (CHBHP). By tuning the amount of A-site La ions in the perovskite structure, more surface oxygen vacancies and Cu+ species were formed in catalysts. The A-site-deficient La1.9CuO4 catalyst achieved significant catalytic efficiency along with a high CHBHP yield of 27.6% at 48.6% CHB conversion under reaction conditions (i.e., 120 °C and 12 h), outperforming those of other transition metal-based catalysts previously reported in the literature. A series of structural characterization methods and catalytic reactions highlighted the crucial roles of surface oxygen vacancies and metal La and Cu ions in the oxidation process. It was revealed that metal ions favored CHB adsorption and activation, while surface oxygen vacancies facilitated the creation of active adsorbed oxygen species. The present study offers an opportunity for the future design of new high-efficiency heterogeneous catalyst systems for CHB oxidation to obtain phenol.
Collapse
Affiliation(s)
- Yanlin Xiao
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Lingyu Zhong
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Guoli Fan
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Feng Li
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
4
|
Bai X, Han X, Wang Y, Zhang A, Yang Y, Lu Y, Liu S. Two 3D Two-Fold Interpenetrated Dia-Like Polyoxometalate-Based Metal-Organic Frameworks: Synthesis and Sulfide Selective Oxidation Activity. Inorg Chem 2023; 62:13221-13229. [PMID: 37552041 DOI: 10.1021/acs.inorgchem.3c01393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Two new three-dimensional (3D) polyoxometalate-based metal-organic frameworks (POMOFs), [M2(btap)4(H2O)4(HPMo10VI Mo2VO40)] (M = Co (1) and Cd (2); btap = 3, 5-bis(1', 2', 4'-triazol-1'-yl)pyridine), have been synthesized under mild hydrothermal conditions and characterized in detail. Single-crystal X-ray diffraction (SXRD) analysis indicates that 1 and 2 are isostructural. In complexes 1 and 2, the metal ion is coordinated with the ligand to form two different left and right helical one-dimensional chains, which are alternately connected in a twisted form to build a two-fold interpenetrated three-dimensional structure, and the polyoxometalate is encapsulated into in the pores generated by the interpenetrating structure. It is noteworthy that 1 and 2, as recyclable catalysts, possess favorable heterogeneous catalytic activity and excellent sulfoxide selectivity in sulfide oxidation reactions, with H2O2 as an oxidant. By reason of the high dispersion of polyoxometalate with good intrinsic activity in the skeleton structure, the title complex has high activity. In addition, no obvious decrease of sulfoxide yield is observed after at least five cycles. These results indicate the excellent catalytic activity and sustainability of 1 and 2.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Xu Han
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yuxin Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ange Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Yanli Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Ying Lu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| | - Shuxia Liu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
5
|
Aihara T, Aoki W, Kiyohara S, Kumagai Y, Kamata K, Hara M. Nanosized Ti-Based Perovskite Oxides as Acid-Base Bifunctional Catalysts for Cyanosilylation of Carbonyl Compounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17957-17968. [PMID: 37010448 PMCID: PMC10103063 DOI: 10.1021/acsami.3c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
The development of effective solid acid-base bifunctional catalysts remains a challenge because of the difficulty associated with designing and controlling their active sites. In the present study, highly pure perovskite oxide nanoparticles with d0-transition-metal cations such as Ti4+, Zr4+, and Nb5+ as B-site elements were successfully synthesized by a sol-gel method using dicarboxylic acids. Moreover, the specific surface area of SrTiO3 was increased to 46 m2 g-1 by a simple procedure of changing the atmosphere from N2 to air during calcination of an amorphous precursor. The resultant SrTiO3 nanoparticles showed the highest catalytic activity for the cyanosilylation of acetophenone with trimethylsilyl cyanide (TMSCN) among the tested catalysts not subjected to a thermal pretreatment. Various aromatic and aliphatic carbonyl compounds were efficiently converted to the corresponding cyanohydrin silyl ethers in good-to-excellent yields. The present system was applicable to a larger-scale reaction of acetophenone with TMSCN (10 mmol scale), in which 2.06 g of the analytically pure corresponding product was isolated. In this case, the reaction rate was 8.4 mmol g-1 min-1, which is the highest rate among those reported for heterogeneous catalyst systems that do not involve a pretreatment. Mechanistic studies, including studies of the catalyst effect, Fourier transform infrared spectroscopy, and temperature-programmed desorption measurements using probe molecules such as pyridine, acetophenone, CO2, and CHCl3, and the poisoning effect of pyridine and acetic acid toward the cyanosilylation, revealed that moderate-strength acid and base sites present in moderate amounts on SrTiO3 most likely enable SrTiO3 to act as a bifunctional acid-base solid catalyst through cooperative activation of carbonyl compounds and TMSCN. This bifunctional catalysis through SrTiO3 resulted in high catalytic performance even without a heat pretreatment, in sharp contrast to the performance of basic MgO and acidic TiO2 catalysts.
Collapse
Affiliation(s)
- Takeshi Aihara
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Wataru Aoki
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Shin Kiyohara
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Yu Kumagai
- Institute
for Materials Research, Tohoku University, 2-1-1 Katahira,
Aoba-ku, Sendai 980-8577, Japan
| | - Keigo Kamata
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| | - Michikazu Hara
- Laboratory
for Materials and Structures, Institute
of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
6
|
Aliyan H, Fazaeli R, Foroutanfar Z, Richeson D, Li Y. Hollow Ag/Mn(btc): As Highly Efficient Catalyst for Oxidation of Sulfides to Sulfoxides. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Koutani M, Hayashi E, Kamata K, Hara M. Synthesis and Aerobic Oxidation Catalysis of Mesoporous Todorokite-Type Manganese Oxide Nanoparticles by Crystallization of Precursors. J Am Chem Soc 2022; 144:14090-14100. [PMID: 35860845 DOI: 10.1021/jacs.2c02308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The pursuit of a high surface area while maintaining high catalytic performance remains a challenge due to a trade-off relationship between these two features in some cases. In this study, mesoporous todorokite-type manganese oxide (OMS-1) nanoparticles with high specific surface areas were synthesized in one step by a new synthesis approach involving crystallization (i.e., solid-state transformation) of a precursor produced by a redox reaction between MnO4- and Mn2+ reagents. The use of a low-crystallinity precursor with small particles is essential to achieve this solid-state transformation into OMS-1 nanoparticles. The specific surface area reached up to ca. 250 m2 g-1, which is much larger than those (13-185 m2 g-1) for Mg-OMS-1 synthesized by previously reported methods including multistep synthesis or dissolution/precipitation processes. Despite ultrasmall nanoparticles, a linear correlation between the catalytic reaction rates of OMS-1 and the surface areas was observed without a trade-off relationship between particle size and catalytic performance. These OMS-1 nanoparticles exhibited the highest catalytic activity among the Mn-based catalysts tested for the oxidation of benzyl alcohol and thioanisole with molecular oxygen (O2) as the sole oxidant, including highly active β-MnO2 nanoparticles. The present OMS-1 nanomaterial could also act as a recyclable heterogeneous catalyst for the aerobic oxidation of various aromatic alcohols and sulfides under mild reaction conditions. The mechanistic studies showed that alcohol oxidation proceeds with oxygen species caused by the solid, and the high surface area of OMS-1 significantly contributes to an enhancement of the catalytic activity for aerobic oxidation.
Collapse
Affiliation(s)
- Maki Koutani
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
8
|
Abstract
Driven by the synergistic-directing effect of the lacunary fragments, [B-α-GeW9O34]10- and [B-α-GeW11O39]8-, an unprecedented hepta-Zr-substituted polyoxometalate (POM) assembly K2Na6H10(Hpy)3[SbZr7O6(OH)4(B-α-GeW9O34)2(B-α-GeW11O39)2]·28H2O (1) was made under hydrothermal condition and structurally characterized. Of which, a unique hepta-Zr cluster, [SbZr7O6(OH)4]15+ core, was built by two trilacunary [B-α-GeW9O34]10- fragments and two monolacunary [B-α-GeW11O39]8- fragments and further arranged in a mode of a vertical cross and formed a pseudo-tetrahedron geometry. Compound 1 features the first Zr7-cluster-substituted POM. Moreover, 1 is an effective heterogeneous catalyst for the catalytic oxidation of sulfides into the corresponding sulfones with H2O2, manifesting distinguished conversion, excellent yield, and desired recyclability.
Collapse
Affiliation(s)
- Peng-Yun Zhang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yu Wang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Liao-Yuan Yao
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
9
|
Akopyan AV, Mnatsakanyan RA, Eseva EA, Davtyan DA, Polikarpova PD, Lukashov MO, Levin IS, Cherednichenko KA, Anisimov AV, Terzyan AM, Agoyan AM, Karakhanov EA. New Type of Catalyst for Efficient Aerobic Oxidative Desulfurization Based On Tungsten Carbide Synthesized by the Microwave Method. ACS OMEGA 2022; 7:11788-11798. [PMID: 35449937 PMCID: PMC9016829 DOI: 10.1021/acsomega.1c06969] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Herein, we present a new type of high-performance catalyst for aerobic oxidation of organosulfur compounds based on tungsten carbide. The synthesis of tungsten carbide was performed via microwave irradiation of the precursors, which makes it possible to obtain a catalyst in just 15 min. The synthesized catalyst was investigated by a variety of physicochemical methods: X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, electron microscopy, and N2 adsorption/desorption. It was shown that active centers containing tungsten in the transition oxidation state (+4) play a key role in the activation of oxygen. The main factors influencing the conversion of dibenzothiophene (DBT) were investigated. It should be noted that 100% conversion of DBT can be achieved under relatively mild conditions: 120 °C, 3 h, 6 bar, and 0.5% wt catalyst. The catalyst retained its activity for at least six oxidation/regeneration cycles. The simplicity and speed of synthesis of the proposed catalyst in combination with its high activity and stability open broad prospects for its further use both for oxidative desulfurization and for other reactions of aerobic oxidation of organic substrates.
Collapse
Affiliation(s)
- Argam V. Akopyan
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - Raman A. Mnatsakanyan
- A.
B. Nalbandyan Institute of Chemical Physics National Academy of Sciences
of Armenia, Yerevan 0014, Armenia
| | - Ekaterina A. Eseva
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - David A. Davtyan
- A.
B. Nalbandyan Institute of Chemical Physics National Academy of Sciences
of Armenia, Yerevan 0014, Armenia
| | - Polina D. Polikarpova
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - Maxim O. Lukashov
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - Ivan S. Levin
- A.
V. Topchiev Institute of Petrochemical Synthesis, 29 Leninsky prospect, 119991 Moscow, Russia
| | - Kirill A. Cherednichenko
- Department
of Physical and Colloid Chemistry, Gubkin
University, Leninskiy
prospect, 65-1, Moscow 119991, Russia
| | - Alexander V. Anisimov
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| | - Anna M. Terzyan
- A.
B. Nalbandyan Institute of Chemical Physics National Academy of Sciences
of Armenia, Yerevan 0014, Armenia
| | - Artur M. Agoyan
- A.
B. Nalbandyan Institute of Chemical Physics National Academy of Sciences
of Armenia, Yerevan 0014, Armenia
| | - Eduard A. Karakhanov
- Chemistry
Department, Lomonosov Moscow State University, Leninskie gory, 1/3, Moscow 119234, Russia
| |
Collapse
|
10
|
Hayashi E, Tamura T, Aihara T, Kamata K, Hara M. Base-Assisted Aerobic C-H Oxidation of Alkylarenes with a Murdochite-Type Oxide Mg 6MnO 8 Nanoparticle Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6528-6537. [PMID: 35080862 DOI: 10.1021/acsami.1c20080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Heterogeneously catalyzed aerobic oxidative C-H functionalization under mild conditions is a chemical process to obtain desired oxygenated products directly. Nanosized murdochite-type oxide Mg6MnO8 (Mg6MnO8-MA) was successfully synthesized by the sol-gel method using malic acid. The specific surface area reached up to 104 m2 g-1, which is about 7 times higher than those (2-15 m2 g-1) of Mg6MnO8 synthesized by previously reported methods. Mg6MnO8-MA exhibited superior catalytic performance to those of other Mn- and Mg-based oxides, including manganese oxides with Mn-O-Mn active sites for the oxidation of fluorene with molecular oxygen (O2) as the sole oxidant under mild conditions (40 °C). The present catalytic system was applicable to the aerobic oxidation of various substrates. The catalyst could be recovered by simple filtration and reused several times without obvious loss of its high catalytic performance. The correlation between the reactivity and the pKa of the substrates, basic properties of catalysts, and kinetic isotope effects suggest a basicity-controlled mechanism of hydrogen atom transfer. The 18O-labeling experiments, kinetics, and mechanistic studies showed that H abstraction of the hydrocarbon proceeds via a mechanism involving O2 activation. The structure of Mg6MnO8 consisting of isolated Mn4+ species located in a basic MgO matrix plays an important role in the present oxidation.
Collapse
Affiliation(s)
- Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takatoshi Tamura
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Takeshi Aihara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
11
|
Chen Y, An H, Chang S, Li Y, Zhu Q, Luo H, Huang Y. POM-based porous supramolecular framework for the efficient sulfide-sulfoxide transformation with low molar O/S ratio. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00525e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective oxidation of organic sulfides is a pivotal avenue to prepare sulfoxides that can act as synthetic intermediates of fine chemicals, bioactive molecules, and asymmetric catalysis ligands. To construct...
Collapse
|
12
|
Sugawara Y, Kamata K, Hayashi E, Itoh M, Hamasaki Y, Yamaguchi T. Comprehensive Structural Descriptor for Electrocatalytic Oxygen Evolution Activities of Iron Oxides. ChemElectroChem 2021. [DOI: 10.1002/celc.202101235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuuki Sugawara
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-17 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Mitsuru Itoh
- Laboratory for Materials and Structures, Institute of Innovative Research Tokyo Institute of Technology 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| | - Yosuke Hamasaki
- Department of Applied Physics National Defense Academy 1-10-20 Hashirimizu Yokosuka 239-8686 Japan
| | - Takeo Yamaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research Tokyo Institute of Technology R1-17 4259 Nagatsuta-cho, Midori-ku Yokohama 226-8503 Japan
| |
Collapse
|
13
|
Amri N, Wirth T. Flow Electrosynthesis of Sulfoxides, Sulfones, and Sulfoximines without Supporting Electrolytes. J Org Chem 2021; 86:15961-15972. [PMID: 34164983 DOI: 10.1021/acs.joc.1c00860] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient electrochemical flow process for the selective oxidation of sulfides to sulfoxides and sulfones and of sulfoxides to N-cyanosulfoximines has been developed. In total, 69 examples of sulfoxides, sulfones, and N-cyanosulfoximines have been synthesized in good to excellent yields and with high current efficiencies. The synthesis was assisted and facilitated through a supporting electrolyte-free, fully automated electrochemical protocol that highlights the advantages of flow electrolysis.
Collapse
Affiliation(s)
- Nasser Amri
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
14
|
Park JK, Lee S. Sulfoxide and Sulfone Synthesis via Electrochemical Oxidation of Sulfides. J Org Chem 2021; 86:13790-13799. [PMID: 34549959 DOI: 10.1021/acs.joc.1c01657] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxidation of diaryl sulfides and aryl alkyl sulfides to the corresponding sulfoxides and sulfones under electrochemical conditions is reported. Sulfoxides are selectively obtained in good yield under a constant current of 5 mA for 10 h in DMF, while sulfones are formed as the major product under a constant current of 10 or 20 mA for 10 h in MeOH. The oxygen of both the sulfoxide and sulfone function is derived from water.
Collapse
Affiliation(s)
- Jin Kyu Park
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunwoo Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
15
|
Chandra P. Modern Trends in the Applications of Perovskites for Selective Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202101434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Prakash Chandra
- Department of Chemistry School of Technology Pandit Deendayal Petroleum University Knowledge Corridor, Raisan Village Gandinagar Gujarat 382007
| |
Collapse
|
16
|
Shokoohi S, Rayati S. Surface decorated magnetic nanoparticles with Mn-porphyrin as an effective catalyst for oxidation of sulfides. J PORPHYR PHTHALOCYA 2021. [DOI: 10.1142/s1088424621500802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mn-porphyrin complex was anchored coordinatively to silica-coated surface of magnetic nanoparticles (SMNP). Afterward, a heterogeneous nanocatalyst (Fe3O4@SiO2-MnTCPP) has been characterized by Fourier transform infrared (FT-IR), ultraviolet-visible (UV-vis) spectroscopy, powder X-ray diffraction (XRD), scanning electron microscopy (SEM), vibrating sample magnetometry (VSM), thermogravimetric analysis (TGA), and transmission electron microscope (TEM). A thermal stability up to around 350[Formula: see text]C was verified for prepared nanocatalyst based on thermogravimetric analysis. Finally, the catalytic performance of magnetically recoverable Mn-catalyst was exploited in the green oxidation of different sulfides with urea hydrogen peroxide (UHP) in the presence of imidazole as co-catalyst in ethanol under heterogeneous conditions. The eco-friendly property of ethanol strongly induced us to employ it as the reaction solvent in this oxidation system. Complete conversion ([Formula: see text]99) of sulfides to the corresponding sulfoxide or sulfones was obtained for ethyl phenyl sulfide, phenyl vinyl sulfide, diallyl sulfide, thiocyanatoethane, 2-ethyl mercaptoethanol and tetrahydrothiophene. Moreover, the recovered catalysts keep constant conversion yield up to at least three cycles.
Collapse
Affiliation(s)
- Saeedeh Shokoohi
- Department of Chemistry, Shahid Beheshti University, G.C., Tehran 1983963113, Iran
| | - Saeed Rayati
- Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 16315-1618, Tehran 15418, Iran
| |
Collapse
|
17
|
Sahin Y, Sika-Nartey AT, Ercan KE, Kocak Y, Senol S, Ozensoy E, Türkmen YE. Precious Metal-Free LaMnO 3 Perovskite Catalyst with an Optimized Nanostructure for Aerobic C-H Bond Activation Reactions: Alkylarene Oxidation and Naphthol Dimerization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5099-5110. [PMID: 33492925 DOI: 10.1021/acsami.0c20490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article, we describe the development of a new aerobic C-H oxidation methodology catalyzed by a precious metal-free LaMnO3 perovskite catalyst. Molecular oxygen is used as the sole oxidant in this approach, obviating the need for other expensive and/or environmentally hazardous stoichiometric oxidants. The electronic and structural properties of the LaMnO3 catalysts were systematically optimized, and a reductive pretreatment protocol was proved to be essential for acquiring the observed high catalytic activities. It is demonstrated that this newly developed method was extremely effective for the oxidation of alkylarenes to ketones as well as for the oxidative dimerization of 2-naphthol to 1,1-binaphthyl-2,2-diol (BINOL), a particularly important scaffold for asymmetric catalysis. Detailed spectroscopic and mechanistic studies provided valuable insights into the structural aspects of the active catalyst and the reaction mechanism.
Collapse
Affiliation(s)
- Yesim Sahin
- Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Abel T Sika-Nartey
- Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Kerem E Ercan
- Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Yusuf Kocak
- Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Sinem Senol
- Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Emrah Ozensoy
- Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Yunus E Türkmen
- Department of Chemistry, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
18
|
Yan X, Gan T, Shi S, Du J, Xu G, Zhang W, Yan W, Zou Y, Liu G. Potassium-incorporated manganese oxide enhances the activity and durability of platinum catalysts for low-temperature CO oxidation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01409a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Potassium-incorporated manganese oxide is demonstrated as an efficient support for fabricating highly active and stable Pt catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Xuelan Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tao Gan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shaozhen Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Juan Du
- Key Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Guohao Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenxiang Zhang
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenfu Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yongcun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
19
|
Nishio H, Miura H, Kamata K, Shishido T. Deposition of highly dispersed gold nanoparticles onto metal phosphates by deposition–precipitation with aqueous ammonia. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01627j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deposition–precipitation with aqueous ammonia enabled small gold nanoparticles to be deposited onto a series of metal phosphates with high dispersity and density.
Collapse
Affiliation(s)
- Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama-city, Kanagawa, 226-8503, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
- Research Center for Gold Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
20
|
Matsuda A, Tateno H, Kamata K, Hara M. Iron phosphate nanoparticle catalyst for direct oxidation of methane into formaldehyde: effect of surface redox and acid–base properties. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01265g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The surface redox and the weakly basic properties of FePO4 nanoparticles would contribute to the selective CH4 oxidation to HCHO and the suppression of over-oxidation, respectively.
Collapse
Affiliation(s)
- Aoi Matsuda
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Haruka Tateno
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- JST, Core Research for Evolutional Science and Technology (CREST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
21
|
Shibata S, Kamata K, Hara M. Aerobic oxidative CC bond cleavage of aromatic alkenes by a high valency iron-containing perovskite catalyst. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00245g] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-valency iron-containing perovskite catalyst BaFeO3−δ could efficiently promote the additive-free oxidative CC bond cleavage of various aromatic alkenes using O2 as the sole oxidant.
Collapse
Affiliation(s)
- Satomi Shibata
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama-city
- Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama-city
- Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures
- Institute of Innovative Research
- Tokyo Institute of Technology
- Yokohama-city
- Japan
| |
Collapse
|
22
|
Yamaguchi Y, Aono R, Hayashi E, Kamata K, Hara M. Template-Free Synthesis of Mesoporous β-MnO 2 Nanoparticles: Structure, Formation Mechanism, and Catalytic Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:36004-36013. [PMID: 32805787 DOI: 10.1021/acsami.0c08043] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mesoporous β-MnO2 nanoparticles were synthesized by a template-free low-temperature crystallization of Mn4+ precursors (low-crystallinity layer-type Mn4+ oxide, c-distorted H+-birnessite) produced by the reaction of MnO4- and Mn2+. The Mn starting materials, pH of the reaction solution, and calcination temperatures significantly affect the crystal structure, surface area, porous structure, and morphology of the manganese oxides formed. The pH conditions during the precipitation of Mn4+ precursors are important for controlling the morphology and porous structure of β-MnO2. Nonrigid aggregates of platelike particles with slitlike pores (β-MnO2-1 and -2) were obtained from the combinations of NaMnO4/MnSO4 and NaMnO4/Mn(NO3)2, respectively. On the other hand, spherelike particles with ink-bottle shaped pores (β-MnO2-3) were formed in NaMnO4/Mn(OAc)2 with pH adjustment (pH 0.8). The specific surface areas for β-MnO2-1, -2, and -3 were much higher than those for nonporous β-MnO2 nanorods synthesized using a typical hydrothermal method (β-MnO2-HT). On the other hand, c-distorted H+-birnessite precursors with a high interlayer metal cation (Na+ and K+) content led to the formation of α-MnO2 with a 2 × 2 tunnel structure. These mesoporous β-MnO2 materials acted as effective heterogeneous catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) as a bioplastic monomer and for the transformation of aromatic alcohols to the corresponding aldehydes, where the catalytic activities of β-MnO2-1, -2, and -3 were approximately 1 order of magnitude higher than that of β-MnO2-HT. β-MnO2-3 exhibited higher catalytic activity (especially for larger molecules) than the other β-MnO2 materials, and this is likely attributed to the nanometer-sized spaces.
Collapse
Affiliation(s)
- Yui Yamaguchi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Ryusei Aono
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Michikazu Hara
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| |
Collapse
|
23
|
Catalyst-free biphasic oxidation of Thiophenes in continuous-flow. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Mesbahi E, Bagherzadeh M, Amini M, Akbari A, Ellern A, Woo LK. A novel binuclear iron(III)-salicylaldazine complex; synthesis, X-ray structure and catalytic activity in sulfide oxidation. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Kumar N, Naveen K, Bhatia A, Muthaiah S, Siruguri V, Paul AK. Solvent and additive-free efficient aerobic oxidation of alcohols by a perovskite oxide-based heterogeneous catalyst. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00189a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A perovskite oxide has been utilized for the solvent and additive-free heterogeneous oxidation of various alcohols.
Collapse
Affiliation(s)
- Nikhil Kumar
- Department of Chemistry
- National Institute of Technology
- Kurukshetra-136119
- India
| | - Kumari Naveen
- Department of Chemistry
- National Institute of Technology
- Kurukshetra-136119
- India
| | - Anita Bhatia
- Department of Chemistry
- National Institute of Technology
- Kurukshetra-136119
- India
| | | | - Vasudeva Siruguri
- UGC-DAE Consortium for Scientific Research Mumbai Centre
- Mumbai-400085
- India
| | - Avijit Kumar Paul
- Department of Chemistry
- National Institute of Technology
- Kurukshetra-136119
- India
| |
Collapse
|
26
|
Hayashi E, Yamaguchi Y, Kita Y, Kamata K, Hara M. One-pot aerobic oxidative sulfonamidation of aromatic thiols with ammonia by a dual-functional β-MnO 2 nanocatalyst. Chem Commun (Camb) 2020; 56:2095-2098. [PMID: 31995042 DOI: 10.1039/c9cc09411c] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-surface-area β-MnO2 (β-MnO2-HS) nanoparticles could act as effective heterogeneous catalysts for the one-pot oxidative sulfonamidation of various aromatic and heteroaromatic thiols to the corresponding sulfonamides using molecular oxygen (O2) and ammonia (NH3) as respective oxygen and nitrogen sources, without the need for any additives.
Collapse
Affiliation(s)
- Eri Hayashi
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan.
| | | | | | | | | |
Collapse
|
27
|
Kamata K. Perovskite Oxide Catalysts for Liquid-Phase Organic Reactions. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180260] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Keigo Kamata
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
28
|
Hayashi E, Yamaguchi Y, Kamata K, Tsunoda N, Kumagai Y, Oba F, Hara M. Effect of MnO2 Crystal Structure on Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. J Am Chem Soc 2019; 141:890-900. [DOI: 10.1021/jacs.8b09917] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|