1
|
Hou S, Chen C, Bai L, Yu J, Cheng Y, Huang W. Stretchable Electronics with Strain-Resistive Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306749. [PMID: 38078789 DOI: 10.1002/smll.202306749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/15/2023] [Indexed: 03/16/2024]
Abstract
Stretchable electronics have attracted tremendous attention amongst academic and industrial communities due to their prospective applications in personal healthcare, human-activity monitoring, artificial skins, wearable displays, human-machine interfaces, etc. Other than mechanical robustness, stable performances under complex strains in these devices that are not for strain sensing are equally important for practical applications. Here, a comprehensive summarization of recent advances in stretchable electronics with strain-resistive performance is presented. First, detailed overviews of intrinsically strain-resistive stretchable materials, including conductors, semiconductors, and insulators, are given. Then, systematic representations of advanced structures, including helical, serpentine, meshy, wrinkled, and kirigami-based structures, for strain-resistive performance are summarized. Next, stretchable arrays and circuits with strain-resistive performance, that integrate multiple functionalities and enable complex behaviors, are introduced. This review presents a detailed overview of recent progress in stretchable electronics with strain-resistive performances and provides a guideline for the future development of stretchable electronics.
Collapse
Affiliation(s)
- Sihui Hou
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Cong Chen
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Libing Bai
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junsheng Yu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuhua Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wei Huang
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
2
|
Chen L, Khan A, Dai S, Bermak A, Li W. Metallic Micro-Nano Network-Based Soft Transparent Electrodes: Materials, Processes, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302858. [PMID: 37890452 PMCID: PMC10724424 DOI: 10.1002/advs.202302858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Soft transparent electrodes (TEs) have received tremendous interest from academia and industry due to the rapid development of lightweight, transparent soft electronics. Metallic micro-nano networks (MMNNs) are a class of promising soft TEs that exhibit excellent optical and electrical properties, including low sheet resistance and high optical transmittance, as well as superior mechanical properties such as softness, robustness, and desirable stability. They are genuinely interesting alternatives to conventional conductive metal oxides, which are expensive to fabricate and have limited flexibility on soft surfaces. This review summarizes state-of-the-art research developments in MMNN-based soft TEs in terms of performance specifications, fabrication methods, and application areas. The review describes the implementation of MMNN-based soft TEs in optoelectronics, bioelectronics, tactile sensors, energy storage devices, and other applications. Finally, it presents a perspective on the technical difficulties and potential future possibilities for MMNN-based TE development.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Department of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Arshad Khan
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Shuqin Dai
- Department School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Amine Bermak
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Wen‐Di Li
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
| |
Collapse
|
3
|
Lee H, Kang DH, Cho S, Kim YR, Lee Y, Na S, Cho H, Lee S, Lim G, Yeom J, Ko H. Low-Voltage Stretchable Electroluminescent Loudspeakers with Synchronous Sound and Light Generation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16299-16307. [PMID: 36926796 DOI: 10.1021/acsami.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Stretchable sound-in-displays, which can generate synchronous sound and light directly from the display without a separate speaker, allow immersive audio and visual perception even on curved surfaces. In stretchable sound-in-displays, alternating current electroluminescent (ACEL) devices have been used as light-emitting sources owing to their high brightness and stability. However, stretchable ACEL devices that use low dielectric constant (κ) materials require a high operating voltage for generating light and sound. Herein, we demonstrate a stretchable ACEL loudspeaker with a low operating voltage using stretchable high-κ dielectrics and strain-insensitive electrodes. Our device exhibits 87.7 cd/m2 of luminance and 79.70 dB of sound pressure level at an operating voltage of 120 V and 10 kHz. As the next platform of wearable devices, the suggested ACEL loudspeaker exhibits high-quality synchronous light and sound generation performance even under various types of mechanical deformation, such as finger flexion and wrist bending.
Collapse
Affiliation(s)
- Hyejin Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Young-Ryul Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Sangyun Na
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Haryeong Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Geumseok Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
4
|
Yang B, Yang Z, Tang L. Recent progress in fiber-based soft electronics enabled by liquid metal. Front Bioeng Biotechnol 2023; 11:1178995. [PMID: 37187888 PMCID: PMC10175636 DOI: 10.3389/fbioe.2023.1178995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/17/2023] Open
Abstract
Soft electronics can seamlessly integrate with the human skin which will greatly improve the quality of life in the fields of healthcare monitoring, disease treatment, virtual reality, and human-machine interfaces. Currently, the stretchability of most soft electronics is achieved by incorporating stretchable conductors with elastic substrates. Among stretchable conductors, liquid metals stand out for their metal-grade conductivity, liquid-grade deformability, and relatively low cost. However, the elastic substrates usually composed of silicone rubber, polyurethane, and hydrogels have poor air permeability, and long-term exposure can cause skin redness and irritation. The substrates composed of fibers usually have excellent air permeability due to their high porosity, making them ideal substrates for soft electronics in long-term applications. Fibers can be woven directly into various shapes, or formed into various shapes on the mold by spinning techniques such as electrospinning. Here, we provide an overview of fiber-based soft electronics enabled by liquid metals. An introduction to the spinning technology is provided. Typical applications and patterning strategies of liquid metal are presented. We review the latest progress in the design and fabrication of representative liquid metal fibers and their application in soft electronics such as conductors, sensors, and energy harvesting. Finally, we discuss the challenges of fiber-based soft electronics and provide an outlook on future prospects.
Collapse
Affiliation(s)
- Bowen Yang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
| | - Zihan Yang
- Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| | - Lixue Tang
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Zihan Yang, ; Lixue Tang,
| |
Collapse
|
5
|
Li Z, Li H, Zhu X, Peng Z, Zhang G, Yang J, Wang F, Zhang Y, Sun L, Wang R, Zhang J, Yang Z, Yi H, Lan H. Directly Printed Embedded Metal Mesh for Flexible Transparent Electrode via Liquid Substrate Electric-Field-Driven Jet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105331. [PMID: 35233960 PMCID: PMC9108624 DOI: 10.1002/advs.202105331] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/04/2022] [Indexed: 05/22/2023]
Abstract
Flexible transparent electrodes (FTEs) with embedded metal meshes play an indispensable role in many optoelectronic devices due to their excellent mechanical stability and environmental adaptability. However, low-cost, simple, efficient, and environmental friendly integrated manufacturing of high-performance embedded metal meshes remains a huge challenge. Here, a facile and novel fabrication method is proposed for FTEs with an embedded metal mesh via liquid substrateelectric-field-driven microscale 3D printing process. This direct printing strategy avoids tedious processes and offers low-cost and high-volume production, enabling the fabrication of high-resolution, high-aspect ratio embedded metal meshes without sacrificing transparency. The final manufactured FTEs with 80 mm × 80 mm embedded metal mesh offers excellent optoelectronic performance with a sheet resistance (Rs ) of 6 Ω sq-1 and a transmittance (T) of 85.79%. The embedded metal structure still has excellent mechanical stability and good environmental suitability under different harsh working conditions. The practical feasibility of the FTEs is successfully demonstrated with a thermally driven 4D printing structure and a resistive transparent strain sensor. This method can be used to manufacture large areas with facile, high-efficiency, low-cost, and high-performance FTEs.
Collapse
Affiliation(s)
- Zhenghao Li
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of EducationQingdao University of TechnologyQingdao266520China
| | - Hongke Li
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of EducationQingdao University of TechnologyQingdao266520China
| | - Xiaoyang Zhu
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of EducationQingdao University of TechnologyQingdao266520China
| | - Zilong Peng
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Guangming Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Jianjun Yang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Fei Wang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Yuan‐Fang Zhang
- Shien‐Ming Wu School of Intelligent EngineeringSouth China University of TechnologyGuangzhou511442China
| | - Luanfa Sun
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Rui Wang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Jinbao Zhang
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| | - Zhongming Yang
- School of Information Science and Engineering and Shandong Provincial Key Laboratory of Laser Technology and ApplicationShandong UniversityQingdao266327China
| | - Hao Yi
- State Key Laboratory of Mechanical TransmissionChongqing UniversityChongqing400044China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive ManufacturingQingdao University of TechnologyQingdao266520China
| |
Collapse
|
6
|
Park C, Lee B, Kim J, Lee H, Kang J, Yoon J, Ban J, Song C, Cho SJ. Flexible Sensory Systems: Structural Approaches. Polymers (Basel) 2022; 14:1232. [PMID: 35335562 PMCID: PMC8955130 DOI: 10.3390/polym14061232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Biology is characterized by smooth, elastic, and nonplanar surfaces; as a consequence, soft electronics that enable interfacing with nonplanar surfaces allow applications that could not be achieved with the rigid and integrated circuits that exist today. Here, we review the latest examples of technologies and methods that can replace elasticity through a structural approach; these approaches can modify mechanical properties, thereby improving performance, while maintaining the existing material integrity. Furthermore, an overview of the recent progress in wave/wrinkle, stretchable interconnect, origami/kirigami, crack, nano/micro, and textile structures is provided. Finally, potential applications and expected developments in soft electronics are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Seong J. Cho
- Department of Mechanical Engineering, Chungnam National University (CNU), 99 Daehak-ro, Yuseong-gu, Daejeon 305-764, Korea; (C.P.); (B.L.); (J.K.); (H.L.); (J.K.); (J.Y.); (J.B.); (C.S.)
| |
Collapse
|
7
|
Voronin AS, Fadeev YV, Makeev MO, Mikhalev PA, Osipkov AS, Provatorov AS, Ryzhenko DS, Yurkov GY, Simunin MM, Karpova DV, Lukyanenko AV, Kokh D, Bainov DD, Tambasov IA, Nedelin SV, Zolotovsky NA, Khartov SV. Low Cost Embedded Copper Mesh Based on Cracked Template for Highly Durability Transparent EMI Shielding Films. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1449. [PMID: 35207987 PMCID: PMC8879047 DOI: 10.3390/ma15041449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023]
Abstract
Embedded copper mesh coatings with low sheet resistance and high transparency were formed using a low-cost Cu seed mesh obtained with a magnetron sputtering on a cracked template, and subsequent operations electroplating and embedding in a photocurable resin layer. The influence of the mesh size on the optoelectric characteristics and the electromagnetic shielding efficiency in a wide frequency range is considered. In optimizing the coating properties, a shielding efficiency of 49.38 dB at a frequency of 1 GHz, with integral optical transparency in the visible range of 84.3%, was obtained. Embedded Cu meshes have been shown to be highly bending stable and have excellent adhesion strength. The combination of properties and economic costs for the formation of coatings indicates their high prospects for practical use in shielding transparent objects, such as windows and computer monitors.
Collapse
Affiliation(s)
- Anton S. Voronin
- Department of Molecular Electronics, Federal Research Center «Krasnoyarsk Scientific Center», Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (Y.V.F.); (M.M.S.); (D.V.K.); (D.K.); (S.V.K.)
- School of Engineering and Construction, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (M.O.M.); (P.A.M.); (A.S.O.); (A.S.P.); (D.S.R.); (G.Y.Y.)
| | - Yurii V. Fadeev
- Department of Molecular Electronics, Federal Research Center «Krasnoyarsk Scientific Center», Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (Y.V.F.); (M.M.S.); (D.V.K.); (D.K.); (S.V.K.)
- School of Engineering and Construction, Siberian Federal University, 660041 Krasnoyarsk, Russia
| | - Mstislav O. Makeev
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (M.O.M.); (P.A.M.); (A.S.O.); (A.S.P.); (D.S.R.); (G.Y.Y.)
| | - Pavel A. Mikhalev
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (M.O.M.); (P.A.M.); (A.S.O.); (A.S.P.); (D.S.R.); (G.Y.Y.)
| | - Alexey S. Osipkov
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (M.O.M.); (P.A.M.); (A.S.O.); (A.S.P.); (D.S.R.); (G.Y.Y.)
| | - Alexander S. Provatorov
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (M.O.M.); (P.A.M.); (A.S.O.); (A.S.P.); (D.S.R.); (G.Y.Y.)
| | - Dmitriy S. Ryzhenko
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (M.O.M.); (P.A.M.); (A.S.O.); (A.S.P.); (D.S.R.); (G.Y.Y.)
| | - Gleb Y. Yurkov
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (M.O.M.); (P.A.M.); (A.S.O.); (A.S.P.); (D.S.R.); (G.Y.Y.)
- Laboratory of Reinforced Plastics, N.N. Semenov Federal Research Center of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Mikhail M. Simunin
- Department of Molecular Electronics, Federal Research Center «Krasnoyarsk Scientific Center», Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (Y.V.F.); (M.M.S.); (D.V.K.); (D.K.); (S.V.K.)
- School of Non-Ferrous Metals and Materials Science, Siberian Federal University, 660041 Krasnoyarsk, Russia
- Department of Aircraft, Reshetnev Siberian University Science and Technology, 660037 Krasnoyarsk, Russia
| | - Darina V. Karpova
- Department of Molecular Electronics, Federal Research Center «Krasnoyarsk Scientific Center», Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (Y.V.F.); (M.M.S.); (D.V.K.); (D.K.); (S.V.K.)
| | - Anna V. Lukyanenko
- School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.V.L.); (S.V.N.); (N.A.Z.)
- Laboratory of Radiospectroscopy and Spintronics, L.V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036 Krasnoyarsk, Russia
| | - Dieter Kokh
- Department of Molecular Electronics, Federal Research Center «Krasnoyarsk Scientific Center», Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (Y.V.F.); (M.M.S.); (D.V.K.); (D.K.); (S.V.K.)
- Scientific and Training Center of Space Research and High Technologies Institute, Reshetnev Siberian University Science and Technology, 660037 Krasnoyarsk, Russia
| | - Dashi D. Bainov
- Laboratory for Radiation and Plasma Technologies, Tomsk Polytechnic University, 634050 Tomsk, Russia;
- Laboratory of Radiophotonics, V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Science, 634055 Tomsk, Russia
| | - Igor A. Tambasov
- Laboratory of Photonics of Molecular Systems, L.V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, 660036 Krasnoyarsk, Russia;
- LLC Research and Production Company “Spectehnauka”, 660043 Krasnoyarsk, Russia
| | - Sergey V. Nedelin
- School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.V.L.); (S.V.N.); (N.A.Z.)
- LLC Research and Production Company “Spectehnauka”, 660043 Krasnoyarsk, Russia
| | - Nikita A. Zolotovsky
- School of Engineering Physics and Radio Electronics, Siberian Federal University, 660041 Krasnoyarsk, Russia; (A.V.L.); (S.V.N.); (N.A.Z.)
- LLC Research and Production Company “Spectehnauka”, 660043 Krasnoyarsk, Russia
| | - Stanislav V. Khartov
- Department of Molecular Electronics, Federal Research Center «Krasnoyarsk Scientific Center», Siberian Branch, Russian Academy of Sciences (FRC KSC SB RAS), 660036 Krasnoyarsk, Russia; (Y.V.F.); (M.M.S.); (D.V.K.); (D.K.); (S.V.K.)
| |
Collapse
|
8
|
Osipkov A, Makeev M, Konopleva E, Kudrina N, Gorobinskiy L, Mikhalev P, Ryzhenko D, Yurkov G. Optically Transparent and Highly Conductive Electrodes for Acousto-Optical Devices. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7178. [PMID: 34885331 PMCID: PMC8658282 DOI: 10.3390/ma14237178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
The study was devoted to the creation of transparent electrodes based on highly conductive mesh structures. The analysis and reasonable choice of technological approaches to the production of such materials with a high Q factor (the ratio of transparency and electrical conductivity) were carried out. The developed manufacturing technology consists of the formation of grooves in a transparent substrate by photolithography methods, followed by reactive ion plasma etching and their metallization by chemical deposition using the silver mirror reaction. Experimental samples of a transparent electrode fabricated using this technology have a sheet resistance of about 0.1 Ω/sq with a light transmittance in the visible wavelength range of more than 60%.
Collapse
Affiliation(s)
- Alexey Osipkov
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Mstislav Makeev
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Elizaveta Konopleva
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Natalia Kudrina
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Leonid Gorobinskiy
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Pavel Mikhalev
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Dmitriy Ryzhenko
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
| | - Gleb Yurkov
- Laboratory of EMI Shielding Materials, Bauman Moscow State Technical University, 105005 Moscow, Russia; (E.K.); (N.K.); (L.G.); (P.M.); (D.R.); (G.Y.)
- N.N. Semenov Federal Research Center for Chemical Physics Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
9
|
An EY, Lee S, Lee SG, Lee E, Baek JJ, Shin G, Choi KH, Cho JH, Bae GY. Self-Patterned Stretchable Electrode Based on Silver Nanowire Bundle Mesh Developed by Liquid Bridge Evaporation. NANOMATERIALS 2021; 11:nano11112865. [PMID: 34835632 PMCID: PMC8621255 DOI: 10.3390/nano11112865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
A new strategy is required to realize a low-cost stretchable electrode while realizing high stretchability, conductivity, and manufacturability. In this study, we fabricated a self-patterned stretchable electrode using a simple and scalable process. The stretchable electrode is composed of a bridged square-shaped (BSS) AgNW bundle mesh developed by liquid bridge evaporation and a stretchable polymer matrix patterned with a microcavity array. Owing to the BSS structure and microcavity array, which effectively concentrate the applied strain on the deformable square region of the BSS structure under tensile stretching, the stretchable electrode exhibits high stretchability with a low ΔR/R0 of 10.3 at a strain of 40%. Furthermore, by exploiting the self-patterning ability—attributable to the difference in the ability to form liquid bridges according to the distance between microstructures—we successfully demonstrated a stretchable AgNW bundle mesh with complex patterns without using additional patterning processes. In particular, stretchable electrodes were fabricated by spray coating and bar coating, which are widely used in industry for low-cost mass production. We believe that this study significantly contributes to the commercialization of stretchable electronics while achieving high performance and complex patterns, such as stretchable displays and electronic skin.
Collapse
Affiliation(s)
- Eun Young An
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
| | - Siyoung Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Korea;
| | - Seung Goo Lee
- Department of Chemistry, University of Ulsan, Ulsan 44610, Korea;
| | - Eunho Lee
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea;
| | - Jeong Ju Baek
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
| | - Gyojic Shin
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
| | - Kyung Ho Choi
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Korea
- Correspondence: (J.H.C.); (G.Y.B.)
| | - Geun Yeol Bae
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology, Cheonan 31056, Korea; (E.Y.A.); (J.J.B.); (G.S.); (K.H.C.)
- Correspondence: (J.H.C.); (G.Y.B.)
| |
Collapse
|
10
|
Wang Z, Jiao B, Huang L, Zuo X, Zhang W, Li Y, Wang J, Dong H, Hou X, Wu Z. Cohesively Enhancing the Conductance, Mechanical Robustness, and Environmental Stability of Random Metallic Mesh Electrodes via Hot-Pressing-Induced In-Plane Configuration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41836-41845. [PMID: 34459190 DOI: 10.1021/acsami.1c12204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible transparent conductive electrode (FTCE) is highly desirable due to the fast-growing flexible optoelectronic devices. Several promising FTCEs based on metal material have been developed to replace conventional indium tin oxide (ITO). The random metal mesh is considered to be one of the competitive candidates. However, obtaining feasible random metal mesh with low sheet resistance, high transparency, good mechanical durability, and strong environmental stability is still a great challenge. Here, a random metal mesh-based FTCE with an in-plane structure, achieved by a facile hot-pressing process, is demonstrated. The hot-pressing process enables the fabrication of highly conductive FTCE with improved mechanical robustness and environmental stability. The in-plane FTCE shows a low sheet resistance of 1.63 Ω·sq-1 with an 80.6% transmittance, low relative resistance increase (RRI) of 7.9% after 240 h 85 °C/85% RH test, and low RRI of 8.0% after 105 cycles of bending test. Besides, various applications of the in-plane FTCE were demonstrated, including the flexible heater, flexible touch screen, and flexible electroluminescence. We anticipate that these results will spark interest in in-plane random metal mesh electrodes and enable the application of random metal mesh in flexible optoelectronic devices.
Collapse
Affiliation(s)
- Zhenxiao Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Bo Jiao
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Linquan Huang
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Xiang Zuo
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Wenwen Zhang
- School of Electronic Engineering, Xi'an University of Posts & Telecommunication, Xi'an 710121, China
| | - Yunchong Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Jianing Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Hua Dong
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Zhaoxin Wu
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Lab of Information Photonic Technique, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| |
Collapse
|
11
|
Zhu X, Liu M, Qi X, Li H, Zhang YF, Li Z, Peng Z, Yang J, Qian L, Xu Q, Gou N, He J, Li D, Lan H. Templateless, Plating-Free Fabrication of Flexible Transparent Electrodes with Embedded Silver Mesh by Electric-Field-Driven Microscale 3D Printing and Hybrid Hot Embossing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007772. [PMID: 33829552 DOI: 10.1002/adma.202007772] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
Flexible transparent electrodes (FTEs) with an embedded metal mesh are considered a promising alternative to traditional indium tin oxide (ITO) due to their excellent photoelectric performance, surface roughness, and mechanical and environmental stability. However, great challenges remain for achieving simple, cost-effective, and environmentally friendly manufacturing of high-performance FTEs with embedded metal mesh. Herein, a maskless, templateless, and plating-free fabrication technique is proposed for FTEs with embedded silver mesh by combining an electric-field-driven (EFD) microscale 3D printing technique and a newly developed hybrid hot-embossing process. The final fabricated FTE exhibits superior optoelectronic properties with a transmittance of 85.79%, a sheet resistance of 0.75 Ω sq-1 , a smooth surface of silver mesh (Ra ≈ 18.8 nm) without any polishing treatment, and remarkable mechanical stability and environmental adaptability with a negligible increase in sheet resistance under diverse cyclic tests and harsh working conditions (1000 bending cycles, 80 adhesion tests, 120 scratch tests, 100 min ultrasonic test, and 72 h chemical attack). The practical viability of this FTE is successfully demonstrated with a flexible transparent heater applied to deicing. The technique proposed offers a promising fabrication strategy with a cost-effective and environmentally friendly process for high-performance FTE.
Collapse
Affiliation(s)
- Xiaoyang Zhu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Mingyang Liu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Ximeng Qi
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Hongke Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Yuan-Fang Zhang
- Digital Manufacturing and Design Centre, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Zhenghao Li
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Zilong Peng
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
- College of Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Jianjun Yang
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Lei Qian
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Quan Xu
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Nairui Gou
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hongbo Lan
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
12
|
Yu S, Liu X, Wu M, Dong H, Wang X, Li L. All-Solution-Processed Molybdenum Oxide-Encapsulated Silver Nanowire Flexible Transparent Conductors with Improved Conductivity and Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14470-14478. [PMID: 33733722 DOI: 10.1021/acsami.0c22324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A novel transparent conductive conductor composed of a silver nanowire (AgNW) network and MoOx on a flexible polyethylene terephthalate (PET) substrate, with contemporaneously improved adhesion and reduced resistivity, is prepared using the full-solution process without high-temperature annealing. Under the optimized conditions, a MoOx/AgNW/MoOx multilayer is achieved, which shows much superior optoelectronic performance to that obtained from ITO with a high optical transmittance of 89.2% and a low sheet resistance of ∼12.5 Ω/sq. Unlike pure AgNW films, the sheet resistance is little changed after the tape and ultrasonication tests, illustrating a very strong adhesion to the PET substrate after the encapsulation of MoOx. Moreover, the multilayer film exhibits excellent stability to resist mechanical bending and acid damage. In addition, the successful implementation of the flexible transparent heater demonstrates the practical application value of the electrode.
Collapse
Affiliation(s)
- Shihui Yu
- School of Microelectronics and Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaoyu Liu
- School of Microelectronics and Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Muying Wu
- School of Electronic Engineering and Intelligentization, Dongguan University of Technology, Guangdong, Dongguan 523808, China
| | - Helei Dong
- School of Instrument and Electronics, North University of China, Tai Yuan 030051, China
| | - Xiaohu Wang
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Lingxia Li
- School of Microelectronics and Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
13
|
Nie B, Li X, Wang C, Liu H, Tian H, Chen X, Shao J. Flexible Double-Sided Light-Emitting Devices Based on Transparent Embedded Interdigital Electrodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43892-43900. [PMID: 32790278 DOI: 10.1021/acsami.0c10132] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In the areas of flexible displays and wearable devices, double-sided light-emitting devices have huge commercial applications. Here, we provide a novel form of flexible double-sided light-emitting devices by designing and manufacturing different transparent interdigital electrodes for lighting the structural areas of composite emitting layers. The transparent interdigital electrodes are fabricated by embedding multiwalled carbon nanotubes in interdigital mesh-structured microcavities using a doctor-blading process, and the emitting layers are fabricated by mixing copper-doped zinc sulfide (ZnS/Cu) phosphor particles with the transparent polydimethylsiloxane polymer. The fabricated double-sided light-emitting devices could be in the crimp state, exhibiting excellent flexibility. By designing the structure of the interdigital electrodes and the thickness of the emitting layers, the double-sided emission intensity of the light-emitting devices can be adjusted. Furthermore, based on the flexible double-sided light-emitting devices, various patterns can be successfully programed, such as the digital, grayscale, and ancient Chinese walls. The flexible and programmable double-sided light-emitting films provide a promising strategy for the next generation of customized flexible displays.
Collapse
Affiliation(s)
- Bangbang Nie
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiangming Li
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Chunhui Wang
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Haoran Liu
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Hongmiao Tian
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xiaoliang Chen
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Jinyou Shao
- Micro- and Nano-technology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
14
|
Tang Y, Ruan H, Chen Y, Xiang J, Liu H, Jin R, Shi D, Chen S, Zhang J. A flexible, room-temperature and solution-processible copper nanowire based transparent electrode protected by reduced graphene oxide exhibiting high performance and improved stability. NANOTECHNOLOGY 2020; 31:045704. [PMID: 31658034 DOI: 10.1088/1361-6528/ab4c03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advances in flexible electronic and optoelectronic devices have caused higher requirements for fabricating high-performance and low cost flexible transparent conductive electrodes (TCEs). Copper nanowires (Cu NWs) possess excellent electrical and optical properties, but the large contact resistance and poor stability limit their practical application in optoelectronic devices. In this work, we report a robust, convenient and environment-friendly method to assemble copper nanowires/reduced graphene oxide (Cu NWs/rGO) TCEs with enhanced conductivity, flexibility and stability at room temperature. The NaBH4 treatment was used to remove the organics and oxides on the surface of Cu NWs, and the graphene oxide (GO) capping layer was also effectively reduced at the same time. The best Cu NWs/rGO composite TCEs show a good optical-electrical performance with a sheet resistance of ∼50 Ω/sq and transmittance of 83% as well as superior mechanical flexibility. The oxidation resistance of Cu NWs in normal environment and even at a relatively high temperature has also been greatly improved. Additionally, the Cu NWs/rGO TCEs based heaters presented high saturation temperature and rapid response time under a low voltage. The high-performance composite Cu NWs TCEs with good stability are expected to be applied in various types of flexible optoelectronic devices.
Collapse
Affiliation(s)
- Yan Tang
- Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, People's Republic of China. College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu J, Zhang L, Li C. Highly Stable, Transparent, and Conductive Electrode of Solution-Processed Silver Nanowire-Mxene for Flexible Alternating-Current Electroluminescent Devices. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04329] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jin Liu
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ling Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Jiang ZY, Huang W, Chen LS, Liu YH. Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding. OPTICS EXPRESS 2019; 27:24194-24206. [PMID: 31510313 DOI: 10.1364/oe.27.024194] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/31/2019] [Indexed: 06/10/2023]
Abstract
A unique freestanding nickel (Ni) metallic mesh-based electromagnetic interference shielding film has been fabricated though the direct-writing technique and a subsequent selective metal electrodeposited process. The structured freestanding Ni mesh film demonstrates a series of advantages, including ultrathin thickness (2.5-6.0 μm) and ultralight weight (0.23 mg cm-2), extraordinary optoelectronic performance (sheet resistance about 0.24-0.7 Ω sq-1 with transparency of 92%-93%), high figure of merit (18000) and outstanding flexibility as it can withstand folding, rolling and crumpling into various shapes while keeping the conductivity constant. Furthermore, by using this high-performance Ni mesh, an ultrathin, lightweight, freestanding and transparent electromagnetic interference shielding (EMI) film with extraordinary optoelectronic properties (shielding effectiveness about 40 dB with transparency of 92%) is demonstrated in X-band, with no performance attenuation observed even in bending state. This freestanding metallic mesh-structured electrode can be further explored or applied in various potential applications, such as conformal microwave antennas, transparent EMI windows, and wearable electronics.
Collapse
|
17
|
Hexagonal and Square Patterned Silver Nanowires/PEDOT:PSS Composite Grids by Screen Printing for Uniformly Transparent Heaters. Polymers (Basel) 2019; 11:polym11030468. [PMID: 30960452 PMCID: PMC6473526 DOI: 10.3390/polym11030468] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 11/17/2022] Open
Abstract
Transparent conductive films with hexagonal and square patterns were fabricated on poly(ethylene terephthalate) (PET) substrates by screen printing technology utilizing a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and silver nanowire (Ag NWs) composite ink. The printing parameters-mesh number, printing layer, mass ratio of PEDOT:PSS to Ag NWs and pattern shape-have a significant influence on the photoelectric properties of the composite films. The screen mesh with a mesh number of 200 possesses a suitable mesh size of 74 µm for printing clear and integrated grids with high transparency. With an increase in the printing layer and a decrease in the mass ratio of PEDOT:PSS to Ag NWs, the transmittance and resistance of the printed grids both decreased. When the printing layer is 1, the transmittance and resistance are 85.6% and 2.23 kΩ for the hexagonal grid and 77.3% and 8.78 kΩ for the square grid, indicating that the more compact arrangement of square grids reduces the transmittance, and the greater number of connections of the square grid increases the resistance. Therefore, it is believed that improved photoelectric properties of transparent electrodes could be obtained by designing a printing pattern with optimized printing parameters. Additionally, the Ag NWs/PEDOT:PSS composite films with hexagonal and square patterns exhibit high transparency and good uniformity, suggesting promising applications in large-area and uniform heaters.
Collapse
|
18
|
Qiao S, Ogata AF, Jha G, Chattopadhyay A, Penner RM. Rapid, Wet Chemical Fabrication of Radial Junction Electroluminescent Wires. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35344-35353. [PMID: 30231613 DOI: 10.1021/acsami.8b10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A wet chemical process involving two electrodeposition steps followed by a solution casting step, the "EESC" process, is described for the fabrication of electroluminescent, radial junction wires. EESC is demonstrated by assembling three well-studied nanocrystalline (or amorphous) materials: Au, CdSe, and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS). The tri-layered device architecture produced by EESC minimizes the influence of an electrically resistive CdSe emitter layer by using a highly conductive gold nanowire that serves as both a current collector and a negative electrode. Hole injection, at a high barrier CdSe-PEDOT:PSS interface (ϕh ≈ 1.1 V), is facilitated by a contact area that is 1.9-4.7-fold larger than the complimentary gold-CdSe electron-injecting contact (ϕe ≈ 0.6 V), contributing to low-voltage thresholds (1.4-1.7 V) for electroluminescence (EL) emission. Au@CdSe@PEDOT:PSS wire EL emitters are 25 μm in length, amongst the longest so far demonstrated to our knowledge, but the EESC process is scalable to nanowires of any length, limited only by the length of the central gold nanowire that serves as a template for the fabrication process. Radial carrier transport within these multishell wires conforms to the back-to-back diode model.
Collapse
Affiliation(s)
| | | | | | - Aurnov Chattopadhyay
- University High School , 4771 Campus Dr , Irvine , California 92612 , United States
| | | |
Collapse
|
19
|
Cai J, Zhang C, Khan A, Wang L, Li WD. Selective Electroless Metallization of Micro- and Nanopatterns via Poly(dopamine) Modification and Palladium Nanoparticle Catalysis for Flexible and Stretchable Electronic Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:28754-28763. [PMID: 30084253 DOI: 10.1021/acsami.8b07411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The authors report a new patterned electroless metallization process for creating micro- and nanoscale metallic structures on polymeric substrates, which are essential for emerging flexible and stretchable optical and electronic applications. This novel process features a selective adsorption of catalytic Pd nanoparticles (PdNPs) on a lithographically masked poly(dopamine) (PDA) interlayer in situ polymerized on the substrates. The moisture-resistant PDA layer has excellent stability under a harsh electroless plating bath, which enables electroless metallization on versatile substrate materials regardless of their hydrophobicity, and significantly strengthens the attachment of electroless plated metallic structures on the polymeric substrates. Prototype devices fabricated using this PDA-assisted electroless metallization patterning exhibit superior mechanical stability under high bending and stretching stress. The lithographic patterning of the PDA spatially confines the adsorption of PdNPs and reduces defects due to random adsorption of catalytic particles on the undesired area. The high resolution of the lithographic patterning enables the demonstration of a copper micrograting pattern with a linewidth down to 2 μm and a silver plasmonic nanodisk array with a 500 nm pitch. A copper mesh is also fabricated using our new patterned electroless metallization process and functions as flexible transparent electrodes with >80% visible transmittance and <1 Ω sq-1 sheet resistance. Moreover, flexible and stretchable dynamic electroluminescent displays and functional flexible printed circuits are demonstrated to show the promising capability of our fabrication process in versatile flexible and stretchable electronic devices.
Collapse
Affiliation(s)
- Jingxuan Cai
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam, Hong Kong , China
- HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI) , Hangzhou , Zhejiang 311305 , China
| | - Cuiping Zhang
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam, Hong Kong , China
- HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI) , Hangzhou , Zhejiang 311305 , China
| | - Arshad Khan
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam, Hong Kong , China
| | - Liqiu Wang
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam, Hong Kong , China
- HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI) , Hangzhou , Zhejiang 311305 , China
| | - Wen-Di Li
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam, Hong Kong , China
- HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI) , Hangzhou , Zhejiang 311305 , China
| |
Collapse
|