1
|
Dolatkhah A, Dewani C, Kazem-Rostami M, Wilson LD. Magnetic Silver Nanoparticles Stabilized by Superhydrophilic Polymer Brushes with Exceptional Kinetics and Catalysis. Polymers (Basel) 2024; 16:2500. [PMID: 39274133 PMCID: PMC11398182 DOI: 10.3390/polym16172500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that consist of poly (acrylic acid) (PAA) moieties at the amine functional groups of chitosan. Two types of responsive catalyst systems with variable silver loading (wt.%) of high and low (PAAgCHI/Fe3O4/Ag (H, L)) were prepared. The catalytic activity was evaluated by monitoring the reduction of organic dye compounds, 4-nitrophenol and methyl orange in the presence of NaBH4. The high dispersity and hydrophilic nature of the catalyst provided exceptional kinetics for dye reduction that surpassed previously reported nanocatalysts for organic dye reduction. Dynamic light scattering (DLS) measurements were carried out to study the colloidal stability of the nanocatalysts. The hybrid materials not only showed enhanced colloidal stability due to electrostatic repulsion among adjacent polymer brushes but also offered more rapid kinetics when compared with as-prepared Ag nanoparticles (AgNPs), which results from super-hydrophilicity and easy accumulation/diffusion of dye species within polymer brushes. Such remarkable kinetics, biodegradability, biocompatibility, low cost and facile magnetic recoverability of the Ag nanocatalysts reported here contribute to their ranking among the top catalyst systems reported in the literature. It was observed that the apparent catalytic rate constant for the reduction of methyl orange dye was enhanced, PAAgCHI/Fe3O4/Ag (H) ca. 35-fold and PAAgCHI/Fe3O4/Ag (L) ca. 23-fold, when compared against the as prepared AgNPs. Finally, the regeneration and recyclability of the nanocatalyst systems were studied over 15 consecutive cycles. It was demonstrated that the nanomaterials display excellent recyclability without a notable loss in catalytic activity.
Collapse
Affiliation(s)
- Asghar Dolatkhah
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Chandni Dewani
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur 302017, Rajasthan, India
| | - Masoud Kazem-Rostami
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
2
|
Chen J, Gao Y, Zuo S, Mao H, Li X, Liu W, Yao C, Gui H. Monolithic Catalysts Supported by Emulsion-Templated Porous Polydivinylbenzene for Continuous Reduction of 4-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38295287 DOI: 10.1021/acs.langmuir.3c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
A monolithic catalyst was fabricated through an emulsion-templating method, postpolymerization modification, and in situ loading of active constituents. To achieve a high specific surface area, divinylbenzene (DVB) was solely employed as the monomer, while the porous structure was adjusted with the porogen content and the types of initiators. Then, anchor points were introduced on the pore wall through nitration and amination of the polymeric scaffold. Using a controlled "silver mirror reaction", monolithic catalysts were obtained after loading of silver nanoparticles (Ag NPs), which was verified from morphological and crystallinity characteristics. The catalytic performance of the resultant monolithic catalyst was determined with the model reduction of 4-nitrophenol (4-NP). In static catalysis, the monolithic catalyst was proved to have a reactively high apparent rate constant and a good reusability. Furthermore, a flow reactor was fabricated with the monolithic catalyst, showing a high efficiency and long-term durability for the continuous reduction of 4-NP. This work broadened the adjustment of porous structures and the subsequent application for emulsion-templated monoliths.
Collapse
Affiliation(s)
- Jieyi Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Gao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Textiles, Changzhou Vocational Institute of Textile and Garment, Changzhou 213164, China
| | - Shixiang Zuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Huihui Mao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiazhang Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Wenjie Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Chao Yao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Haoguan Gui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Liu X, Liu F. Bimetallic (AuAg, AuPd and AgPd) nanoparticles supported on cellulose-based hydrogel for reusable catalysis. Carbohydr Polym 2023; 310:120726. [PMID: 36925251 DOI: 10.1016/j.carbpol.2023.120726] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 02/26/2023]
Abstract
Biopolymer-derived hydrogels with low-cost and sustainable features have been considered as fascinating supported materials for metal nanoparticles. Cellulose, as the most abundant biopolymer, is a renewable raw material to prepare biopolymer-derived hydrogels for catalysis. Here, a cellulose-based hydrogel is designed to load bimetallic (AuAg, AuPd and AgPd) nanoparticles. 4-Nitrophenol reduction and Suzuki-Miyaura coupling reactions are selected to evaluate and compare the catalytic performance of the resulting bimetallic nanoparticle-loaded cellulose-based composite hydrogels. The bimetallic nanocomposite hydrogels are easy to be recycled over 10 times during the catalytic experiments and possess good applicability and generality for various substrates. The catalytic activity of bimetallic nanocomposite hydrogels was compared with recent literatures. In addition, the possible catalytic mechanism is also proposed. This work is expected to give a new insight for designing and preparing bimetallic nanoparticle-based cellulose hydrogels and proves its applicability and prospect in the catalytic field.
Collapse
Affiliation(s)
- Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
4
|
Lv X, Lv A, Tian S, Xie T. A Tough and Highly Active Catalyst Carrier Tailored by Nanoparticles-encapsulation Poly(Ionic Liquid) Hydrogel : Synthesis and Catalytic Applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Dadashi J, Ali Ghasemzadeh M, Alipour S, Zamani F. A review on catalytic reduction/degradation of organic pollution through silver-based hydrogels. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
|
7
|
Esfahani AR, Sadiq Z, Oyewunmi OD, Safiabadi Tali SH, Usen N, Boffito DC, Jahanshahi-Anbuhi S. Portable, stable, and sensitive assay to detect phosphate in water with gold nanoparticles (AuNPs) and dextran tablet. Analyst 2021; 146:3697-3708. [PMID: 33960331 DOI: 10.1039/d0an02063j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and highly sensitive tablet-based colorimetric sensor is developed for the detection of phosphate (Pi) in drinking and surface water using mercaptoacetic acid-capped gold nanoparticles (MA-AuNPs). Characterization of AuNPs and MA-AuNPs was achieved by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Dynamic light scattering (DLS). The principle of this sensor is based on the aggregation and disaggregation mechanisms of AuNPs that result in a color change from blue to red due to the surface plasmon resonance effect, where europium ions (Eu3+) act as the aggregating agent. Herein, dextran is used to encapsulate the Eu3+ ions into a tablet format to make the detection system user friendly. Hence, the sensor only requires dissolving a Eu3+-dextran tablet into the water sample and subsequently adding MA-AuNPs for the colorimetric quantification of phosphate. This assay is very sensitive with a calculated detection limit of 0.3 μg L-1 and an upper detection limit of 26 μg L-1, while 10 μg L-1 is the allowable limit of Pi in drinking water. A comparative study with a conventional Hach kit confirmed the accuracy of our sensor. Also, real water samples from river, lake, and tap sources were tested to examine the sensor's applicability towards commercialization. The assay did not interfere with common ions in water, thus being Pi-specific, and the performance of the assay was stable for up to at least three weeks. Overall, our new approach provides a simple, stable, rapid, low-cost and promising device for Pi detection in water.
Collapse
Affiliation(s)
- AmirReza R Esfahani
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada. and Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montréal, QC, Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| | - Oyejide Damilola Oyewunmi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| | - Ndifreke Usen
- Department of Chemical Engineering, Polytechnique Montréal, QC, Canada
| | | | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| |
Collapse
|
8
|
Ji XY, Yu FY, Li YQ, Zhu HT, Zhao HY, Shi Y, Wang YH, Tan HQ, Li YG. Two-dimensional ultrathin surfactant-encapsulating polyoxometalate assemblies as carriers for monodispersing noble-metal nanoparticles with high catalytic activity and stability. Dalton Trans 2021; 50:1666-1671. [PMID: 33464263 DOI: 10.1039/d0dt03976d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Noble metal nanoparticles (NMNPs) with excellent catalytic activity and stability play an important role in the field of environmental governance. A uniform distribution and a strong binding force with the carriers of the noble metal nanoparticles are important, but avoidance of the use of additional reducing agents is a promising direction of research. Herein, 2D ultrathin surfactant-encapsulating polyoxometalate (SEP) nanosheets constructed by the self-assembly of dodecyldimethylammonium bromide (DODA) and molybdophosphate (H3PMo12O40, PMo12) are designed to be versatile carriers for Ag nanoparticles. Under the synergistic effect of the well-arranged PMo12 units, encapsulating hydrophobic oleic acid (OA) and reductive molybdophosphate under Xe lamp irradiation, the silver oleate (AgOA)-derived Ag nanoparticles (5 ± 2 nm) are monodispersed on the DODA-PMo12 assemblies and form the Agx/DODA-PMo12 composite. The optimized Ag4.89/DODA-PMo12 composite exhibits high catalytic activity and stability in the degradation of 4-nitrophenol (4-NP), which reaches a superior rate constant of 6.49 × 10-3 s-1 and without significant deterioration after three recycles. This technique can be facilely promoted to other noble metal nanoparticles with excellent catalytic activity and stability.
Collapse
Affiliation(s)
- Xing-Yu Ji
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Fei-Yang Yu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Ying-Qi Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Hao-Tian Zhu
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Hui-Ying Zhao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yue Shi
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yong-Hui Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| | - Yang-Guang Li
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China.
| |
Collapse
|
9
|
Li J, Wu M, Du H, Wang B, Li Y, Huan W. Highly effective catalytic reduction of nitrobenzene compounds with gold nanoparticle-immobilized hydroxyapatite nanowire-sintered porous ceramic beads. NEW J CHEM 2021. [DOI: 10.1039/d0nj06209j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A catalytic ceramic bead with micron-sized and interconnected porous channels, adjustable porosity, high catalytic activity, and long-term stability is prepared.
Collapse
Affiliation(s)
- Jie Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A & F University
- Lin’an 311300
- China
| | - Minjie Wu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A & F University
- Lin’an 311300
- China
| | - Hongchen Du
- Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization
- Weifang University of Science and Technology
- Weifang 262700
- China
| | - Buchuan Wang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A & F University
- Lin’an 311300
- China
| | - Yinglong Li
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A & F University
- Lin’an 311300
- China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass
- Zhejiang A & F University
- Lin’an 311300
- China
| |
Collapse
|
10
|
Gazil O, Gancheva T, Bilodeau-Calame M, Favis BD, Virgilio N. Controlling the distribution of nanoparticles in hydrogels via interfacial synthesis. NANOSCALE ADVANCES 2020; 2:5263-5270. [PMID: 36132018 PMCID: PMC9419463 DOI: 10.1039/d0na00488j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/26/2020] [Indexed: 06/15/2023]
Abstract
In this article, a dual-solvent method is presented which allows for precise control over the distribution of nanoparticles (NPs) in hydrogels. The technique is based on the interfacial reaction between a reducing agent (herein THPC) initially solubilized in the hydrogel phase, and an organometallic precursor (herein Au(PPh3)Cl) solubilized in the surrounding organic liquid phase. When the organic phase is completely immiscible with water, the interfacial reaction yields a fragile monolayer film of NPs at the hydrogel surface. Then, the addition of a co-solvent (miscible with both aqueous and organic phases) allows precise tuning over the distribution of NPs, from a fine and well-anchored layer at the interface, to the whole gel volume. As a result, it is possible to independently control the size and concentration of NPs, and their distribution. The impact of such control is demonstrated with the reduction of p-nitrophenol to p-aminophenol catalyzed by gold nanoparticles (AuNPs). When AuNPs are mostly localized at the gel surface, the apparent reaction rate is more than 10× superior compared to AuNPs distributed in the whole gel - at comparable particle content and size. This approach is straightforward, decisive and compatible with broad arrays of NPs and hydrogel chemistries, and solvent combinations.
Collapse
Affiliation(s)
- Olivier Gazil
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Teodora Gancheva
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Michel Bilodeau-Calame
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Basil D Favis
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| | - Nick Virgilio
- CREPEC, Department of Chemical Engineering, Polytechnique Montréal C.P. 6079 Succursale Centre-Ville Montréal Québec H3C 3A7 Canada
| |
Collapse
|
11
|
Rosin-based chiral wormlike Micelles: Rheological behavior and its application in preparing ultrasmall gold nanoparticles. J Colloid Interface Sci 2020; 579:61-70. [PMID: 32570031 DOI: 10.1016/j.jcis.2020.06.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/15/2022]
Abstract
Innovations in surfactant structures are a feasible way to prepare unique molecular aggregates with interesting properties. Herein, taking dehydroabietic acid as the starting material, a new amine oxide surfactant, abbreviated as R-8-AO, was synthesized. Cryogenic transmission electron microscopy (cryo-TEM) images and circular dichroism (CD) spectra reveal that at suitable concentrations, R-8-AO molecules form rarely discovered right-handed chiral wormlike micelles, which have a cross-sectional diameter of 5-6 nm. The overlap concentration of R-8-AO is approximately 8 mM, above which the wormlike micelles began to entangle in solutions. Due to the strong van der Waals forces between R-8-AO molecules, the scaling law gives an exponent of 7.88, which is higher than the theory predicted value. Gold nanoparticles were synthesized in-situ by irradiating mixed solutions of HAuCl4 and wormlike micelles formed by R-8-AO with UV light. These ultrasmall spherical gold nanoparticles, which are located at the surface of wormlike micelles, have a uniform particle size of 3 ± 1 nm, as observed by TEM. In addition, the gold nanoparticles form a worm-like morphology induced by the wormlike micelles, showing soft-aggregate-directed nanoparticle assembly. This work is first to reveal the effectiveness of preparing ultrasmall gold nanoparticles with new morphological wormlike micelles as soft templates. The resulting organic-inorganic hybrid aggregates are also expected to find applications in catalysis and electronic fields.
Collapse
|
12
|
Hierarchical Polymer Composites as Smart Reactor for Formulating Simple/Tandem-Commutative Catalytic Ability. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01583-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Flow-Through Catalytic Reactors Based on Metal Nanoparticles Immobilized within Porous Polymeric Gels and Surfaces/Hollows of Polymeric Membranes. Polymers (Basel) 2020; 12:polym12030572. [PMID: 32143486 PMCID: PMC7182848 DOI: 10.3390/polym12030572] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/17/2022] Open
Abstract
State-of-the-art of flow-through catalytic reactors based on metal nanoparticles immobilized within the pores of nano-, micro- and macrosized polymeric gels and in the surface or hollow of polymeric membranes is discussed in this mini-review. The unique advantages of continuous flow-through nanocatalysis over the traditional batch-type analog are high activity, selectivity, productivity, recyclability, continuous operation, and purity of reaction products etc. The methods of fabrication of polymeric carriers and immobilization technique for metal nanoparticles on the surface of porous or hollow structures are considered. Several catalytic model reactions comprising of hydrolysis, decomposition, hydrogenation, oxidation, Suzuki coupling and enzymatic reactions in the flow system are exemplified. Realization of “on-off” switching mechanism for regulation of the rate of catalytic process through controlling the mass transfers of reactants in liquid media with the help of stimuli-responsive polymers is demonstrated. Comparative analysis of the efficiency of different flow-through catalytic reactors for various reactions is also surveyed.
Collapse
|
14
|
Shen T, Zhong L, Liu X, Zhang J, Zhang D, He K, Yuan C, Xu Y, Dai L. Decorating Au nanoparticles onto optimized P(
t
BA‐
co
‐DMAEMA) carriers for ameliorative catalytic capability. J Appl Polym Sci 2020. [DOI: 10.1002/app.48920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tong Shen
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsCollege of Materials, Xiamen University Xiamen 361005 People's Republic of China
| | - Lina Zhong
- Research and Development DepartmentKZJ New Materials Group Co., Ltd. Xiamen 361101 People's Republic of China
| | - Xiaohui Liu
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsCollege of Materials, Xiamen University Xiamen 361005 People's Republic of China
| | - Jiatian Zhang
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsCollege of Materials, Xiamen University Xiamen 361005 People's Republic of China
| | - Dandan Zhang
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsCollege of Materials, Xiamen University Xiamen 361005 People's Republic of China
| | - Kaibin He
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsCollege of Materials, Xiamen University Xiamen 361005 People's Republic of China
| | - Conghui Yuan
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsCollege of Materials, Xiamen University Xiamen 361005 People's Republic of China
| | - Yiting Xu
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsCollege of Materials, Xiamen University Xiamen 361005 People's Republic of China
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire Retardant MaterialsCollege of Materials, Xiamen University Xiamen 361005 People's Republic of China
| |
Collapse
|
15
|
Begum R, Farooqi ZH, Aboo AH, Ahmed E, Sharif A, Xiao J. Reduction of nitroarenes catalyzed by microgel-stabilized silver nanoparticles. JOURNAL OF HAZARDOUS MATERIALS 2019; 377:399-408. [PMID: 31176075 DOI: 10.1016/j.jhazmat.2019.05.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/18/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Poly(N-isopropylacrylamide-co-acrylamide) (PNA-BIS-2) microgels were synthesized by free radical precipitation polymerization in aqueous medium. Spherical Ag nanoparticles with diameter of 10-20 nm were fabricated inside the PNA-BIS-2 microgels by in-situ reduction of silver nitrate using sodium borohydride as reducing agent. The Ag nanoparticles- loaded hybrid microgels were characterized by Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Energy dispersive X-ray (EDX), Scanning transmission electron microscopy (STEM), Ultraviolet visible spectroscopy (UV Visible), Thermogravimetric analysis (TGA) and X-ray diffraction (XRD). Ag contents in the hybrid system were determined by inductively coupled plasma - optical emission spectrometry (ICP-OES). Various nitroarenes were successfully converted into their respective aromatic amines with good to excellent yields (ranging from 75% to 97%) under mild reaction conditions. The catalyst has ability to successfully convert substituted nitroarenes into desired products keeping many functionalities intact. The catalyst can be stored for long time without any sign of aggregation and can be used multiple times without any significant loss in its catalytic activity.
Collapse
Affiliation(s)
- Robina Begum
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK; Institute of Chemistry, University of the Punjab, New Campus Lahore, 54590, Pakistan; Centre for Undergraduate Studies, University of the Punjab, New Campus Lahore, 54590, Pakistan
| | - Zahoor H Farooqi
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK; Institute of Chemistry, University of the Punjab, New Campus Lahore, 54590, Pakistan.
| | - Ahmed H Aboo
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Ejaz Ahmed
- Institute of Chemistry, University of the Punjab, New Campus Lahore, 54590, Pakistan
| | - Ahsan Sharif
- Institute of Chemistry, University of the Punjab, New Campus Lahore, 54590, Pakistan
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK.
| |
Collapse
|
16
|
Song X, Qiao C, Tao J, Bao B, Han X, Zhao S. Interfacial Engineering of Thermoresponsive Microgel Capsules: Polymeric Wetting vs Colloidal Adhesion. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Gancheva T, Virgilio N. Tailored macroporous hydrogel–nanoparticle nanocomposites for monolithic flow-through catalytic reactors. REACT CHEM ENG 2019. [DOI: 10.1039/c8re00337h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Highly porous poly(N-isopropylacrylamide) PNIPAam hydrogel monoliths with tunable microstructures and comprising gold, silver or palladium nanoparticles, display significant catalytic activity when used in flow-through microreactors.
Collapse
Affiliation(s)
- Teodora Gancheva
- CREPEC
- Department of Chemical Engineering
- Polytechnique Montréal
- Québec
- Canada
| | - Nick Virgilio
- CREPEC
- Department of Chemical Engineering
- Polytechnique Montréal
- Québec
- Canada
| |
Collapse
|